Calcolo delle Probabilità Corso Progredito

Laurea Magistrale in Scienze Statistiche e Attuariali Università degli Studi di Trieste

Calcolo delle Probabilità

- Argomenti:
 - Spazi di probabilità
 - ▶ Variabili aleatorie
 - Indipendenza
 - Speranza condizionata
 - ▶ Teoremi limite
 - Processi stocastici

Calcolo delle Probabilità

- Testi per il corso
 - Probability and Random Processes, G. Grimmett, D. Stirzaker, OUP, 3a edizione, 2001
 - → di base, molto ampio, numerosi esercizi
 - Probability Essentials, J. Jacod, P. Protter, Springer, 2a edizione, 2004
 - → conciso ma molto preciso
 - ▶ Probability and Measure, P. Billingsley, Wiley, 3a edizione, 1995
 → molto ampio e matematicamente preciso, avanzato

Calcolo delle Probabilità

 Modello matematico per la descrizione e valutazione dell'incertezza

- > approccio assiomatico basato sulla Teoria della Misura
- ▶ eventi ≡ insiemi, probabilità ≡ misura
- approccio non "costruttivo"

- Modello matematico: costituito da 3 elementi
- 1) Ω = insieme di possibili risultati di un esperimento
 - ightharpoonup elementi (risultati): $\omega \in \Omega$
 - $ightharpoonup \omega = {
 m stato del mondo/stato di natura}$
 - lacktriangle una volta che l'esperimento è terminato, uno e uno solo $\omega^* \in \Omega$ sarà verificato

- Modello matematico: costituito da 3 elementi
- 2) $\mathscr{F} =$ insieme di eventi di interesse per l'esperimento
 - ▶ evento: sottoinsieme di Ω , se $A \in \mathcal{F}$ allora $A \subset \Omega$
 - evento: ente logico che può essere vero (V) o falso (F)
 - ▶ se ω^* si verifica, allora A è V o F se $\omega^* \in A$ o $\omega^* \notin A$

- 2) \mathscr{F} = insieme di eventi di interesse per l'esperimento

 - ightharpoonup non necessariamente ogni sottoinsieme di Ω è in \mathscr{F} (è un evento)

- Modello matematico: costituito da 3 elementi
- 3) P probabilità: per ogni evento $A \in \mathcal{F}$, un numero

$$0 \le P(A) \le 1$$

- \triangleright P(A): misura di fiducia che A sia V (prima dell'esperimento)
- ightharpoonup se P(A) = 0: è "quasi certo" che A sia F
- ightharpoonup se P(A) = 1: è "quasi certo" che A sia V
- ightharpoonup P(A) > P(B): l'evento A è più probabile di B

- Corrispondenza tra eventi e insiemi (→ diagrammi di Venn)
 - $ightharpoonup \Omega =$ "universo" = evento certo: sempre V
 - $\triangleright \varnothing = \text{insieme vuoto} = \frac{\text{evento impossibile}}{\text{evento impossibile}}$: sempre F
 - $A^c = \bar{A} = \text{complementare di } A = \text{``non A''}: V/F \text{ se e solo se } A \in F/V$

- Corrispondenza tra eventi e insiemi
 - $ightharpoonup A \cup B = \text{unione di } A \in B = \text{"} A \circ B \text{"} : V \text{ se } A \in V \circ B \in V$
 - unione non esclusiva!
 - \blacktriangleright per una famiglia di insiemi $(A_{\alpha})_{\alpha \in I}$, con I insieme di indici,

$$\bigcup_{\alpha\in I}A_{\alpha}$$

è V se almeno uno degli A_{α} è V

• Corrispondenza tra eventi e insiemi

- ▶ $A \cap B$ = intersezione di A e B = "A e B": V se A è V o B è V
- ightharpoonup per una famiglia di insiemi $(A_{\alpha})_{\alpha \in I}$, con I insieme di indici,

$$\bigcap_{\alpha\in I}A_{\alpha}$$

è V se ognuno degli A_{α} è V

- Corrispondenza tra eventi e insiemi
 - A B = A meno B = "A e non B": V se A è V e B è F
 - $\bar{A} = \Omega A$
 - ► $A\triangle B =$ differenza simmetrica di A e B = A o B, ma non entrambe: V se A è V e B è F, o viceversa \rightsquigarrow unione esclusiva
 - inclusione tra insiemi A ⊂ B: se A è V allora B è V

- Corrispondenza tra eventi e insiemi
 - ▶ $A \in B$ sono disgiunti se $A \cap B = \emptyset$: $A \in B$ sono incompatibili \leadsto non si possono verificare entrambi
 - ightharpoonup gli eventi di una famiglia $(A_{\alpha})_{\alpha \in I}$ sono a due a due disgiunti se

$$A_{\alpha} \cap A_{\beta} = \emptyset$$

per ogni $\alpha \neq \beta \rightsquigarrow$ al più uno degli eventi si può verificare

ightharpoonup gli eventi di una famiglia $(A_{\alpha})_{\alpha \in I}$ sono esaustivi se

$$\bigcup_{\alpha\in I}A_{\alpha}=\Omega$$

→ uno degli eventi si verifica certamente

- Partizione di Ω : una famiglia di eventi $\mathbb{P} = (A_{\alpha})_{\alpha \in I}$ tale che
 - $ightharpoonup A_{lpha}
 eq arnothing$ per ogni $lpha \in I$
 - a due a due disgiunti
 - esaustivi
- Una partizione permette di rappresentare l'incertezza in eventi incompatibili di cui uno sicuramente si verifica ("puzzle")
- Caso tipico: \mathbb{P} discreta (\equiv finita o numerabile)

- Modello per esperimenti combinati/ripetuti: spazio prodotto (prodotto cartesiano)
 - > spazio per l'esperimento consistente in esperimento 1 (Ω_1) seguito da ... seguito da esperimento n (Ω_n) :

$$\Omega_1 \times \ldots \times \Omega_n = \{(\omega_1, \ldots, \omega_n) : \omega_i \in \Omega_i, i = 1, \ldots, n\}$$

▶ spazio per l'esperimento consistente in un dato esperimento ripetuto n volte ($\Omega_i = \Omega$ per ogni i):

$$\Omega^n = \{(\omega_1, \ldots, \omega_n) : \omega_i \in \Omega, i = 1, \ldots, n\}$$

- ▶ i risultati di un esperimento non influenzano gli esiti di quelli successivi
- ightharpoonup sequenza infinita di esperimenti: e.g. $\Omega^{\infty} \equiv \Omega^{\mathbb{N}}$

- Esercizio. Rappresentare ognuno dei seguenti esperimenti
 - lancio di una moneta
 - lancio di un dado
 - lancio di due/n/∞ monete
 - lancio di un dado seguito da un lancio di una moneta
 - estrazione di 5 carte da un mazzo di 52
 - partita di calcio

- Esercizio. Rappresentare ognuno dei seguenti esperimenti
 - lancio di una moneta
 - lancio di un dado
 - ▶ lancio di due/n/∞ monete
 - lancio di un dado seguito da un lancio di una moneta
 - estrazione di 5 carte da un mazzo di 52

- Esercizio. Rappresentare ognuno dei seguenti esperimenti
 - partita di calcio
 - prezzo di una azione/n azioni
 - numero di sinistri in un portafoglio di n contratti
 - numero di sinistri e danno totale in un portafoglio assicurativo
 - prezzo di una azione nel tempo
 - durata di vita alla nascita di un individuo/n individui
- esempi di eventi incompatibili, esaustivi, unione, intersezione, differenza, . . .

Definizione formale di spazio di probabilità: una tripla

$$(\Omega, \mathscr{F}, P)$$

con

- **1** Ω : insieme non vuoto \leadsto risultati possibili
- **2** \mathscr{F} : σ -algebra di sottoinsiemi di $\Omega \leadsto$ eventi di interesse
- 3 P probabilità su $(\Omega, \mathcal{F}) \rightsquigarrow$ misura dell'incertzza

• \mathscr{F} è una σ -algebra di sottoinsiemi di Ω (gli elementi di \mathscr{F} sono sottoinsiemi di Ω) tale che

$$\triangleright$$
 $[\mathscr{F}1] \varnothing \in \mathscr{F}, \Omega \in \mathscr{F}$

- ▶ [\mathscr{F} 2, chiusura per complementazione] per ogni $A \in \mathscr{F}$ anche $\bar{A} \in \mathscr{F}$
- ▶ [\mathscr{F} 3, chiusura per unioni/intersezioni numerabili] per ogni successione $(A_n)_{n=1,2,...}$ di eventi in \mathscr{F} , allora

$$\bigcup_{n} A_{n} \in \mathscr{F}, \qquad \bigcap_{n} A_{n} \in \mathscr{F}$$

• La coppia (Ω, \mathscr{F}) è uno spazio misurabile; probabilità P su (Ω, \mathscr{F}) è una applicazione

$$P: \mathscr{F} \rightarrow [0,1]$$

tale che

- ▶ $[P1, misura unitaria] P(\emptyset) = 0, P(\Omega) = 1$
- ▶ [P2, σ-additività] per ogni successione $(A_n)_{n=1,2,...}$ di eventi a due a due incompatibili in \mathscr{F}

$$P\left(\bigcup_{n}A_{n}\right)=\sum_{n}P(A_{n})$$

• Se P(A) = 1, A è quasi certo (si scrive A q.c.)

- Esercizio. Rappresentare come spazi di probabilità i seguenti esempi
 - ▶ lancio di una moneta
 - lancio di un dado
 - ightharpoonup come σ -algebra, utilizzare l'insieme delle parti di Ω

$$2^{\Omega} = \mathscr{P}(\Omega) = \{A | A \subset \Omega\}$$

[tutti i sottoinsiemi di Ω]

- Nella definizione di σ -algebra
 - ▶ in $[\mathscr{F}1]$ basta richiedere che $\varnothing \in \mathscr{F}$ oppure che $\Omega \in \mathscr{F}$ oppure che \mathscr{F} sia non vuoto
 - in [ℱ3] basta richiedere che ℱ sia chiuso rispetto a unioni numerabili oppure a intersezioni numerabili → formule di de Morgan
- Ogni σ -algebra è chiusa per unioni o intersezioni finite

- Perché si richiedono $[\mathscr{F}1], [\mathscr{F}2], [\mathscr{F}3]$?
 - ▶ l'evento certo e quello impossibile sono sicuramente noti
 - ightharpoonup se A è noto a esperimento terminato, tale sarà $ar{A}$
 - ightharpoonup se A_1, \ldots, A_n sono eventi rivelati noti alla fine dell'esperimento, tali saranno

$$A_1 \cup \ldots \cup A_n$$
, $A_1 \cap \ldots \cap A_n$

estendere questa proprietà a successioni numerabili è fatto per convenienza matematica

• Ogni operazione (finita o numerabile) su eventi di una σ -algebra dà come risultato eventi della σ -algebra

- \mathscr{A} è un'algebra di sottoinsiemi di Ω se
 - \blacktriangleright [\mathscr{A} 1] $\varnothing \in \mathscr{A}$, $\Omega \in \mathscr{A}$
 - $ightharpoonup [\mathscr{A}2]$ per ogni $A\in\mathscr{F}$ anche $ar{A}\in\mathscr{A}$
 - \blacktriangleright [\mathscr{A} 3] per ogni A_1, \ldots, A_n di elementi di \mathscr{A} , allora

$$A_1 \cup \ldots \cup A_n \in \mathscr{A}, \qquad A_1 \cap \ldots \cap A_n \in \mathscr{A}$$

- Ogni σ -algebra è un algebra, non viceversa (a meno che Ω o $\mathscr A$ siano finiti)
- Esercizio. Ω infinito, $\mathscr{F} = \{A \subset \Omega | A \text{ finito o cofinito}\}$ è un'algebra ma non una σ -algebra

- ullet Esempi di σ -algebra
 - $ightarrow \mathscr{F} = 2^{\Omega} \leadsto$ la più grande σ -algebra su Ω
 - ${m {\cal F}}=\{\varnothing,\Omega\} \leadsto$ la più piccola σ -algebra su $\Omega,\ \sigma$ -algebra triviale
 - ightharpoonup se $A\subset\Omega$, $\mathscr{F}=\{\varnothing,A,\bar{A},\Omega\}$
- Ogni σ -algebra ${\mathscr F}$ su Ω è tale che

$$\{\varnothing,\Omega\}\subset\mathscr{F}\subset 2^{\Omega}$$

- - $ightharpoonup \sigma$ -algebra triviale ightharpoonup nessuna informazione
 - $ightharpoonup \sigma$ -algebra discreta $ightharpoonup \mathsf{massima}$ informazione
- \mathscr{G},\mathscr{F} sono σ -algebre su Ω
 - $\blacktriangleright \ \mathcal{G} \subset \mathcal{F} \leadsto \mathcal{F} \text{ ha più informazione di } \mathcal{G}$
 - \blacktriangleright $\mathscr{G}\cap\mathscr{F}$ è una σ -algebra \leadsto informazione in comune tra \mathscr{F} e \mathscr{G}
 - $ightharpoonup \mathcal{G} \cup \mathcal{F}$ non è in generale una σ -algebra

- Esercizio. Partita di calcio: $\Omega = \{1, X, 2\}, \ \mathscr{F} = 2^{\Omega}$
 - be descrivere $\mathscr{F}_1 =$ informazione di chi osserva (solo) se la squadra di casa ha vinto o meno
 - be descrivere $\mathscr{F}_2 =$ informazione di chi osserva (solo) se la squadra in trasferta ha vinto o meno
 - ▶ descrivere $\mathscr{F}_1 \cap \mathscr{F}_2$
 - ightharpoonup verificare che $\mathscr{F}_1 \cup \mathscr{F}_2$ non è una σ -algebra

• Più in generale, se $(\mathscr{F}_{\alpha})_{\alpha \in I}$ è una famiglia arbitraria di σ -algebre su Ω , tale è

$$\bigcap_{\alpha\in I}\mathscr{F}_\alpha$$

- σ -algebra generata da un insieme $\mathscr C$ di sottoinsiemi di Ω
 - come costruire una σ -algebra che contiene gli eventi in \mathscr{C} "e niente altro"?
 - costruzione "da fuori" utilizzando il risultato precedente

$$\sigma(\mathscr{C}) = \bigcap \{ \mathscr{G} | \mathscr{G} \text{ } \sigma\text{-algebra}, \ \mathscr{C} \subset \mathscr{G} \}$$

• La σ -algebra generata da $\mathscr C$ può essere caratterizzata come l'unico insieme di eventi $\mathscr F=\sigma(\mathscr C)$ tale che

 $ightharpoonup \mathscr{F}$ è una σ -algebra

 \blacktriangleright $\mathscr{C} \subset \mathscr{F}$

ightharpoonup per ogni altra σ -algebra $\mathscr G$ tale che $\mathscr C\subset\mathscr G$, riesce $\mathscr F\subset\mathscr G$

- ullet Quindi la σ -algebra generata da $\mathscr C$
 - ightharpoonup è la più piccola σ -algebra che contiene $\mathscr C$
 - ightharpoonup contiene tutti gli insiemi costruibili partendo da quelli di $\mathscr C$ (con operazioni numerabili)
- A parte alcuni casi "semplici", non è in generale possibile descrivere gli insiemi di $\sigma(\mathscr{C})$
- Come definire la condivisione (unione) delle informazioni?

- ullet Due proprietà (ovvie) della σ -algebra generata
 - $ightharpoonup \mathscr{F}$ è una σ -algebra $\Longleftrightarrow \mathscr{F} = \sigma(\mathscr{F})$
 - $\blacktriangleright \ \mathscr{C}_1 \subset \mathscr{C}_2 \Rightarrow \sigma(\mathscr{C}_1) \subset \sigma(\mathscr{C}_2)$
- Esercizio. Chi è $\sigma(\mathscr{C})$ quando
 - ► & è vuoto
 - $\blacktriangleright \mathscr{C} = \{\varnothing\}$
 - $\blacktriangleright \mathscr{C} = \{\Omega\}$
 - $\mathscr{C} = \{A\} \text{ con } \varnothing \neq A \neq \Omega$

- ullet Caso in cui si riesce a descrivere la σ -algebra generata
 - ▶ Se $\mathbb{P} = (A_n)_{n \geq 1}$ è una partizione discreta, allora $(\mathbb{N}_+ = \mathbb{N} \{0\})$

$$\sigma(\mathbb{P}) = \left\{ \bigcup_{i \in I} A_i | I \subset \mathbb{N}_+ \right\}$$

▶ Se $\mathscr{C} = \{A_1, ..., A_n\}$ insieme finito, riesce

$$\sigma(\mathscr{C}) = \sigma(\mathbb{P}_G(\mathscr{C}))$$

dove $\mathbb{P}_G(\mathscr{C}) = \{A'_1 \cap A'_2 \cap \ldots \cap A'_n \neq \varnothing | A'_i = A_i \text{ o } A'_i = \bar{A}_i\}$ è la partizione generata da \mathscr{C} : la partizione meno fine per cui ogni insieme di \mathscr{C} si piuò ottenere come unione di insiemi della partizione

- $ightharpoonup \mathbb{P}_1$ è più fine di \mathbb{P}_2 se ogni insieme di \mathbb{P}_2 è unione di insiemi di \mathbb{P}_1
- Esercizio. Descrivere $\sigma(\{A, B\})$ con A, B "generici"

- σ -Algebra di Borel in $\mathbb R$
 - ightharpoonup su $\Omega = \mathbb{R}$, si considera la σ -algebra $\mathscr{B} = \sigma(\mathscr{C})$ dove

$$\mathscr{C} = \{ \text{intervalli di } \mathbb{R} \}$$

- ightharpoonup ogni insieme di interesse pratico è in \mathscr{B} , tuttavia $\mathscr{B} \subsetneq 2^{\mathbb{R}}$
- ▶ insiemi in ℬ: boreliani

- Riesce $\mathscr{B} = \sigma(\mathscr{C}_i)$ i = 1, ..., 5 con
 - $\mathscr{C}_1 = \{(-\infty, a) | a \in \mathbb{R}\}$

 - $\mathscr{C}_3 = \{(a,b)| a, b \in \mathbb{R}\}$
 - \triangleright $\mathscr{C}_4 = \{[a,b] | a, b \in \mathbb{R}\}$
 - $ightharpoonup \mathscr{C}_5 = \{ \text{insiemi aperti di } \mathbb{R} \}$
- Altre scelte di insiemi generatori sono possibili

- σ -Algebra sullo spazio prodotto
 - \triangleright $(\Omega_i, \mathscr{F}_i), i = 1, \ldots, n$
 - ▶ su $Ω_1 × ... × Ω_n$ si considera la σ-algebra prodotto

$$\mathscr{F} = \mathscr{F}_1 \otimes \ldots \otimes \mathscr{F}_n = \sigma(\mathscr{C})$$

dove

$$\mathscr{C} = \{A_1 \times \ldots \times A_n | A_i \in \mathscr{F}_i, i = 1, \ldots, n\}$$

 $A_1 \times \ldots \times A_n$: "iper-rettangoli"

- ightharpoonup caso particolare: $\Omega_i = \Omega$, $\mathscr{F}_i = \mathscr{F}$, lo spazio è $(\Omega^n, \mathscr{F}^{\otimes n})$
- ▶ se $\mathscr{F}_i = \sigma(\mathscr{C}_i)$ e $Ω_i$ è unione discreta di insiemi di \mathscr{C}_i , per ogni i

$$\mathscr{F} = \sigma(\{A_1 \times \ldots \times A_n | A_i \in \mathscr{C}_i, i = 1, \ldots, n\})$$

- σ -Algebra di Borel in \mathbb{R}^n , indicata con \mathscr{B}^n
 - $\triangleright \mathscr{B}^n \equiv \mathscr{B}^{\otimes n} \equiv \mathscr{B} \otimes \ldots \otimes \mathscr{B}$ cioè

$$\mathscr{B}^n = \sigma(\{A_1 \times \ldots \times A_n | A_i \in \mathscr{B}\})$$

▶ in base al risultato precedente, \mathscr{B}^n è generato da per-rettangoli (limitati o illimitati)

$$\mathscr{B}^{n} = \sigma(\{(-\infty, a_{1}] \times \ldots \times (-\infty, a_{n}) | a_{i} \in \mathscr{R}\})$$
$$= \sigma(\{(a_{1}, b_{1}] \times \ldots \times (a_{n}, b_{n}] | a_{i}, b_{i} \in \mathscr{R}\})$$

- ogni insieme di interesse pratico è in \mathcal{B}^n ,
- insiemi in \(\mathscr{S}^n \): boreliani

- (Ω, \mathscr{F}, P) spazio di probabilità, $A, B \in \mathscr{F}$
 - $ightharpoonup P(A \cup B)$ se A, B incompatibili
 - $P(\bar{A}) = 1 P(A)$
 - ▶ se $A \subset B$ P(B-A) = P(B) P(A)e quindi $P(A) \leq P(B)$ [monotonia]
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- (Ω, \mathscr{F}, P) spazio di probabilità, $A_1, \ldots, A_n \in \mathscr{F}$
 - ▶ [finita additività] se $A_1,...,A_n$ sono a due a due disgiunti

$$P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$$

► [formula di inclusione-esclusione]

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j)$$

$$+ \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \ldots$$

$$\ldots + (-1)^{n+1} P(A_1 \cap \ldots \cap A_n)$$

► [finita subadditvità]

$$P(A_1 \cup \ldots \cup A_n) \leq P(A_1) + \ldots + P(A_n)$$

- (Ω, \mathscr{F}, P) spazio di probabilità, successione (A_n) di eventi con $A_n \in \mathscr{F}$ per ogni n
 - ▶ (A_n) è monotona non decrescente se $A_n \subset A_{n+1}$ per ogni n, e si pone $\lim_n A_n = \bigcup_n A_n$ e si scrive $A_n \uparrow A$
 - ▶ (A_n) è monotona non crescente se $A_n \supset A_{n+1}$ per ogni n, e si pone $\lim_n A_n = \bigcap_n A_n$ e si scrive $A_n \downarrow A$
 - \blacktriangleright [monotonia/continuità dal basso/alto] se (A_n) è è monotona

$$P(\lim_n A_n) = \lim_n P(A_n)$$

[subadditività]

$$P\left(\bigcup_{n}A_{n}\right)\leq\sum_{n}P(A_{n})$$

- (Ω, \mathscr{F}, P) spazio misurabile, $P : \mathscr{F} \to [0, 1]$ tale che
 - $P(\varnothing) = 0, P(\Omega) = 1$
 - ▶ [finita additività] $P(A \cup B) = P(A) + P(B)$ se $A, B \in \mathscr{F}$ sono incompatibili

allora le seguenti proprietà sono equivalenti:

- **1** $P \in \sigma$ -additiva ($P \in \text{una probabilita}$)
- P è continua dal basso
- P è continua dall'alto

- Spazio di probabilità discreto:
 - $ightharpoonup \Omega = \{\omega_1, \omega_2, \ldots\}$ (finito o numerabile)
 - $\mathscr{F}=2^{\Omega}$
 - ightharpoonup ogni P su questo spazio può essere assegnata tramite p_1, p_2, \ldots con

$$\begin{cases} p_i \geq 0 \text{ per ogni } i \\ \sum_i p_i = 1 \end{cases}$$

e ponendo, per $A \in \mathscr{F}$,

$$P(A) = \sum_{i:\omega_i \in A} p_i$$

• Esempio. Su $\Omega=\mathbb{N}$, $p_i=\mathrm{e}^{-\lambda}\frac{\lambda^i}{i!}$ con $\lambda>0$; su $\Omega=\mathbb{N}_+$, $p_i=\frac{1}{2^i}$

• Equiprobabilità su uno spazio finito:

$$\triangleright \mathscr{F} = 2^{\Omega}$$

 $ightharpoonup p_i = \frac{1}{n}$ per ogni *i*, cosi riesce per $A \in \mathscr{F}$

$$P(A) = \sum_{i:\omega_i \in A} \frac{1}{n} = \frac{\#A}{n} = \frac{\text{casi favorevoli}}{\text{casi possibili}}$$

dove #A = numerosità di A

• Schema tipico di giochi in condizioni di simmetria: lancio di dadi, monete, estrazioni di carte, roulette, estrazioni da urne, ...

- Esercizio. Lancio di due dadi
 - descrivere lo spazio di probabilità
 - ► calcolare P(A), P(B), $P(A \cap B)$, $P(A \cup B)$ dove A = "la somma dei dadi è 7", B = "il massimo dei dadi è 5"
- Esercizio. Lancio di *n* monete
 - descrivere lo spazio di probabilità
 - ▶ calcolare le probabilità di E_i ="esce testa al lancio i", A_i ="esce testa per la prima volta al lancio i", B="escono teste e croci in ugual numero", C_i ="escono esattamente i teste"