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These lecture notes‘aredntended solely for the students attending my course in Bio-Fluid Mechanics
at the University of Trieste. These notes are a simplified, unreferenced version of my book,

Pedrizzetti G. Fluid Mechanies+or Cardiovascular Engineering. Springer, Cham 2022.
https://link.springer.com/bogk/0.1007/978-3-030-85943-5

removing some parts that were considered unnecessary for the course. Therefore, most material
contained herein is protected by the/laws of copyrights. These lecture notes are available internally
for the students of the course, only; and“eannot be reproduced or distributed. Interested readers can
refer to the book for more comprehensivematerial and bibliographic references.

This course provides a guiding thread between the distant fields of fluid mechanics and clinical
cardiology. It is fundamentally based on the science of fluid dynamics, and drives the reader across
progressively more realistic scenarios, up to the complexity of routine medical applications.
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A. INTRODUCTORY ELEMENTS

1. Basic Concepts

1.1. Mechanics and continuum

"Mechanics".can be described in general as that field of science that is dedicated to the study of the
laws of miotion of physical bodies or, equivalently, to the equilibrium of the momentum of their
constitutive elements. Mechanics can be divided into three main subjects:

1. Staticsythat.deals with the equilibrium of all forces applied to a physical system in absence of
any motion.

2. Kinematics, that deals with the methods to describe the motion irrespective of the applied
forces that create such motion.

3. Dynamics, the most.important and comprehensive part, that regards the relationship between
forces and motion.

The term “dynamics” derivessfrom the ancient Greek (Svvapukdc) and was renewed in the French
word dynamique by Leibnitz (1646-1716) where it got the meaning of “pertaining with forces
producing motion”. The concept'of mechanics was addressed in mathematical terms by Newton who
demonstrated that forces are the entitiessthat change the motion, because they produce acceleration.
Newton laws of classical mechanics were carefully developed for individual point particles of finite
mass; they were then extended to rigid bodies and to deformable material. Here we will have to revise
these classical laws of mechanics for their applications to fluid elements.

This book is about classical mechanics, it will jgnore modern developments of quantum mechanics
whose corrections are largely negligible for objects of size much larger than individual sub-atomic
constituent of matters. It also neglects relativity correction because fluids within the body move with
velocities well below the speed of light. The focus is maintained to pure mechanics and discussions
regarding thermic and chemical phenomena are intentionally avoided, with the exception of a few
mentions that are reported where appropriate.

The course is specifically about biological fluids, which are mainly air, water, and blood. However,
it is important to remark from the beginning that the concept of “fluid”.is a “model” used to describe
certain phenomena encountered in the real world. Furthermore, fluids and solids represent the main
classes of the wider model commonly described as a “continuum”. No© material is really a continuum,
it is made of individual molecules that are made of atoms, that aresmade, of sub-atomic particle;
however, the model of continuum is used to describe macroscopic phenomena whose modification
occurs on scales that are incommensurably larger than those of such individual constituents.

Air and water have molecules whose size is of the order of nanometers (1 nm=10%m); for them, the
scheme of continuum is appropriate when studying macroscopic phenomena whosessize is much
larger than that. For water and air, macroscopic scales can be, in absolute termsg@as small as little
fractions of a millimeter.

Blood is different; blood is a particulate fluid mixture composed by a percentage of about 50% by
plasma (that can be considered analogous to water to a good approximation) and another about 50%
of red blood cells (this percentage is called hematocrit), plus minor percentages of white cells and
other constituents. Red blood cells, transport oxygen in the whole body and they are much larger than
water molecules. They have a discoidal shape of radius about 8 micrometers (1 pm=10% m), thicker
around the circumference, with thickness about 2 um, and a thin membrane at the center. Its shape
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may roughly be described as a donut whose hole is covered by a membrane that extends from the
surface of the inside ring to the center (see Figure 1.1). Thus, the volume of a red blood cell is
approximately 107 mm? and, if blood cells cover 50% of blood volume, there are about 5x10° red
blood cells in one mm?3 of blood.

Based on these figures, blood motion should be described with a corpuscular or a continuous model
depending on"the size of the domain under analysis, for example the diameter of the vessel. Large
blood vessels have a diameter ranging from few centimeter to several millimeters, here the continuum
model is appropriate. Smaller vessels have a size that can contain some tens of red blood cells across,
here the corpuscular nature of blood present a certain influence. At the smaller end, the diameter of
capillaries is less'than 10 um; here red blood cells flow one after the other in a row, even squeezing
to be able to pass‘through, and the corpuscular nature of blood takes a fundamental relevance.

Figure 1.1 Red Blood Cell.

However, the physiological sites of greater clinical interest, where theimechanical phenomena present
a direct physiological counterpart, are the heart chambers and the large vessels, like Aorta and carotid
for example. In the heart and large vessels, blood dynamics can be_ eonfidently modelled as that of a
continuous fluid. However, even in such large vessels, a few ‘specific phenomena may still be
influenced by blood’s corpuscular nature and, when such phenomeéna,present a physiological
significant, they should be properly accounted.

For most practical applications, the simplified representation of blood as a continuous material allows
employing a rich theoretical background of continuous mechanics and differential‘mathematics that
represents the basic tools of most achievements in fluid dynamics.

The continuous model is appropriate for describing the large-scale phenomena‘of motion, when
changes in the fluid motion occur over distances that are orders of magnitudes larger.ithan individual
constituents. A continuous mean is characterized by either its global properties or its local properties.
Examples of global, or integral, properties are the volume V' or the mass M of the portion of material
under analysis. The density p of a volume of fluid is given by the ratio M /V, mass per unit volume.
However, the density of a volume of fluid represents an average value over that volume of a local
property, because density is a property that can take different values at different positions inside the
volume. The density can be defined locally at every point as
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M dM

Py = ar

The second equality in (1.1) used the differential form of a ratio between infinitesimal quantities, that
formalism implicitly assume the limit dVV — 0. Here it should be remarked once again that in the
continuous model the infinitesimal volume is still much larger than the individual constituents of the
material. Needless to remind that global properties can be evaluated by integration of local ones, like

the mass.of a volume is given by the integral of the density over such volume

(1.1)

M= f padv. (1.2)

Local properties provide the most comprehensive description of the continuum, they are also called
“fields”. Fields are mathematical quantities that take different values at different points in space and
can also vary in time, likettemperature T (x, t) or pressure p(x, t), where t is the time coordinate and
x is the space coordinatevector; similarly, velocity v(x, t) is a vector field.

The physical laws that govern the mechanics of a continuum are the “conservation of mass” and the
“conservation of momentum”, including angular momentum, which is the expressions of the Newton
law. Given the limited changes in"temperature inside the circulatory system, we simplify the whole
matter by neglecting thermodynamigsphenomena. We also assume that the material does not undergo
transformations (of state, chemical or else) and maintains the same properties as time progresses.
Under these simplified conditions, the'enly form of energy coming into play is mechanical energy in
its manifestations of kinetic and potential energy. Other forms of energy like those associated with
heat transport or chemical reactions are thus neglected; this means that any non-mechanical property,
like temperature or concentration of a solute, ‘does not influence the motion actively and it is
transported passively with the fluid. In this purely=mechanical scenario, where the only form of energy
is mechanical energy, the conservation of momentumsCan be recast to express the “conservation of
energy” that is not an additional conservation law.

Conservation laws must be integrated with an “equation ofstate” that characterizes the behavior of
the specific continuous material under analysis. The equation of state is the law that relates volume
V, pressure p and temperature T. A well-known example is*'the law pV = RT of ideal gas. In a
continuum, it is preferable to express the equation of state entirely in tepms of local variable, or fields,
and rewrite it as a relation between density, pressure and temperature

p=f(T). (1.3)
The role of temperature in (1.3) is typically associated with the decrease of density in regions where
temperature increases. This effect, besides local sources of thermal energy, is important in large
regions like the atmosphere or the oceans where the large differences in temperature can give rise to
stratification of density with the quote and are responsible for buoyancy effects. Differently, inside
the human body temperature can be confidently considered constant or non-influentssuch that (1.3)
reduces to its isothermal version

p=f). (1.4)

which expresses the intuitive phenomenon that density increases when pressure increases and vice
versa.

Let us quantify this point a little more carefully: consider a generic volume V of material (for example,
a cylinder), that is in equilibrium with the external pressure, and apply a pressure increment dp on
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the surrounding surface of such volume (for example pushing a piston in the cylinder). The volume
will be compressed and experience a (negative) change of volume, dV/, that increases with increasing
pressure dp. The compressibility of a material is thus measured by the ratio between increase of
pressure and the corresponding decrease of volume, which must be expressed relative to its initial
volume V' because the same pressure acts on every infinitesimal element. This ratio is known as the
modulus of cubic compressibility (or bulk modulus). It is expressed as

dp dp
which is larger for stiffer materials, where a large increase of pressure is required to have a small
decrease of volume (the negative sign is included to have a positive value of & because changes of
pressure and volume have always opposite sign). The second equality in (1.5) used the relation
between volume and'density, V = M/p with the mass M being a constant, to transform volume
variations into density ones. The previous equation can be rearranged to express the relative change
of density

dp dp dp

D < = P; (16)

where the last equality used the definition,of velocity of propagation of sound, ¢ = \/dp/dp, in the
material that gives ¢ = pc?2.

In liquid materials, the modulus & is commanly. large because a small reduction of volume can be
achieved only in presence of extremely large,inereases of pressure that are typically not physiological.
Change in pressure can also develop by changes of fluid flow, for example when a fast-moving fluid
impacts onto a still surface, thus decelerating its velocity from a value v to zero, the pressure variation
dp is proportional to pv? (details will be given Chaptef 6). Therefore, using (1.6), the relative change
in density dp/p turns out to be proportional to the ratio between the squares of fluid velocity and
velocity of sound, (v/c)?. Physiological velocities aresmugh:lower than the velocity of sound (that
in water is about 1500 m/s and in dry air about 345 m/s); the condition that v « ¢, amplified for
square velocities, implies that dp « p. In summary, the variation of density induced by physiological
values of either pressure or blood velocity are largely negligible; therefore, we can focus the attention
to the limiting case “incompressible material” where density is assumed as a constant property (or
& — o0). Therefore, the equation of state to our purpose takes the simple form

p = constant; (1.7)

where the density takes values about 10% Kg/m? in water, 1.05x10° Kg/m® ferblood and about 1.2
Kg/m? in air at 20°C and atmospheric pressure.

1.2. Fluids and solids

The discussion brought forward so far applies to a generic continuum and does not miake explicit use
of the effective nature of the material, which can either a solid or a fluid. Before moving ahead, it is
time to elucidate the difference between solids and fluid so that we can then focus on the latter with
no ambiguity.

Bio Fluid Dynamics (Lecture Notes for Students)



Basic Concepts Page 7

Figure 1.2. Elasticity‘in solids: material deforms under the action of a force.

A solid material, such'as’biological hard tissue like a bone or a soft tissue like a muscle, presents its
own shape due to a natural geometric organization of the constituting elements, which are due to the
bonds between their atomic or,molecular components. When the relative position of these elements
is altered through a small amount of differential displacement, internal stresses develop in an effort
to restore the elements to their original, stress-free state. For example, with reference to Figure 1.2, a
rod of elastic material of length L /stretches under the action of an external force F because the
deformation of elements generates a fieldof internal forces that counterbalance the force F. When
the force ceases, the deformation goes, backsto zero and the rod returns to its original length. This
distinctive property of solids, where internal, stresses develop in response to a deformation, is
generally called “elasticity”. In its simplestform, elastic energy is a form of potential energy, which
is stored in the deformed structure composing the material (like if neighboring elements were
connected by small springs) and is returned when the deformation goes back to zero. Indeed, an elastic
deformation is normally completely reversible. In the simple one-dimensional case of Figure 1.2, the
elastic deformation, or strain, s = AL/L, is related to the"amount of stress, T = F /A, proportional to
the force and inversely proportional to the area of the cress-section. In general, solid materials are
characterized by a stress-strain relationship as shown in Figure1.3, which represents the “constitutive
law” characterizing the elastic behavior of a solid material. For small enough deformation the stress-
strain relationship can be considered as linear and, for one-dimensional deformation, is written t =
E's, where the proportionality coefficients E is the Young modulus. Mest biological tissues, however,
are subjected to relatively large deformation and the linear behavior isonly an approximation. The
stress-strain relationship in biological tissues, sketched in Figure 1.3, features a sharp increase of
stiffness when the material is subjected to increasingly large deformations; such behavior represents
a protective property that limits the entity of deformation in the event ofiextreme overloads.

Fluids are different and do not present an elastic behavior. The most distinctive property of fluids,
which include liquids and gases, is that a fluid has not a preferred shape. A fluid offers no resistance
to taking the shape of its container irrespective of any geometry it had previously.. Fhe individual
elements (e.g. atoms, molecules) constituting a fluid have not preferred relative positions; thus, they
may be organized in infinitely many stress-free states. Differently from solids, fluids.do not develop
stresses for a relative displacement of its constituting elements; instead, fluids develop an internal
resistance during their relative motion. Indeed, the distinctive property of fluids is the development
of internal stresses in response to a “rate of deformation”, to a differential velocity between nearby
elements. This property of fluids takes the name of “viscosity”. A fluid thus experiences a viscous
resistance during the motion caused by the sliding of the individual fluid elements one on the other.
Viscous stresses represent a frictional phenomenon that appears during motion, when the motion
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ceases also the viscous stress ceases and there is no mechanism taking the system back to its original
configuration as it happened in solids. The mechanical energy used to deform the fluid elements has
not been stored anywhere, it is dissipated by internal viscous friction and irreversibly transformed
into heat and dispersed.
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Figure 1.3. Elasticity in solids: stress=strain relationship.

In analogy to what previously shown for elasticity in solids, fluids are characterized by a relationship
between stress and rate-of-strain. Consider a.simple experiment of a thin layer of fluid between two
walls (infinitely extended to avoid end-effects); the lower wall being fixed and the upper wall sliding
with constant velocity U, as sketched in Figure 1.4. The,upper wall is maintained at constant velocity
under the action of a shear action 7, given by the foree per unit area. Such shear force is proportional
to U (it increases when velocity increases) and inversely proportional to the thickness d (it increases
when thickness decreases); eventually is can be shown te“depends on the ratio U/d. When the
thickness is small enough, such ratio approximately corresponds to the velocity derivative and, with
reference to Figure 1.4, one can write

= r(5)=1(2)

T

T 7/ X

Figure 1.4. Viscosity in fluids: shear frictions between fluid elements sliding with different velocity.
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This relationship between shear stress and shear rate is the “constitutive law” that characterizes the
viscous fluid properties as shown in Figure 1.5 for a few examples. Fluids that follow a simple linear
relationship are called “Newtonian fluids” for which (1.8) becomes

T=U—, (19)

and the proportionality coefficient u is the “dynamic viscosity”, a property that characterizes the
amount of viscous resistance to fluid motion. Fortunately, most common fluids like water and air
closely follow the behavior of a Newtonian fluid; dynamic viscosity in water takes value about 10
Kg/m-s at 20%that.decreases to about 0.7 10 Kg/m-s at 37°, and 1.8x10° Kg/m-s in air at 20°).
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Figure 1.5. Viscosity in fluids: shear stress depends on'shear rate.

Blood is more similar to a shear thinning fluid because its eorpuscular nature influences the value of
viscosity, which cannot be assumed circumstantially constant. In_fact, being blood a mixture of
corpuscular element into aqueous solution, its apparent viscosity Is not an intrinsic material property
and the value depends on the type of motion that blood is experiencings. For example, blood behaves
as a Newtonian fluid in regions with a high shear rate when the blood célls undergo an intense mixing
and average friction is not directly influenced by the corpuscular structure. Conversely, at low shear
rate, the collisions between individual cells give rise to higher frictionvand-higher apparent viscosity.
In the limit of very small shear, an effort is required to break the pre-existing pattern of red blood
cells; a behavior that is sometime modelled by a static yield stress. Viscosity.isyalso function of the
local hematocrit because a higher percentage of red blood cells reflects into ahigher average friction.

Such variability of apparent viscosity is further influenced by several concurring fagtors.and still lacks
a comprehensive and satisfactory description that is valid in general. Therefore, .several non-
Newtonian models have been proposed for various applications. However, in large vessels, where
shear rates are normally high and these variations are small; moreover, the mathematics would present
a significant increase in complexity when accounting for a variable viscosity. Therefore, at least for
flow in large vessels, blood is normally treated as a Newtonian fluid with constant viscosity, which
can vary from 3 to 4 x 103 Kg/m - s, which is about three to four times greater than the viscosity of
water at 20°.
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Dimensionally, the dynamic viscosity is a proportionality coefficient expressed by (1.9) between a
dynamic quantity, the shear stress that involves the three dimensional units (mass, length, time) and
the shear rate that involves only kinematic units (length and time). When the left side of equation
(1.9) is normalized with the density, the mass unit cancels and the same relationship can be rewritten
in terms of kinematic quantities only as

LA S (1.10)

p dy p
which introduces’ the “kinematic viscosity” v. The kinematic viscosity represents the viscosity
coefficient directly-involved in the description of fluid motion, whereas the dynamic viscosity enters
when such motion must be translated into dynamic actions like forces and stresses. Kinematic
viscosity takes value“about v = 1076 m? /s for water (at 20°) and v = 1.5 X 10~> m? /s for air (at
20° and atmospheric pressure) showing that the motion of water is less viscous that air’s although the
involved shear stresses‘aredarger because water density is larger. The value of kinematic viscosity
for blood when assumed asg@*Newtonian fluid, is v = 3.5 X 107® m?/s that is more commonly
expressed as v = 3.5 X 1072 cm?/s.

It must be clear in mind that the classification of materials as fluids and solids, as discussed above
with their related properties, does not cerrespond to the inner nature of reality itself. Fluids and solids
represent interpretative scheme, conceptual models to describe the behavior of reality under specific
conditions. In a more profound perspective, the distinction between fluids and solids is not always
immediate. Most materials present a simultaneous presence of both elastic and viscous behaviors.
Some materials can be intrinsically viscoelastic/(for example gels). Some materials should be even
be described as fluids in some conditions and-as solids in another. A glacier is a solid if one can walk
on it, yet it flows like a fluid during its slow mation detectable over the years. It is thus important to
remind that solids and fluids, elasticity and viscosity,’are conceptual models used to describe the
behavior of specific materials within the limit of thesSpeeific situation of interest where these models
main be appropriate.

This said, the fluid model is extremely accurate to describe the behavior of water, air and similar
elements in their liquid or gaseous phase; indeed, most related theoretical and applied advancements
in fundamental physics, technology and environmental studies are based on this scheme and its
mathematical foundations.

1.3. Overview of Bio-flow Domains

The ultimate goal of this book is a rigorous application of the principles.offluid dynamics to blood
flow in the cardiovascular system. For completeness, we include here a quick overview of the
circulatory system for the inexperienced reader. This is intentionally prowvided.at an extremely
superficial level; thus, the reader is redirected to the numerous other texts on the.subject for more
comprehensive descriptions.

Circulation is a system aimed to distribute nutrients (mainly oxygen) transported by, blood to every
single cell. Reaching all regions in the body is a difficult task that requires efficiency both in the large
vessels and in the microscopic intercellular space; to this aim circulation uses two main mechanisms:
transport and diffusion. Transport allows covering relatively large distances, from the heart to other
body regions up to limbs. Blood is transported with the local velocity, say U, along the cardiovascular
network and allow travelling a distance € a,sp~Ut in a time interval t. This mechanism is efficient

until velocity is high enough and becomes progressively less efficient in small vessels where velocity
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is much smaller. Indeed, velocity necessarily decreases at smaller scales in order to avoid
development of excessive shear stresses that are proportional to U/d, with d the vessel diameter, as
shown by relationship (1.9). On the opposite end, when velocity is close to zero, diffusion becomes
more efficient to cover small distances and permits the local distribution from capillary to interstitial
space up to individual cells through a diffusive behavior that rapidly covers small distances. The
length coveredby diffusion in a time t can be estimated as £4;;~+/2vt. Comparative results, reported
in the table below, show how transport is well suited to cover large distances traveling along large
vessels where velocity can be of the order of cm/s.

t etransp etransp t)diff
f ) _ (U=10 cm/s) (U=1 mml/s) (v=0.04 cm?/s)

10%s 0.1 mm 1 um 90 um
102s 1 mm 10 pm 0.28 mm
10 s " | l1cm 0.1 mm 0.9 mm

15 10 cm 1 mm 2.8 mm
Imin 4™, ©6m 6cm 2.2cm
1 hour 360 m 3.6m 17 cm

When the vessels become small and velocities are reduced to values of few mm/s or smaller, diffusion
becomes progressively more effigient to cover small distances.

The entire circulatory system is composed.of the systemic and the pulmonary circulation systems that
are arranged in series. Figure 1.6 shows a sketch of the main vessels. Systemic circulation starts from
the left heart, that receives low pressure oxygenated blood from the pulmonary veins and pushes it at
higher pressure in the Aorta, the first systemic artery. Aorta branches into smaller arteries that
transport blood into different regions of thesbodypthese in turn branch into smaller arteries then to
arterioles and into capillaries that are close enough to any cell of the body to which oxygen is
delivered and cells’ refuses collected. Capillaries then.merge into venules that merge further into
progressively larger veins up to inferior vena cava apd superior vena cava (from the lower and upper
parts of the body, respectively) that end the systemic €irculation and enter into the right heart. From
the right heart blood is pushed into the pulmonary arteries.and branches up to the capillaries that go
across the lungs, where red blood cells leave the refuses and collect oxygen. The pulmonary venous
system downstream the lungs transport oxygenated blood and reaches the left heart to restart the
cycle. The two circulations also operate in parallel because the left and right sides of the heart are
part of the same organ and work in synergy with a common cardiag‘pace.

Mechanical analysis is principally dedicated to the transport mechanispr inside large blood vessels,
across the heart and along main arteries and veins, which also represent the.sites of major clinical
interest. There are important differences between arterial and venousinetwerks. Blood flows in
arteries through an unsteady, pulsatile motion forced by the heartbeat rhythm and fills arteries at high
pressure (75 to 120 mmHg, that can be expressed as 1.0 to 1.6x10° Pa or as_1t0,1.6 mH,0, thus
blood may jump this high when an artery is punched). Differently, blood reaches.the venous system
after having passed though the capillary bed; there blood experienced large frictional resistances, it
loses its unsteadiness and loses pressure. Thus, the venous flow is essentially a(steady one and
pressure is low (as immediately verifiable by pushing the superficial veins). This is also a reason why
arteries have thicker walls and are protected deeper in the body, while veins are safely closer to the
surface.

The diameter of arteries of higher pathophysiological interest range from few centimeters (Aorta) to
one centimeter or several millimeters (carotid bifurcation, iliac arteries) where unsteady velocities
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reach peaks of about 1 m/s or more. Fluid dynamics phenomena that are relevant to blood flow in the
heart chambers and in the main arteries represent the main topics covered in later chapters.

Jugular
veins
Carotid
Aorta artery
Stperior Pulmonary
vena'tava arteries
Inferior Pulmonary
vena cava veins
Brachial Heart
arte .
Y Thoracic
Basilic aorta
ven 7 Hepatic
Gastric I artery
vein ,' Superior
) mesenteric
' artery
Renal Renal
artery
Abdominal
lliac vein aorta

Common
iliac artery

Figure 1.6. Overview of the circulatory anatomy. The arterial system of the"primary circulation,
indicated in red, originates from the left side of the heart with the aortic areh. and.progressively
branches to supply oxygenated blood to all the organs of the body. The corresponding venous
system, in blue, collects de-oxygenated blood and returns to the right heart. In_the pulmonary
circulation, the arteries, in blue, start poor in oxygen from the right heart and the pulmonary veins
with oxygenated blood end at the left side (credit: modification of work by Mariana Ruiz Villareal;
CC BY).

This book will focus on blood flow in the large vessels of the cardiovascular system due to its
paramount relevance with respect to other potential clinical application of fluid dynamics.
Nevertheless, microcirculation as well as other aspects of biological fluid dynamics are gaining
increasing attention for their potential significance to clinical applications.

Bio Fluid Dynamics (Lecture Notes for Students)



Basic Concepts Page 13

Pulmonary ventilation system deals with the forced oscillatory motion of air across the pulmonary
airways to the pulmonary alveoli. The main issues are the presence of dysfunctional/insufficient
alveoli, or the collapse of air vessels under extreme thrusts. In the same field, some attention is
devoted to the fluid mechanics of main external airways (nasal sinuses, turbinate) for the numerous
and common pathologies that affect these areas.

Biomechanies of the eye received particular attention during last years, because the eye is an organ
composed by a series of chambers filled by biological fluids. The agueous humour is a water-like
fluid contained-in,the anterior and posterior chambers of the eye. It provides nutrients to cornea and
lens and regulates the intraocular pressure. The balance between aqueous production and resistance
during drainage is an element participating to healthy eye function or to the development of diseases
like the glaucomas The: vitreous humour is a clear gel-like fluid that fills the vitreous chamber,
between the lens and the retina. Its slow dynamics during eye movements is part of the normal ocular
function, while an alteration,of its composition and dynamics directly affects the retina. Numerous
studies on theoretical aspects have created a firm ground for supporting actual clinical applications
in the coming years.

Blood perfusion represents the small-scale dynamics of blood across the capillary bed inside the
organs. There range from the liver, to kidney, to muscles, up to the myocardial muscle. Perfusion
analysis can be of interest to recognize and assess regions with insufficient blood supply (ischemic
areas) following injury or a disease, or/o assess potential absorption of drugs. Models of such systems
are still at early stages for clinical “application. More importantly, dedicated clinical imaging
modalities allow direct evaluation of perfusion-levels in numerous organs.

Industrial fluid dynamics is an essential part ©f, clinical or biotechnological environments, in
laboratories or plants, in either large or microscopic domains. It is therefore important to know the
fundamental aspects of fluid dynamics to understand thesmain phenomena that allow function of such
system.

These topics are not covered here, and the reader is redirected.to other books for a wider spectrum of
fluid mechanics phenomena that are present in biological‘environments.

1.4. Dimensional Analysis

Before starting to talk about physical laws, it is important to dedicate some space to outline the
fundamental topic of dimensional analysis. Dimensional analysis explores the implication of
dimensional congruence for physical laws, and it is interesting to notice’how._this apparently trivial
consideration can sometime allow simplifying or even uncovering relatienships between physical
properties. However, this subject is more powerful than what briefly described,here and the reader is
redirected to specific books for additional insights. The topic of dimensionalsanalysis is briefly
introduced here with the aim of placing dimensional congruence at the basis<of .the physical
descriptions presented later in this book and to provide an effective tool that will be employed in a
few situations.

To this aim, let us start by the simple consideration that any physical property can be expressed in
general as the product between a pure number and a dimensional unit. To be explicit, a property X
can be expresses as X=AXUNIT1 or X=BxUNIT.. Usage of different units brings to a different numerical
coefficient, which can be A times the UNIT, or B times the UNIT2, however, the physical property itself
is evidently not affected by a change in the unit used for its description. For example, a person height
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X=1.80m can be expressed as X=180cm or as X=70.87inch but the physical property itself, the height
of that person, is evidently independent from the unit chosen to describe it.

Similarly, a “physical law” reflects a physical phenomenon that is independent from the units used to
describe it. As before, this is a trivial affirmation; however, this simple concept is a constraint that
allows simplification of the expression of the physical laws itself.

Let us useone example to show the power of dimensional analysis. Consider a fluid that flows inside
a cylindrical vessel, the fluid moves because it is pushed by upstream by a pressure (potential energy)
that is larger than the value downstream thus giving a net propulsive force that overcomes the viscous
friction experiencedsby fluid along its motion. Suppose that we are willing to express how the
reduction of pressure per unit length depends on the parameters that are involved in the physical
systems. Without apy knowledge of the physical laws governing fluid dynamics, we can state that
this phenomenon must be expressed by a physical law of the type

ap _ 1.11
f(D,U,p,u), ( )

which states that the pressure gradient«(pressure loss per unit length) is a function of all the properties
that may influence it: the vessel diameter D, the flow velocity U, and the fluid characteristics, density
p and viscosity u. Assuming a simple.configuration (cylindrical vessel with no bend, obstacles etc.),
there are no other quantities coming into play. Thus, a physical law (1.11) must exist although its
specific form may be unknown. Thisudlaw (1711) depends on 4 parameters, if you had to find its
expression by performing a series of experiments, considering to test (as a minimum) 10 values for
each parameter, you had to make 10* experiments to fill this 4-dimensional parameters’ space.
Requiring multiple experimental apparatuses with different diameters D and different fluids to vary
p and u.

Here is where dimensional analysis can help. Equation’(1.11) is a physical law, thus it does not depend
on the specific unit that we decide to use for the length; say L, time, T, and mass, M, chosen to express
it. You can choose standard units (L = m, T = sec, M = Kg) ar Anglo-Saxon units (L = ft, T = sec,
M = Ib) or any other one; the resulting law would be unaffected.by this choice. Once the units are
decided, the physical law will express a relationship betweensthe numerical coefficients expressing
the quantities in those units and the law is automatically €onsistent because a physical law is
independent from the choice of units. This concept can be stated more simply by requiring that units
on the left and the right side of (1.11) must be the same.

However, it is not necessary to use units previously defined by some intermational standard in a
separate context. It is actually smarter to use units that are natural to the'specific application. In this
case, one could use the diameter D as unit of length, the ratio D /U as the unit of time and pD? as unit
of mass

D
L=D, T=, M=pD’. (1.12)

Even with this special choice, the physical law will express a relationship between*the numerical
coefficients of every quantity given in those units. Thus, express each quantity in (1.11) as the product
between the numerical coefficients and its units (1.12). The numerical coefficient is trivially obtained
by dividing the dimensional quantity by its units. Thus, the gradient of pressure can be expressed as
dp D dp [ M
= el

dx pU?dx
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where — U2d =L is the numerical coefficientand |-

same concept to the other quantities gives

A - A
- P Tl Pl BT s et
Then insert. these into (1.11) to obtain the relationship between the numerical coefficients because the
units areq@utomatically satisfied being it a physical law

%Z—i = f(1 1,1, p%) = f(pg—D). (1.13)

Equation (1.13) represents the same physical law (1.11), but it is now stated as a relationship between
dimensionless quantities. Expressed this way, the number of independent variables is reduced from 4
to a single one. Thus, yous€an establish the physical law making just N experiments instead of N* that
could even be performedyfor example, just with one fluid in one vessel and varying the fluid velocity
only.

This simplification allowed by dimenSional congruence is a general rule: expressing a physical law
in dimensionless terms allows reducing the number of variables by a number equal to the number of
independent dimensional units invalved in the law. In the previous case, a relationship between 5
variables involving 3 units has been simplified in a relationship between 2 dimensionless variables.

It is easy to demonstrate that the resultingdaw is independent from the specific units selected. In the
previous example we could use, for example,a different unit time unit

D2
L=D T:p—ﬂ M = pD3.

These correspond to a different set of numerical coefficients

dp pD3dp M B pDU 3 B
dx _ p? dx [LZTZ]' D=1-[L, [T] p=1 [L3] n=1 [LT]

that inserted into (1.11) give

D3d DU
D (12011

This relationship is equivalent to (1.13), because it can be recast as
pDU 2
r(50) =1 (o)

I pDU

It is actually a general result for fluid flowing in smooth cylindrical vessels that the pressure loss per
unit of length is expressed in general as

D dp _ (pUD>‘2
pU%2dx \ pu
to give a result functionally identical to (1.13).

dp pU?
=L fRe), (1.14)

Where f is known as the (Darcy) friction factor that depends on the ratio Re = LL—D, an important

dimensionless number known as the Reynolds number, that we will encounter several times along
this book. The Reynolds number represents the relative importance of kinetic energy with respect to
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viscous frictions; when Re is high the flow is vigorous and the relative entity of viscous friction is
low, vice versa, a flow at low Re is slow and dominated by friction.

It is important to remark, that the general resistance law (1.13) or (1.14) has been obtained based on
dimensional consideration only, without using any knowledge of fluid dynamics. This example
demonstrates the power of the simple concept of dimensional analysis. Fluid dynamics theory may
be then advocated to better specify the function f (Re); however, we will see that this is not immediate
in most of the cases and (1.13) may become the only theoretical result to be integrated by physical
experiments.

It is therefore of fundamental importance to formulate any physical law in dimensionless terms; this
permits to have'is expressed in the simplest way as possible and to identify the dimensionless
parameters that deseribethe underlying physics.

If we extend the example”(141) to consider a pulsatile flow with period T,

d
L= f@,U.p0T). (1.15)
Selection of the same units (1.12) gives the dimensionless relationship
D« dp
Wa = f(Re,St) . (1.16)

showing that pressure changes as before due ‘to friction (dependence on the Reynolds number, Re)
and it also depends on the frequency of oscillation that is expressed by the Strouhal number St = %.

Dimensional analysis permits to reduce the number of independent variables to their minimum and
to recognize the dimensionless number that characterizes the phenomenon under analysis. It is a
powerful tool when facing complex conditions, for example when mathematical equations do not lead
to a closed solution. It will be used in some occasions 0 progress across critical passages that cannot
be solved otherwise.
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2. Fluid Statics

2.1. Pressure distribution

Fluid statics deals with the forces transmitted by fluids in absence of motion. These are of enormous
importance in numerous applications, from industrial to biological, as they represent the basic stress
state in every fluid domain. Motion, when it occurs, may induce modifications on top of this
background static state.

Statics means that the velocity vector field is identically zero. As we have seen in the definition of
fluids and of viscesity, shear stresses develop in consequence of differential velocities (shear rate, or
rate of deformation). Therefore, in static conditions, shear stresses are also absent and the stress made
by still fluid over any surface has only a normal component

T =pn, (2.1)

where n is the normal to the surface (a vector perpendicular to the surface, directed toward the surface
and of unit modulus) and p (x) is'the pressure field that can vary at different spatial positions indicated
by the position vector x. It is important to remark from its first appearance that pressure is a scalar
quantity. As such it has no direction;/pressure gives rise to a stress vector (2.1) only after it acts on a
surface in which case the direction/is'the normal n that is given by the orientation of the surface,
directed toward it.

Statics obey the law of equilibrium, whichstates that the sum of all forces acting on a volume V' of
fluid must be zero

J fdv + j pndS =0 . 2.2)
74 S

The first integral represents the forces acting on the velume, and f is the volumetric force density
(e.g. specific gravity), the second integral represents the forces acting on the external surface S that
surrounds the volume. Equation (2.2) is the integral balanee equation of fluid statics.

The balance equation can also be expressed in differential forms To this aim, consider that the integral
equation (2.2) is valid for an arbitrary volume, then take the special case of an infinitesimal cube of
size dx X dy X dz, as shown in Figure 2.1

A

yA

0x

v

ax X

Figure 2.1. Balance applied on infinitesimal cube
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the balance (2.2) along the x-direction is made by the x-component of the volume force, f,, acting on
the volume and the pressure that acts only on the two faces of area dydz with normal n = [1,0, 0]
andn =[—1,0,0]

d
frdxdydz + pdydz — (p + £ dx) dydz = 0.
Simplification gives

dp
fx = Ix
X
That can be written for all coordinates and recast in vector form to provide the general differential
equation of fluid staties

f=Vp. (2.3)
Equation (2.3) states that‘every fluid particle is in balance between the volumetric forces and the
pressure gradient. It is immediate to verify that the result (2.3) could also be obtained directly from
equation (2.2) by transforming the second terms therein into a volumetric integral and then extending
the equality to the terms inside.the integral for the arbitrariness of the volume (or using an
infinitesimal volume). This would havesrequired the application of the Gauss theorem that will be
recalled later in section 3.1.

The volumetric force of greatest practical‘interest for applications is the gravitational force. It can be
expresses as

f=—yk= =Nyz; (2.4)

where k is the unit vector directed upwards against gravity, and z is the corresponding direction. The
specific gravity is y = pg, where g is the module of«gravity acceleration. In case of gravitational
forces, equation (2.3) is made by the sum of two gradient terms and takes the special expression

Vip+yz) =0. (2.5)

Equation (2.5) states that, in a fluid subjected to gravitational field-enly, pressure can only vary with
the quote z, p(z); it is constant on xy-planes at constant z and it increases linearly as the quote z
decreases. The interpretation of equation (2.5) becomes more ‘immediate with the introduction of a
new quantity called the static head defined as

p
h=z+ y (2.6)

Using this definition, equation (2.5) expresses the first fundamental conceptof fluid statics: the static
head remains constant inside a same fluid; in other words, the value of the'static.head is a property
of a volume of fluid and characterizes its potential energy (per unit of weight)#The_constancy of the
static head allows evaluating the pressure difference between two points at different’quote z inside
the same fluid. Consider two arbitrary points “0” and “1”, the constancy of the static,head states that
hy = hq, which tells

Pot+VzZo=p1+VZ . (2.7)
Thus

P1— Do =V (20—21) ; (2.8)
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pressure difference between two point is equal to the difference of quote multiplied by the specific
gravity. Intuitively, one can consider that the pressure at the lower point is increased by the weight of
the column of fluid above it.

It is common to rewrite (2.8) taking point “0” at a reference position, which is often at the free surface
of a reservoir subjected to atmospheric pressure or it can be the level of the heart in the human body,
and point “1*"at a generic level z

p(z) =po + v (2 — 2). (2.9)
It is useful ta define the depth { = z, — z, such that pressure grows linearly with the depth ¢ from
the reference quote and rewrite (2.9) in terms of the ¢ coordinate

P($) = po +v¥7; (2.10)
showing explicitly the growth of pressure with depth.

It can be noticed that pressure-entered in all previous equations in terms of pressure difference only,
thus adding a constant value towall pressure values does not change the formulas. Indeed, the absolute
value of pressure does not enter explicitly in the balances as a force is always created by the difference
of pressure between two regions«In particular, the atmospheric pressure surrounds most systems of
interest and represents the reference value in most situations; for example, it adds to blood pressure
everywhere in the circulatory systemg Therefore, it is common to use atmospheric pressure as the
reference zero value, and express pressure as'the difference relative to atmospheric pressure. In the
frequent case of a reservoir with a free surface-one can state that the (relative) pressure is zero at the
free surface and increases with depth

p({) =y¢. (2.11)
The pressure relative to the atmospheric values is sometimes called relative pressure, or gauge
pressure, or simply pressure. With this representation, it“is,also immediately evident from (2.6) that
the level of the free surface where pressure is zero represents the value of the static head for that fluid.

In the circulatory system, equation (2.10) tells that a person in orthostatic position is subjected to a
static pressure that at the lower limbs is about 100 mmHg higher than the value at the level of the
heart and at the head is about 30 mmHg below. Whereas static pressure is balanced in supine position.
The value of static pressure is important for the phenomena like tissue perfusion as well as for the
adaptation of tissues to this level of stress. The static pressure @also represents the underlying
distribution on top of which pressure values change due to phenomena‘associated to blood flowing,
as well as to the behavior of the surrounding tissues.

Although pressure will be commonly considered relative to the atmospheric'pressure, a quick remark
is due about the situations when the absolute value of pressure becomes important.<This is related to
the fact that pressure is defined as a positive physical quantity, absolute pressure cannot be negative
or relative pressure cannot be lower than —py:,. The calculations above treat pressure as a real
number and do not include this constraint; therefore, when, for some reason, these @ive rive rise to
values lower than this limit the calculations are not valid. When pressure approaches the zero value,
some different phenomena develop, and they require a special treatment. For example, there is a limit
to the height that a fluid can be lifted because pressure decrease with height but cannot decrease below
arelative pressure value p = —pu.., (atmospheric pressure is about 10° Pa, that corresponds to a fluid
column of about 10 mH20 or 750 mmHg). Other dynamic phenomena associated with fluid motion
can bring pressure close to this limit, a common one is cavitation that can occur sporadically in
circulation and will be mentioned in Chapter 13.
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The second fundamental concept of fluid statics is derived from the equilibrium of the interface
between two fluids. Assuming that surface tension is negligible (in absence of capillary phenomena
that should be treated separately) an interface between two fluid is subjected only to pressure on the
two faces and its equilibrium gives the result that pressure is the same on the two sides at the interface
between two fluids. In other words, pressure is continuous at the interface between two fluids.

Figure 2.2. Pressure distribution along.the depth in a static fluid system.

These two principles make possible the evaluation of pressure difference between all places in fluid
filled containers. Figure 2.2 shows on the left@ Simple case where pressure increases linearly with
depth from the zero value at the surface as dicCtated by equation (2.11). Equation (2.11) states
explicitly that pressure value at the bottom of the container depends on its depth relative to the surface
only; therefore, an identical distribution of pressure is"found on the contained shown in the central
picture of Figure 2.2. This picture is included to stress thespoint that pressure is caused by depth only
and not by the weight of the fluid above; the difference of pressure between two points at different
depth can still be interpretated as due to the weight of the column of fluid between them; however,
this applies assuming that fluid is continuous between the twio points and, if an obstacle would be
present, pressure difference is still given by the difference in depth only. Differently, the right side of
Figure 2.2 shows pressure profile with two immiscible fluids with different specific gravity, y; and
Y2 > Y1, and a non-zero pressure value at the free surface due thewpresence of a pressurized gas.
Notice that a gas can be usually considered having a uniform pressure because‘the specific gravity is
very small and the difference with the quote is negligible unless considering.very large difference in
quote (like between atmospheric layer). It is easy to show that, with referencewto symbols in figure,
pressure takes the value p({;) = po + y1¢; in the upper, lighter fluid and p({,)"=po + v1H + v2{,
in the lower one.

An interesting and technologically important case is the differential manometer schematically drawn
in Figure 2.3. It is a tool that allows measuring the difference in static head betweenstwo chambers
filled with a same fluid of specific gravity y connected by a small duct partially filled with a heavier
fluid (typically mercury) of specific gravity y,,. The static head is constant inside each reservoir; thus,
we can use the points at the edge with the heavier fluid and, with reference to Figure 2.3, using the
definition of static head, write

Bio Fluid Dynamics (Lecture Notes for Students)



Fluid Statics Page 21

A.

P1 P2 P1 — D2
h—h=(z +—>—(z +—)= —
1 2 1 ” 2 Y Y

Now apply the conservation of h inside the heavier fluid

p1 P2
Z1+—=2+—, = p1—p2=VYmd.

m m

Substitution of p; — p, back into the previous formula gives the sought result

hy —hy = (me_ y) A 2.12)

Equation (2.12) permits to compute the difference of static head between the two chambers from the
reading of the difference of height A in the differential manometer. Often one chamber has a known
head (for example it is’open to the atmosphere, or it is a pressurized gas) and it is used as reference
to measure directly thetheadqn the other chamber. Once the head is known, pressure can be obtained
at every point at quote z by the.definition of static head (2.6).

The ability to know the pressure field inside a fluid takes on particular importance when evaluating
the forces exerted by this on the surreunding boundaries. The pressure distribution will be used in the
following sections to calculate the forceson surfaces in contact with fluids.

2.2. Forces on Plane Surfaces

Consider a planar surface with area A and nermala directed towards the surface. The force vector
acting on the surface is by definition the integral of Stresses, T = pn, on it

F = f pndA = Fn. (2.13)
A

The force vector can be expressed by the product of its modulus E and direction vector n; which is
constant because the surface is plane. Consider the surface wet by a single fluid whose pressure can
be expressed in general by expression (2.9)

F = f p(z2)dA = pyA + yz,A — yf zdA = poA + y(zg= 25)A = psA;
A A
where we have used the general definition for the geometric center G of a surface

1
X = Zf xdA . (2.14)
A

applied here to the z coordinate. Thus, the force made by a fluid on a plane surface has always
modulus equal to pressure on the center of the surface multiplied by the area of the surface, and it is
directed towards the surface

F =pAn. (2.15)
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Figure 2.3. Differential manometer

The force (2.15) is the integral result of-the distribution of pressure over the surface. Although the
force is computed by the value of pressure'in G, let’s remark with emphasis that the force is applied
in a point P that is not the center G of the surface. The point of application is the center of the pressure
distribution that is usually below the center of the surface because pressure is higher at higher depth.

The knowledge of the point of application P is,needed to compute the torque T caused by the force
for the equilibrium to rotation about an axis. To this aim, consider the simple case of a vertical surface
allowed to rotate about a horizontal axis lying on the surface at depth ¢;. By definition, the torque is
given by the integral of the infinitesimal torques made atyevery depth ¢ by the infinitesimal force
p({)dA with arm (¢ — §y)

T=j@—zomow4=@p—aww (2.16)
A

which must be equivalent to the torque given by the force F applied.at the depth ¢, of the point of
application. It is convenient to measure the depth with reference to the level where p = 0; in that case
it is immediate to show that the depth of the point of application is

J, ¢2daA
[, a4

It is also immediate to verify that the result (2.17) remains valid when the surfacé issot vertical. The
integrals in equation (2.17) are easy to evaluate when the surface is rectangular contained between
two depths {, and {5 > {,

(2.17)

P

3 _ -3
& 28— % (2.18)

3G-4
In the limiting case when the surface’s upper edge is on the free surface, {, = 0, the distribution of
pressure is triangular and the center of pressure P is at a depth 2/3 the surface height. In the other
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limit, in general, when the surface is horizontal, pressure is constant and the center of the pressure
distribution coincides with the geometric center of the surface P=G.

Rectangular surfaces are the most common; in this case, it is sometime convenient to divide the
pressure distribution as the sum of a rectangular profile, applied in the surface center, and a triangular
profile applied at two-third the depth; then compute the torque as the sum of the two individual ones.
In more complex surfaces the torque can be computed by dividing it in a composition of simpler
surfaces:

As an instructive example, with reference to Figure 2.4, consider the plane surface hinged at a generic
point C, that separates two chambers containing the same fluid, one with level HA and the other with
a higher level HB.

\/
= 4

HB

HA

Figure 2.4. Calculation of the torque on an inclined surface separating two chambers with different
static height.

The torque made by fluid can be computed separately on‘the left and right sides of the surface by
evaluating the forces and the corresponding arms. On the left side, the distribution of pressure is
triangular and the force is applied at two-third of the depth. On the“right side, pressure distribution is
trapezoidal and it is useful to separate it as the sum of a rectangular and a triangular part. Reminding
that each force acts perpendicular to the inclined surface, and assuming positive the actions on the
right side (clockwise rotation), we get (indicating with subscripts L and'R the forces on left and right
sides, respectively)

V2 2v2 2
F, = —yHA*—, r=——HA, T, =—y-HA?%
2 3 3
V2
Fg; = y(HB—HA)HAV2, 7= —HA, Tpy = y(HB — HAYHAZ;
V2 2v2 2
FRZ =VHA27, T=THA, TRZ =)/§HA2

The total torque is then given by the summations of the individual contributions. One can notice,
however, that F. and Fr2 cancel each other exactly. Indeed, the triangular distribution of pressure on
the left is equal and opposite to that on the right side; one could have noticed from the beginning that
the net distribution of the pressure, cancelling the opposite contributions coming from the two sides,
is a rectangular distribution whose torque is Tg;.
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When the distribution of pressure is rectangular, the fluid problem is reduced to that of finding
pressure at a single point. In the previous example that point was on the right side at a depth HB —
HA. This is particularly clear when a surface is placed horizontally because pressure takes the same
value at all points. For example, consider the system in Figure 2.5 where we want to compute the
force and the torque acting on the square cover of side length d. Consider the specific weigh of fluid
v, and that of mercury y,, in the differential manometer whose reading is A.

v
—_r ——————————————————

Figure 2.5. Static fluid system with a4flat_square cover in a closed chamber connected with a
differential manometer to an external reservoir.

If the static height in the external chamber is h,that in the main chamber can be evaluated from the
reading in the differential manometer

hzhf—ch_y)A.
y

Thus, the second chamber is like having a free surface placed atra,height h and it is immediate to
compute the pressure and the torque on the square surface as

d
F = yhd?, T=F?

As a further example, let us try to evaluate the width X of the base of thetwe connected surfaces in

Figure 2.6 such that they are in equilibrium to overturning.
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X

Figure 2.6. Calculation of forces and torque acting on two connected flat surfaces.

Equilibrium to rotationstells: that the torque on the inclines surface must be equal to that on the
horizontal surface. This gives
hLL_ XL
y 2 3 - y 2 ) - \/§ .

All these methods provide an immediate understanding of the expected results in those simple cases
that are most frequent. They are also useful for drawing approximate results in complex conditions.
In general geometries, the integrals in(2.43).and in (2.16) can be computed with ease by numerical
integration.

2.3. Forces on Curved Surfaces

Consider now a generic surface S, with arbitrary curvedsshape. An infinitesimal force dF = pndS
acts at every individual infinitesimal element of surface dS directed with the local normal n that
varies at the different points on the surface. The total force acting on S is given by the surface integral
of all such infinitesimal forces

F = j dF = f pnds . (2.19)
S S

Differently from the case of plane surfaces, the normal n is not a constant and the integral cannot be
simplified like it was done therein. A method to compute (2.19) can-be obtained by advocating the
global balance (2.2).

Consider first the case of a closed surface: a surface S surrounding a volume ¥ that is in equilibrium
immersed in a fluid. The force is given by the integral (2.19) evaluated on the.external side of the
surface S. It is important to remind that the value of the integral depends from pressurevalues in the
fluid on the external edge of the volume V; therefore, it is independent on whether the inside volume
V' is occupied by a body (kept static by some mean) or it is a volume of fluid, because under static
conditions the distribution of pressure depends on the depth of each point only. Consider first the case
where V is of a volume of fluid and S is thus a mathematical surface with the same fluid on both
sides. We are under statics condition and the volume of fluid V is in equilibrium; this means that the
sum of all forces acting on the volume is zero. Following the integral balance (2.2), these forces are
composed by the weight of the fluid volume V and the integral of pressure on the surface S
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—yVk + f pndS =0; (2.20)
S

with k the unit vector directed against gravity. The second term in (2.20) is the force (2.19) made by

fluid on the external surface of that volume, thus equilibrium tells that the horizontal components of

the forces are zeros and vertical force is directed upward (buoyancy force). In summary, the force

acting on anarbitrary closed surface surrounding a volume V' is given by

F=1yVk. (2.21)

This result does not depend on whether the surface surrounds a volume V of fluid or it is the external
surface of a solid body of the same volume kept in equilibrium by some external mean. The force
made by the fluid=en.the surface of the body is given by the same integral (2.21), because pressure
distribution and the'valte of that integral are independent from the presence of the body. Equation
(2.21) states Archimedes*principle (dated back to the 3™ century b. c.), which tells that “a body
immersed in a fluid is subjected to a force directed upward that is equal to the weight of the displaced
fluid”.

Consider the overall force acting onasolid body with its own weight y,V, being y, the solid specific
gravity; when it is immerged in<a fluid, the body is subjected to its weight and the buoyancy force
(2.21). As a result, the apparent welght of a body immersed in a fluid is reduced by buoyancy and
becomes (y, — y)V. The value (y, — ) represent the apparent specific gravity of an immersed body
and it is often useful for immediate evaluations.

Let us now move on and consider a generi¢ surface S that can be open and have fluid on one or the
other side. The procedure to compute the force @cting on the surface S, equation (2.19), is that of
selecting a volume of fluid partly surrounded by, S and partly closed by planar surfaces. That volume
is in equilibrium and obeys the law (2.2) that represents a*balance of forces. These forces comprise
volumetric forces that can be calculated, forces on planesurfaces that we have learnt above how to
calculate, and force of the curved surface that remainsithe.only unknown in the balance.

This apparently complex procedure is relatively straightforward in practice. Consider for example a
surface made of a quarter of a circumference like the one shown in Figure 2.7.

Select an arbitrary control volume to perform the balance ofwforces, for example the quarter of
cylinder of radius R. The forces (per unit width) acting on that volumesare:

- the weight of the fluid volume F, = yV directed downward;

- the force on the horizontal plane boundary F, where pressure is yh and the normal is directed
downward,

- the force on the vertical boundary F5; where pressure varies linearly from yh to y(h + R),

- the unknown force vector made by the curve surface to the fluid volime, that is equal in
module and opposite in direction to the force F = [Fx, Fy] made by the fluid onthe surface.

Assuming the force directed as in in Figure 2.7, the balance along the horizontal rightward direction,
x, and vertical upward direction, z, gives

R
F =—F, =—y(h+E)R
n )
FE,=-F, —F, = —)/ZRZ—th

showing that the force on the surface is directed leftward and downward.
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Figure 2.7. Calculation ofithe force on a curved surface made of a quarter of a cylinder.

The result is always independent fromthe chosen volume, although some choices permit an easier
calculation. For example, in this casesit Is immediate to see that the same result would have been
achieved by selecting a volume extending up«to the free surface. In that case, the force F, would be
substituted by the weight of the added valume-of fluid and the horizontal forces on the two sides of
that adder volume would be identical and oppaesite. We could also use a smaller volume bounded by
the chord connecting the two extremes of the surface; calculations are less immediate, but result is
identical.

It is useful to always keep in mind that the force is the integral of pressure on the surface as defined
by (2.19), and that such calculation must not necessarily be performed on a fluid volume that is
effectively present in the current configuration. It is therefore"advisable to idealize the problem under
investigation by extracting the mathematical surface and ideally immersing it in an unbounded fluid
at the same depth as the original configuration. It is then easier to select a volume bounded by such
ideal surface reminding that the integral of pressure on that ideal surface is identical to that in the
original configuration. For example, in Figure 2.7, if the fluid was onthe other side of the surface we
would consider the volume on the wet side given by a square minus a.circle. But we could also
consider exactly the same volume (a quarter of a circle) noticing that:the distribution of pressure on
the external face is identical and opposite to that on the internal face, because pressure depends on
depth only. Thus, the modulus is the same, and the direction opposite; thecalculation could be the
same as before and simply changing sign to the resulting force.

A balance like (2.2) can be extended to the moment of forces, simply multiplying each.ferce with the
corresponding arm, to evaluate the torque on a surface. The explicit formula is not reported for brevity
as the concept is exactly analogous to what previously described for the forces. Qnce the control
volume is selected, the balance of moment of forces is made with torques acting on planar surfaces
bounding the volume, which can be computed by equation (2.16) and following concepts therein, the
moment of each weight force is immediate to evaluate as it is applied at the center of mass of the
volume, eventually the torque on the curved surface remains as the only unknown in the balance.
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Let us apply this concept to the example in Figure 2.7 to evaluate the moment of the force on the
surface S relative to a center of rotation in O. The torque balance, assumed positive counterclockwise,
can be written as

m_, 4R R R 2(h+R)3-h3
To = Firs + Fary = Frs = 3R 5o vk =y (4 5) - (3G =)

The arm x4 of the weight is obtained knowing that the center of mass of half a circle is displaced by

a length r\= ‘;R respect the center, this can be evaluated by the definition of center of mass (2.14).

3
The force F,'is made by a uniform distribution of pressure and it is applied at its center, thus r, =
R /2. The torque/assogciated to the force F; is evaluated by knowing its center of application using the
result (2.18). For-thescalculation of this last torque we could use an alternative approach that is
sometime easier by dividing the force due to the trapezoidal distribution of pressure as the sum, say
F; = F3, + F3,,, of that.of arectangular distribution that gives F;, = yhR and whose arm is in this
case equal to 3, = R/2¢plus.the triangular distribution F;, = yR?/2 whose arm is equal to 73, =

2R/3. In this case the balance'can be rewritten as

T, 4R R R R? 2
TO=F1r1+F2r2—F3ar3a—F3br3b=yZR '§+)’hR'E—VhR'E—V7'§R;

It is immediate to verify that both fermulas are equivalent, although the second was easier to
formulate and compute. Both formulas give the same result that the torque in the surface S about the
point O is exactly zero in this case. This result could be anticipated here because the curve is a portion
of a cylinder and every individual (infinitesimal) force acting normally to its surface is directed along
the radius and presents zero torque about the'eenter,O of the circumference.

Static forces represent the underlying interactionsbetween fluid and surrounding boundaries in every
system involving fluids. This fact makes them the background system of forces on top of which
changes due to fluid motion develop. Therefore, it is of fundamental importance to have a clear feeling
of the system of static fluid forces that establishes in varioussituations.

To this aim, we present below a few instructive examples where, the static force can be readily
computed by simple application of the balance laws described‘above.

_éﬁ\ﬂl -

H i

Figure 2.8. Calculation of force and torque on a hinged cylinder.

Consider the system sketched in Figure 2.8 with a cylindrical body of radius R hinged in A. Here
pressure acts from below due to the static height that is present on the right side. Therefore, we have
only the force on a semicircle placed at a depth starting at h — H. The horizontal force is zero because,
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due to symmetry, this semicircle has no vertical surface closing it. The vertical force is given by the
sum of the force of the flat horizontal surface plus the weight of the volume of fluid of the semicircle

T
— P2 — .
Fy=v (3R +2R(h = H));
This force acts on the middle and gives a torque at the hinge

T,=F,-R.

A similar approach can be used to compute the static force acting on the semispherical surface at the
bottom on the chamber in Figure 2.9. The force is identical to that of a half sphere placed at the same
depth in an unbounded fluid. The horizontal force is zero and the vertical force on the curved surface
must balance theferce-on the flat circular surface at depth H, directed upward, and the weight of the
half sphere of fluid!

2
F = )/(TL'RZH —EnR3) .

Py

H

/

_I_

Figure 2.9. Calculation of the static force on a hemispherical surface at the bottom of a chamber.

The force computed above can also be computed as the weight of the fluid above the surface. This
interpretation is valid because the chamber extends upito.the.free surface. However, it must be kept
in mind that forces are due to pressure, not to the weightof the fluid, and that pressure depends on
depth only, independently from the geometry of the chamber. In order to clarify this point, let us
consider the hemisphere at the base of bowl shown in Figure 2.10. The surface is placed at a depth h
relative to the interface with the upper gas at pressure P,.

As before, the force is made by the force on the circular surface at depth A plus the weight of the half
sphere of fluid

2
F = (Py + yh)mR? + )/§T[R3 :

This case underlines, besides the additional gas pressure, that the force is not related to the weight of
the fluid above; it is rather the weight of the hypothetical fluid that would be aboveif the fluid extends
straight above up to the free surface. The resulting force is in fact independent from the'geometry of
the bowl and from the inclination of its lateral surface. To understand this apparent contradiction, one
must consider that there is a non-zero pressure on the inclined lateral surface that gives a downward-
directed force that adds to the weight of the actual fluid; and it is immediate to see that such additional
force corresponds to the weight of the hypothetical fluid above such lateral surface.
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Figure 2.10. Calculation of the force at the hemispherical surface at the bottom of a bowl.

As a final example, consider the force made by the fluid on the semispherical surface of diameter D
placed vertically to close a chamber starting from a depth H. This is a set of general configurations
of which one example is shown in Figure2.21. Identify a volume of fluid by closing the surface with
a vertical circular flat surface. The horizontal force is that on the circular surface whose center is at
depth H + g; the vertical force is simply the weight‘of the fluid volume

D? 2 D3

2 (T

D
Fsz(H+§)7T

H

Figure 2.11. Force on a hemispherical surface placed vertically.

A similar case can be taken when the sphere protrudes outward of the chamber inStead“than inward
as in the previous example. In that case, the procedure for the calculation of the force.would be quite

the same. The horizontal force is unchanged and the vertical force takes the same value but changes
its sign.
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3. Fluid Kinematics

3.1. Recalls of differential vector calculus

Let us first introduce the differential vector operator nabla that is useful to express derivatives in
three-dimensional (3D) fields. In Cartesian coordinates the operator nabla is defined as
P
ox
ad
E .
0
Fh
The gradient of a scalar field f(x) is a vector field, Vf, obtained by applying the operator Nabla to
it. In Cartesian coordinates the gradient of a scalar field is a vector
9f]
ox
of
dy
af
(97
that describes how the field f changes in space. For example, each component of Vf tells how the
field f changes along the corresponding direction. This concept can be restated that the gradient
vector is always perpendicular to the lines or surfaces where f is constant, an example is shown in
Figure 3.1 (left). The gradient field is a vector and obeys the general rules of vector calculations;
therefore, knowledge of the gradient vector permits‘the evaluation of partial derivatives along an
arbitrary direction, say n, by standard vector projection

vf ; (3.1)

of _
%—Vf n. (32)

Gradient vector fields are important in physics. There are some situations when a physically-relevant
vector field, F, can be expressed as the gradient of a scalar field, F.="Vf; in this case, the field F is
a conservative field and the scalar field f is called the potential of F. It is immediate to verify that
when F = Vf, its integral along a curve is trivially the difference of-the potential f at the two ends
and does not depend on the path itself

b b b

af
fF-dsszf-dszfadssz—fa.
a a a
This implies that the integral along any closed path is identically zero, which isfthesdefinition of
conservative field.

We have seen that the gradient of a scalar field is a vector field; indeed, the gradient operation
increases the dimensionality. Similarly, the gradient of a vector field, say v(x), is a tensor field, Vv,
whose component i, j in Cartesian coordinates is
av;
(Vv);; = —. (3.3)

an
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The divergence of a vector field, v(x), is a scalar field, V - v, obtained by performing formally the
scalar product of v with nabla operator. In Cartesian coordinates the divergence is

3
ov, 0dv, 0v, dv; dvy;
. — — _— 3.4
VU= Ty Tz Liox, ~ ox; (34)

1

where in the last equality the summation on repeated indices it is implicitly assumed (Einstein
notation).. The name divergence comes because a positive divergence at a point means that the vector
(net of a constant value) is directed radially away from that point, thus it diverges. For example

vy
ox
and positive after.a point and that v, is negative below and positive above, thus the vector arrows

depart away (diverge) from the point.

: - ] : .
consider the 2D case shown in Figure 3.1 (center), + aiyy > 0 means that v, is negative before

Figure 3.1. Left: vector field given by the gradient of a scalar field (shown in level of brightness
and level lines). Center: divergence about a point. Rightiscurl about a point.

Vector fields with zero divergence are called solenoidal (name coming from electromagnetism) and
take particular relevance in fluid dynamics as will be shown shortly.

The divergence reduces the dimensionality; thus, the divergenge of atensor field T is a vector field.

-y, = U 35
Last vector operator is the curl that is applied to a vector field and produees another vector field; it
does not change the dimensionality. The curl or a vector field is V X v, obtained by performing

formally the internal product with nabla. In Cartesian coordinates the curl'is

[0v, 0vy]
dy 0z
Vxp=|0%_ 0% (3.6)
dz Ox
ov, 0vy
[ dx Oy

When the vector field v(x) has a positive curl, it means that is it rotates counterclockwise about that
point; indeed, when v(x) is a velocity field, the value of V X v represents twice the angular velocity.
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: : i ] -
Figure 3.1 (right), shows the 2D case where only the third component % — 66—1;‘ is different from zero,
the direction of the curl indicates the axis or rotation and its modulus the amount of rotation.

The curl of velocity takes a special relevance in fluid dynamics and deserved its own name; the
vorticity vector field w(x)

w(x)=VXv; (3.7)

which will be treated with attention in Chapter 10 to analyze the most advanced phenomena in
cardiovascular flows. In particular, vector fields whose curl is zero are called irrotational; such are
especially simple fields whose velocity can be expressed as a gradient of a potential.

As a final note, itis'immediate to verify that the divergence of a curl field is identically zero (vorticity
is a solenoidal field) and that the curl of a gradient is zero (conservative fields are irrotational fields)

V-(Vxv)=0, VX (Vf)=0.

3.2. The Gauss theorem in integral calculus

The Gauss theorem (or divergence theorem) states that the divergence of a vector field v(x) inside a
volume V is equal to the flux of that vector across the boundary surface S of that volume

fV-vdefv-ndS. (3.8)
v S

where n is unit normal, directed outward. Despite the apparent mathematical complexity, the physical
interpretation of the Gauss theorem is very intuitive. It can be seen immediately when the volume is
a small cube or a square, in 2D, as depicted in Figure 341 (middle picture): if the small region presents
a divergence, this means that vector field points outward that cube. More in general, with reference
to Figure 3.2, when a vector field presents positive divergence.inside a volume, it necessarily presents
a net component directed outward of the bounding surface?On the contrary, when the total divergence
is zero, the vector field can be directed outward in some region and inward in some other but the
integral over the bounding surface is zero because overall the \vector field does not diverge.

Figure 3.2. Left: the presence of a positive divergence inside a volume corresponds to a vector field
pointing outwards of the bounding surface. Right: when an opposite sign divergence is added to
make the total divergence zero, some surface region presents outward pointing vectors some others
inward vectors, with a net sum equal to zero.
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The Gauss theorem permits to transform the calculation of a volume integral into a calculation on its
boundary; in other words, it transforms a calculation based on volumetric, 3D information into
another based on the information on the 2D bounding surface. Therefore, it represents a powerful
mathematical tool in many contexts.

A simple application the Gauss theorem permits to compute the volume of an arbitrary shape by the
information.on the geometry of its surface. For this, consider a field with unit divergence, V-v = 1,
for example the field v = x/3 has unit divergence. Apply the Gauss theorem to this field to find that
the volumercanbe computed by a surface integral

1
V=de=§fx-ndS. (3.9)
14 S
Similarly, the geometriceénter x; of a volume can be computed as

1
X; = —f xdV =— | x(x-n)dsS. (3.10)
74 4V S

The Gauss theorem can be rewritten for 2D space, transforming the volume in an area A and the
surface in a closed curve C bounding the area.

jV-vdA=§ v-nds. (3.11)
2 Cc
Equation (3.9) can be rewritten in 2D for computing the area of a generic figure that reads

1 1
AzfdAz—jg x-ndsz—f (xdy — ydx), (3.12)
2Jc 2 )¢
Y

where we used that nds = [dy, —dx].

The Gauss theorem can be rearranged to provide a number of different relationships between volume
and surface integral. A typical example is the integral of a curl

J vadV=—f v X ndsS, (3.13)
v s

that is obtained by applying (3.8) to a vector u; = &, v, a, for an arbitrarywvalue of i = 1,2,3 and
repeating it for the three coordinates i = 1,2,3, (where ¢y, is the fully antisymmetric tensor, or Levi-
Civita tensor, equal to +1 when the three indices are a cyclic permutation of«1,2,3¢equal to —1 if an
anticylcic permutation and, zero if two indices are equal).

Another example is the integral of a gradient field

f VfdV = f fnds, (3.14)
14 S

obtained as before by applying (3.8) to a vector v; = §;;f, for an arbitrary value of i, (where &;; is
the identity tensor, equal to +1 when the two indices are equal and zero otherwise).

The Gauss theorem can also be used to compute the volume integral of a divergence-free vector field
v that becomes
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f vV = f x (- m)dS . (3.15)

This is obtained by applying (3.8) to the vector u; = v;x; as follows

f V(vxl)def (xiV-v+v-Vxl-)dV=.I- UidV:f xiv-ndS.
14 14 14 S

which gives (3.15) once repeated for the three coordinates i = 1,2,3.

Another fundamental theorem of integral calculus is the Stokes theorem (or circulation theorem),
which states thathe circulation of a vector along a closed curve C is equal to the integral of its curl
perpendicular any.surface S bounded by that curve

f(va)-ndSzjg v-ds; (3.16)
S c

where the normal to the surface'n and the direction of integration ds along the curve C are related by
the right-hand rule. The Stokes theorem can also be derived from the Gauss theorem (and vice versa),
in particular it is a 2D version of the result/(3.13), where the first term accounts for a single component
of curl inside the surface S and the/second term corresponds to integration along its boundary. The
physical interpretation of the circulation theorem is similarly straightforward: the total rotation
(circulation) around a closed curve is givendy the summation of the individual rotations (curl of the
vector) component contained inside that curye. Intuitively, one can refer to the simple case of a small
square in 2D, as depicted in Figure 3.1 (right picture), showing that a region with a non-zero curl
necessarily corresponds to a circulating vector field. As a trivial example, take the rigid rotation of a
circular plate with angular velocity Q, the rotation velocity,at a distance r from the center is vg = Qr,
the Stokes equality states that 2rvyr = nr?w, where‘w is the component normal to the plane of the
vorticity, previously introduced in (3.7), whose value is twice the angular velocity w = 2Q.

3.3. Breaking down elementary motion

Consider the velocity v(x) at a point x and let’s describe the nearby velocity, at infinitesimal distance
dx, to define the elementary types of motion that can be enecountered in general. Using Taylor
expansion

v(x +dx) = v(x) + Vv - dx + 0(dx?) ; (3.17)

the velocity is equal to the velocity at the original point, plus its gradient.in the direction of the new
point, plus second order terms that will be neglected from now on as we implicitly work in the limit
dx — 0. In index notation (3.17) can be rewritten equivalently

av;

vy(x + dx) = v;(x) + —da; ; (3.18)

0x;

where summation on repeated indices (here index j) is implicitly assumed.

The velocity gradient tensor can be divided as the sum of an asymmetric Q and a symmetric ID tensors

Vw=04+D avi_l avi av] +1 avi_l_avj . 319
v= ’ ax]_Z ax] axi 2 ax] 6xl- ’ ( )

equation (3.17) can thus be rewritten
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vix+dx)=v(x)+Q-dx + D-dx;
or equivalently from (3.18) in an indexed form.

(3.20)

Let us look at the three terms in (3.20) that sum up to describe the velocity about a point. The first
term describes the rigid translation of the small region where all points share the same velocity. The
last term is driven by Q that is a 3x3 asymmetric tensor, which in Cartesian coordinates reads

0 +1<%_6&> (G %))
2\ dy 0Ox 2\ 0z O0x
e I S S Dy
2\ dy ¢ 0x 2\ 0z Oy 2| _
1 0V, Juy 1(dv, Ov, @ Foxc 0
-2(3.56x) ‘5(5‘@) 0

Being asymmetric, this tensor is described by 3 independent terms only, and these 3 terms are equal
to the components of the vorticity (3.6), module a ¥ factor. It was seen before that vorticity was equal
to twice the angular velocity;*this can, be immediately verified noticing that the scalar product € -

dx %w x dx. Rewriting (3.20).this way

1
v(x+dx)=v(x)+5w><dx+]]))-dx;

it is immediate to notice that the secondderm.is an expression that corresponds to a rigid rotation
with angular velocity %w. Rigid translation and rigid rotation do not produce local deformations; it

follows that the deformation of the fluid elementiis‘only due to the last term. In fact, the symmetric
tensor D is the rate of deformation tensor, which“in Cartesian coordinates reads

av, 1 /0v, N oV, 1 (6vx N 6172)'
0x 2\ dy Ox 2\0z O0x
1(0v, Oy, vy, 1/0v, oOv,
D=|-2+2X - — == ) 21
2<ay+6x> dy 2 6z+6y (3.21)
1 ((’)vx N (')vz) 1/0dv, N av, av,
|2\ 0z 0x 2\ 0z dy 0z

The scalar product D - dx represents the (rate of) deformation of thefluid element. The diagonal
terms of the tensor are associated with elongation/shortening in the correspanding direction and the
off-diagonal are shear motion. The change of volume of the fluid elementsis_due to the combination
of elongations/shortening, that is given by the trace of the rate of deformation‘tensor (the sum of the
elements on the diagonal), while a tensor with zero trace does not give change of velume. The trace
of the deformation tensor is the divergence of the velocity field; therefore, it is useful to.rewrite (3.20)
in its final form as
1 Vv Vv

v(x+dx)=v(x)+wadx+TH-dx+(]D)—TH>-dx. (3.22)
Expression (3.22), which is also known as the Cauchy-Stokes decomposition, allows recognizing the
different elementary movements that combine to describe the motion of an infinitesimal fluid
element, which are also sketched in Figure 3.3. We have already seen that the first term describes
rigid translation and the second term is the rigid rotation. The third term is pure
expansion/compression that is responsible for the local change of volume, a simple scaling effect that
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does not alter the shape; it will be shown shortly that this term is zero in an incompressible fluid. Last
term is the pure deformation, characterized by the relative motion of nearby elements producing a
change in shape with no increase or reduction of volume; this term is the only responsible for internal
viscous stresses that are due to the relative sliding motion of fluid particles.

Final
configuration

Initial
configuration

A

W ol
oy -+ -+ +

rigid translation rigid rotation dilatation/compression pure deformation
(volume change (shape change
preserving shape) preserving volume)

Figure 3.3. The act of motion of an infinitesimal volume of fluid from the initial to the final
configurations can be subdivided as the combination of four elementary motions.

Before concluding this section about the description_of fluid motion, let us define and specify
differences between trajectories and streamlines to ensure using a proper nomenclature. Trajectories,
as by the normal language, are the curves in space occupiedsby a same particle during its motion;
therefore, trajectories are curves traveled by particles during time, each trajectory is described by the
coordinate X(t,X,), during time t, of a particle that at anvinitial time was at X,. Differently,
streamlines are curves drawn at one instant of time that are everywhere.tangent to the local velocity;
therefore, the streamlines pattern can vary during time. In steady_flow; trajectories and streamlines
coincides and can be used interchangeably. In general, trajectories’describe the movement during
time of material particles (what is called Lagrangian description), while=streamlines describe the
instantaneous flow paths at fixed points in space (Eulerian description); these descriptions are
conceptually equivalent although they provide different information.

3.4. Lagrangian and Eulerian description

The laws of physics are commonly expressed in terms of the conservation of quantitiessbelonging to
material elements. It is well known how elementary mechanics deals with individual particles with
given mass that are followed in time while they change their velocity and other properties like, for
example, their temperature. Mechanics of rigid bodies also considers the translation and rotation of a
given volume made of material elements. This approach is used, in general, for the analysis of solid
deformable bodies where the changes in the position, and relative position, of individual material
elements are followed during their motion.
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Such a natural description of dynamics is thus characterized by the concept of following the individual
elements that make up the volume of material under analysis. In such a perspective, that is called
Lagrangian description, each individual material element is identified by its position X, at a certain
reference time, say t=0, and is then described at subsequent times by its position X(t, X,) and by the
value of properties associated to that element G (t, X,). The Lagrangian approach is well suited for
solid mechanics, where the material has an internal structure characterized by the relative
arrangement of individual elements that do not displace excessively one from the other.

In fluid mechanies the situation is drastically different, the individual fluid elements do not have a
preferable relative arrangement; they undergo to large relative motion, they mix or separate
indefinitely and can hardly be followed during time. Individual blood cells follow independent paths;
they separate in arterial*bifurcations, some enter in an organ, others enter in another and so forth.
Therefore, a Lagrangian description based on following individual elements is generally not feasible
with fluids. The natural.description of fluid dynamics is made in terms of properties measured at
points fixed in space, which is called Eulerian description. The wind velocity is measured at the
anemometer position, water temperature is measured at the thermometer position, blood velocity is
measured across a valve; all these are Eulerian measurements made at fixed spatial locations that do
not refer to the original position ofsindividual particles that pass through.

Indicate with lowercase letters the Eulerian properties measures at time t at a (fixed) spatial location
x, the property g(t,x) represents the Eulerian counterpart of the Lagrangian property G(t, X,).
However, both correspond to different deseriptions of the same physical property. The Eulerian is
more appropriate for measuring and describing, fluid properties. However, conservation laws deal
with material elements, and they are more naturally expressed in Lagrangian terms. It is therefore
necessary to identify relationships able to transform Lagrangian conservation properties in the
Eulerian description of fluid motion.

The relationship between Lagrangian and Eulerian deseription at the level of individual particles is

G(t, Xo) = g(t, X(t, X3)).. (3.23)

Relation (3.23) simply states that the properties of the particle Xg=at time t is the same found at the
spatial position X(t, X,) occupied by the particle at time t. Equation (3.23) is important because it
provides a bridge between Lagrangian to Eulerian descriptions.<Conservation laws are commonly
expressed in terms of the time variation of particle properties; for example, acceleration of a fluid
particle is the time derivative of velocity of a particle. Relation (3.23) permits to evaluate the time
derivative associated with fluid particles in terms of Eulerian quantities? T@ make it more explicit,
remind that equations (3.23) present on the right-hand side a dependenceson_the vector position X,
which corresponds to a dependence on the individual components, e.g. in Gartesian coordinates

G(tl XO) = g(tl X(tl XO)' Y(tl XO)! Z(tl XO))
Take the time derivative using the chain rule

dG 0dg 0gdX 0dgdY dgdZ dg dg dg dg

4t _099  094% ogar K094z _99 . ,99 ., 99 24
dt ~ ot Toxdt "oydt Tozdr ot Zox Way 'V (3:24)

z E ’
where we used the fact that the time derivative of the position is the velocity
dX
dt
Equation (3.24) can be rewritten in vector form

v,
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=% vy, (3.25)
The left-hand side of (3.25) is the time derivative in a Lagrangian description, thus following a fluid
particle. The right-hand side is the same Lagrangian time derivative written in Eulerian terms, which
is sometime called material or substantial time derivative. Equation (3.25) states that the material
property of agarticle passing through a fixed location x can increase either because the property is
increasingat that location or because the particle is moving in the direction along which the property
increases In space, i.e. when its gradient is aligned with the velocity vector.

As a fundamental application, let us apply the (3.25) to the fluid velocity to compute the acceleration
of a fluid particle at position x

ov
ot

This shows that a particle’can accelerate either when velocity increases in time at the position x or,
even in steady flow, when the\particle is moving toward a region with higher velocity. This point is
sketched in Figure 3.4, the first term_of (3.26) is the inertial acceleration, because it is associated
with the increase of fluid inertia, the second term is the convective acceleration, because it is due to
the convection of fluid.

a(t,x) =—+v-Vv. (3.26)

Inertial acceleration Convective acceleration

ig—s t+dt

Figure 3.4. Left: inertial acceleration occurs when velocity increasesin time at the fixed spatial
location and it can be present even in a straight vessel. Right: convective acceleration occurs when
a particle moves towards a region with higher velocity, and it can be present evemyin steady flows.

This concept can be extended from individual particles to the integral expressions applied to a finite
volume. Integral conservation laws typically apply to a (Lagrangian) material volume of fluid that
deforms during its motion, whereas fluid balances are necessarily applied to (Eulerian) spatially
defined regions, like a portion of a duct between two cross-sections.

The Reynolds’ Transport theorem permits to express the time variation of a property associated to a
material fluid volume in terms of variations in a spatially fixed volume. Consider a volume of fluid
Vr(t) and a fixed volume V that corresponds to the location of the volume of fluid at time ¢, V =
Ve (t), bounded by a fixed surface S. We can prove that
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a f G(t)—f—dV+fgv-ndS. (3.27)

VE(t)

where n is the outward normal to the surface S.

A simple demenstration of (3.27) is as follows. Express the time derivative at the incremental ratio
(dt is infinitesimal and implicitly includes the limit to dt — 0)

dit fG(t)_E f g(t+dt)av — fg(t)dv =,

VE(t) Ve(t+dt)

Where we can use Eulerian descriptions on the right side because the volumes are instantaneously
fixed. Divide the firstlintegral on the right-hand side in two parts

=% fg(t+dt)dV+ f g(t—i—dt)dV—fg(t)dV =,

Ve(t+dt)-vV

the second integral is over the thin space between the volume at time t and that at time t + dt, whose
infinitesimal volume portion dV is spanned by the infinitesimal surface dS on the boundary of volume
V, multiplied by the length travelled/normally to that surface in the period dt. In formulas dV =
(v -n)dt dS; thus, the previous formula’becomes

0
=ja—fdv+jg(v-n)ds,

14 S

where the first integral combined the formerly first and last terms, and the higher order infinitesimal
terms disappeared in the limit of dt — 0. This completed the proof of (3.27).

The transport theorem (3.27) can be rewritten entirely in termsiof volume integrals with the aid of the
Gauss theorem (3.8),

dfGt—f[ag+V( )| av 3.28
VE(t) 14

Equation (3.27) and (3.28) will be fundamental to express the (Lagrangian).conservation laws in

terms of (Eulerian) fluid volumes fixed in space.
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B. FLuiD DYNAMICS: CONSERVATION LAWS

4. Conservation of Mass

4.1. Mass balance in integral form

The first law_of conservation in order of importance is conservation of mass. Given a generic material
volume of fluid Vi (t), the mass of that volume is given by definition (1.2) that in this case reads

pdV ;
VE(t)
where p is the density. Gonservation of mass states that the mass of a volume of material cannot vary
during time. In formulas it‘is

d

T f pdV =0. (4.1)
VE(D)

The law (4.1) applies to a material volume of fluid (or any continuum) deforming during its motion.

Application of the transport theorem(3.27) to (4.1) gives the integral law of conservation of mass

fg—ft)dV+fpv-ndS=0; (4.2)
v S

where V is a spatial volume fixed in space and S'is the surface surrounding that volume. Equations

expressing mass conservation are also called continuity eguation, because mass conservation ensures

the continuity to the material that cannot disappear.

As mentioned before, we will only deal with fluids whosedensity is constant in time and uniform in
space. These fluids are generically referred here as incompressible fluids (although in rigorous terms,
fluids can be incompressible even with spatially variable density)=sFor them, conservation of mass
(4.2) simplifies in

fv-ndSzO. (4.3)
S
where we remind that the surface S represents the boundary of a region ‘of space.

The integral equation of mass conservation for incompressible fluids, equation (4.3), states that given
a spatially fixed volume, the amount of fluid that enters through a region on.the boeundary of such
volume must be equal to the amount that leaves through the remaining boundarys<Forexample, in a
pipe with perfectly rigid walls, the amount of fluid that enters from the inlet is identical to:that exiting
at the outlet.

This concept can be expressed in different integral terms for a more immediate application to cavities
with varying volume like, for example, a cardiac chamber. Consider a container of volume V (t)
bounded by a surface S(t); this surface can be instantaneously subdivided in a part made by a solid
boundary S,, moving with boundary velocity v, and the open sections of area S,e, allowing the
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fluid to flow with the fluid velocity v. Being S = Sj, + Sqpen, the instantaneous balance (4.3) can be
restates as

fvb-nd5+ f v-ndS=0.

Sb Sopen
Considersow that the open boundary of the varying volume V (t) also moves with a velocity v,, that
representsiits geemetric displacement; thus, we can divide the fluid velocity therein as the sum of the

boundary velocity plus the relative velocity v = v, + (v — v,,). The previous balance can be recast
as

jvb-nd5+ f (v—v,) ndS=0;
s

Sopen

where the first integral is over the entire surface S bounding the volume V. The first term is simpli
the time variation of the volume and the balance can be written as

dav

=4 f(v—vb)-ndSzO; (4.4)

Sopen

stating that the change of the chamber’s wolume is given by the net balance of fluid entering and
exiting that volume. The minus sign on theright derives from the fact that the normal n points
outward. The same equation can be stated in“a-useful synthetic form as

(
QO = — f(v—vb)-nds,

dv Sin

dt = Qin — Qout» 3 (4.5)

Qout = + f(v_vb)'ndsi

\ Sout

where Q;, is the total entering discharge across the open sectionsS;,, through which flow enters and
Qout s the total exiting discharge across Sy ¢, (Sopen = Sin + Sout). It is important to remark that
when writing (4.4) or (4.5) the fluid velocities v are Eulerian quantities:*'values measured relative to

a spatially fixed reference. Thus, the discharges (4.5) are written using/the relative velocity of fluid
with respect to moving boundaries.

As an instructive example, consider a left ventricle (LV), whose total volume is V;y(t) increases
during filling (diastole) while blood enters through the mitral valve of area Ayy,. Application of (4.4)
reads

dt —Amv (vmv — vbMV) ) (4.6)

where vyy is the fluid velocity across the mitral valve (normally negative because directed
downward, entering the chamber); this is the velocity measured by imaging methods, like Doppler
echocardiography or Phase-Contrast CMR (Cardiac Magnetic Resonance). The value vy, is the
velocity of the mitral valve boundary (normally positive upward), typically moving opposite direction
of flow during ventricular expansion thus giving a relative velocity higher than the fluid velocity. In
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common applications the latter term is neglected because it is assumed to be much smaller that the
fluid velocity. This is commonly realistic, although introduces an approximation that may not be
always valid. A balance like (4.6) can be applied to ventricular contraction during flow ejection
through the aortic valve, as well as to other chambers or portions of a vessel. It is useful to properly
relate measurements of fluid velocity, tissue velocity and chamber dimension that are linked together
by the principle of mass conservation.

4.2. Mass balance for a vessel

Consider the flow in a duct where the transversal size is much smaller than the longitudinal extension.
The type of fluid mation in this case is predominantly one-dimensional (1D), characterized by a
velocity component along the vessel direction much larger than the transversal components. In such
conditions, it is often useful to consider properties that vary with the position along the vessel and are
represent a global behavior for the entire the cross-section at that position. Such properties, like area,
average velocity, discharge, average pressure etc., are then expresses as a function of the single spatial
coordinate, say x, that definesithe position along the vessel, and time.

Consider an infinitesimal length dx.0f such a 1D stream of cross-section area A(t, x) and discharge
Q(t,x) = A(t,x)U(t, x) being U(t, x) the velocity averaged over the cross-section defined by

U(tyx) = %j v, dA . (4.7)
A

Apply the conservation of mass to the quasi-cylindrical short element with volume V(t, x) =
A(t,x)dx. The flow entering from the first section is Q;, = Q(t,x) and that existing is Qgut =

Q(t,x) + ‘;—z dx, equation (4.5) reads

oA 00  \
—dx = Q) - (Q(t,x) +adx) ,

that becomes
0A 0
94,99 _,
Jt  Ox
Equation (4.8) expresses the law of conservation of mass for 1D streams. It can also be rewritten

(4.8)

0A 0A AU
aa g8 L% 4.8
6t+U6x+Aax 0. (4.8)

Both equations (4.8) express the conservation of mass along a 1D vessel in absence of lateral
inflow/outflow; it states that the flow rate decreases downstream when the vessel area increases in
time, and vice versa, as sketched in Figure 4.1.

In perfectly rigid ducts conservation of mass says the discharge is constant along the vessel.
Therefore, conservation of mass between two arbitrary sections, say 1 and 2, of a rigid duct with
varying cross-sections permits to evaluate the corresponding changes in the velocity

Ay

Q1=0; = U A =UA;, = U2=U1A—}
2

stating that velocity increases when the area decreases downstream and vice versa.
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Q([ [ 1 I 1 f i f 0-A0

Figure 4.I*Massiconservation implies that flow rate Q does not change along a rigid vessel, while
it reduces downstream when the vessel expands.

In elastic vessels, the increase of area is a consequence of an increase of pressure. Therefore, equation
(4.8) says that the fluid rate of blood reduces downstream when the generation flow is accompanied
by a pressure increase. Thisds,what happens, for example, along the Aorta. At the entrance of Aorta,
blood enters as an impulse during ventricular systole, this impulse is accompanied by a similar one
in terms of pressure (systolic pressurg); at the end of the systolic wave, the aortic valve closes and
there is no flow during diastole When pressure decreases (diastolic pressure). Therefore, during the
systolic impulse the Aorta enlarges and, accommodates part of the incoming fluid; afterwards,
pressure decreases, the stored blood is releases.and flow rate increases downstream. The result of this
phenomenon is the transformation of the sharp flow pulsation at the aortic entrance into a smoother
time profile downstream with reduced peaks@nd non-zero flow even during diastole.

4.3. Mass balance in differential form

Equation (4.3) states a balance of the flow rate across‘the surface bounding a volume V. The same
balance can be transformed, with the aid of the Gauss theorem (3.8), in a volume integral

f V-vdV =0.
14
Mass conservation applies to any arbitrary volume either large or infinitesimal; if this integral must

be zero for any arbitrary volume V then the integrand must be identically zero. This leads to the law
of conservation of mass in differential form

V-v=0; (4.9)

that is commonly called the continuity equation. Equation (4.9) implies that the velocity field of an
incompressible flow has zero divergence at every point (velocity field is solenoidal).

The same result could be obtained by applying (4.3) directly to an infinitesimal cube. Figure 4.2
shows the balance of flow across the two faces with normal x. Performing the same opgération on the
6 faces

av, v,
—v,dydz + (vx +—— dx) dydz — vydxdz + | vy, + =——dy | dxdz
0x dy
ov, ov, O0v, O0v, '
—v,dxdy + (vz + a—zdz) dxdy = o + 3y + Ep dxdydz = 0

ends up with the same result (4.9) in Cartesian coordinates
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+—2=0. (4.10)

v,
v, dydz y dz Uy + M dx |dydz

dy
ax X >

Figure 4.2. Balance of mass‘in an infinitesimal cube

The condition (4.9), or (4.10), is an/important constraint to the possible realization of the velocity
vector field. Looking at the description efflow kinematics in equation (3.16), the velocity field locally
can only translate and rotate rigidly and can deform without change of volume because the flow has
zero divergence. If velocity field convergesfrom one direction to a point it must similarly diverge on
another direction to ensure that the entire divergence is zero. As a simple intuitive example, if a jet is
directed toward a wall, velocity present a convergence in that direction because it is positive upstream
and zero at the wall for impermeability. As a consequence of mass conservation, the flow must
diverge on the opposite direction, i.e. parallel to the walhvelocity must be directed away from the
impact region to create a splash effect on the wall.

Bio Fluid Dynamics (Lecture Notes for Students)



Conservation of Momentum Page 46

5. Conservation of Momentum

5.1. Momentum balance in integral form

The second law of conservation to consider is the conservation of momentum. This corresponds to
the second Newton law (expressed by F = ma for a single particle) that has to be rewritten for a fluid
continuum..Given a generic volume of fluid V, the momentum of that volume is defined

f pvdV .
VE(t)

Conservation of moementum states that the momentum of a material volume can change in time in
consequence of the application of forces

~ f pvdV = f fdv + f dS . (5.1)

VE(t) S

The term on the left-hand side is the variation of momentum (the equivalent of the product between
mass and acceleration for a particle): The first term on the right side is the volumetric force that acts
at time t on all elements in the volumesoffluid, V = V(t), and the field f(x, t) is the force per unit
volume; the second term is the surface, forces.applied on the boundary S of the same volume, where
T is the generic stress vector (force vector'per.unit area). Equation (5.1) is the generalization of the
static balance (2.2), which now includes the,momentum and the surface force is includes other
dynamics contributions in addition to pressure.

Application of the transport theorem (3.27) to (571) gives

f—dV+fpv(v-n)dS=Jde+frdS; (5.2)
v S
which is the integral law of conservation of momentum

Before moving forward with applications, it can be useful to shew thatthis law can be rewritten in an
alternate expression where the first term takes the form of a surface integral. This is feasible in the
case of incompressible flows, when velocity has zero divergence and density is a constant. In this
case, application of the Gauss theorem, in particular of its expression (3.15),permits to transform one
component of the first integrand in (5.2) into a surface integral

av; v v
f—dV f (xla)dV:fxl(En)dS

S

Then, insertion of this into (5.2) leads to an expression for the integral law of gonservation of
momentum (5.2) for incompressible flows

fpx(z—?-n)d5+fpv(v-n)d5‘=fde—l—f‘tdS. (5.3

S S %4 S
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that expresses the entire change of momentum in terms of velocity values evaluated on boundaries
without the need of knowing velocities in the interior of the volume. Formulation (5.3) can be useful
in several situations involving unsteady flows, as it is often the case in the cardiovascular circulation.

Symbolically, equation (5.2) or (5.3) is often expresses as

I+M=G+1I, (5.4)
where the"four terms are defined by

l—fapidV f (?;: n)dS szpv(v-n)dS

s ) (5.5)

:deV ﬂ=f1:d5.

S

The first term is called the lgcal inertia and it can be expressed in terms of volume integral or surface
integral, accordingly to equations (5.2) or (5.3), respectively. The second term is the flux of
momentum across the boundary, third term is the volume force and last term is the surface force. The
balance (5.4) is useful to compute the dynamic forces acting on the boundaries surrounding a moving
fluid. This represents an extension of thescalculation of static forces. The static analysis (previously
seen in Chapter 2) dealt with last two'terms of volumetric and surface forces; the dynamics analysis
includes the first two terms associated tosthe change of momentum due to the fluid velocity, and
extends the surface force with the presence ©of shear stresses.

Let’s see now a few instructive examples to demanstrated application of the dynamic balance for the
calculation of dynamic forces, to explore the physical meaning of the terms in (5.4) and the ways of
computing them.

Consider a circular duct with constant cross-section A, presenting a 90° bent on the horizontal plane
as sketched in Figure 5.1. A steady flow, with velocity U,rovokes a thrust on the lateral surface of
the duct due to flow deviation; that is then transferred to the boundaries where the curve is attached
to the rest of the system. Application of the dynamic balange (5.4) permits to compute the force
exerted by flow on the curved duct. First, I = 0, because flow'is steady, velocity is constant in time
and its time derivative is zero. The flux of momentum at the entrance issgiven by

M, =— fpvdi (5.6)
A

where the minus sign in front is due to v - n = —v,, because velocity v, entersthesvolume while the
normal is directed outward. When the flow is a mostly unidirectional stream, like In this case, the flux
of momentum is often expressed in a compact form in terms of global quantities introducing a
velocity-correction coefficient f embodying the effect of velocity variation over the gross-section

M, = —pBU24; B—f;A . (5.7)

Such a momentum velocity-correction factor p reflects the difference between the average of velocity
square and the square of the average velocity. The calculation of the integral of square velocity would
require the knowledge of the spatial distribution of velocity that may not be available. In such cases,
the introduction of this coefficient allows a simpler formulation based on global properties and
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transfers the problem of not knowing the transversal profile to a mean of estimating S. This coefficient
approaches the unit value when the velocity presents an approximately uniform distribution over the
cross-section. Details of the velocity profiles will be studies later; nevertheless, in many situations
the profile does not depart dramatically from uniform and (when we have no information to suggest
a different number) it can be assumed approximately equal to 1.

Using the same approach, the flux of momentum at the exit is written

M, = f p vydA = pBU>A.
A

VLX’
A A4
—»O A

Figure 5.1. Force on a curved vessel

>

The volume force, G, assumed due to gravity only, has only. the vertical component given by the static
weight of the volume. The surface force term is composed of three terms: pressure p, acting on the
inflow cross-section having the normal to the surface directed in the positive x-direction; pressure p,
acting on the outflow cross-section with normal directed in“the negative y-direction; and the force
made by the lateral duct surface that is equal and opposite to the force vector F = [Fx,Fy,FZ] made
by flow on that surface. In formulas

M, =pA—F, I,=-p,A—F, W, ='%E,
The overall balance (5.3) in the three directions is as follows
—pBU?A =p,A—F, pPU?A=—-p,A—F, 0=~V =F,.
Therefore, the force made by flow on the curved vessel is
F. = p1A+pBU?A, F,=—pBU?A—p,A, F,=—yV. (5.8)

A few comments are due to the result (5.8). The force along x is made by the static#orce p,A plus
the dynamic force caused by the deviation of the entire incoming momentum, i.ethe{impact of the
incoming flow onto the bent. The force along y is made by the static force p,A that pushes in the
negative direction plus the recoil due to the generation of momentum. The vertical force is simply the
weight of the fluid volume.

A second instructive example is the case of a rectilinear rigid vessel presenting a reduction of the
cross-section along its axis, as shown in Figure 5.2, from an initial area A, to a final A, < A;. Letus
calculate the terms in the balance (5.3) for this case.
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The inertial term is non-zero because the flow is unsteady. To this aim, consider the time-varying
discharge Q(t) that for mass conservation does not vary along the vessel axis, indicated with x, and
can be evaluated at any generic section with area A(x) including inlet or outlet sections

() = f bydA = Uy (A, = Uy (DA, .
A(x)

The compenent of the inertial term along the vessel axis becomes

apx 2d
[, = dv = pf f—dAdx—pf — fvdi dx .
, dt

A(x)
Noticing that the mtegral reported in brackets in the last term is the discharge Q(t), that does not vary
along x. Substitution eventually gives

_
~ P
where L = x, — x; is the length ef the duct under analysis.

L; (5.9)

The same result (5.9) could be obtainedsby the second expression in (5.5) based on surface integral

v avx avx dQ
Ix:f (at )dS fpxz-gt—dA—fpledAzp(xz—xl)—.
S Ay Aq

The flux of momentum is written using (5.7),‘assuming g = 1 for simplicity, for both the first and

last section to give
_ 9QZ( )
AZ A1 i

The pressure term is due to pressure values p; and p, acting on the initial and finals cross-sections,
respectively, plus the force made by the lateral wall to the fluids that IS equal and opposite to the force
E, made by the fluid on the lateral wall

[, =p14; —p4; — E .
Inserting these terms in the balance (5.3) along x, the force made by flow_on the vessel is

F. = piA; — A Q(l 1) dQ
x = P1A1 — P2a2 — P A4, pdt

The first two terms give the static force acting on the two cross-sections that depends on the values
of pressure and not on the flow velocity (although we’ll see later that the difference ©f pressure is
actually consequent on the properties of the flow). The third term is the next flux of mementum; it is
negative and represents the reaction effect due to the higher flux of momentum at the exit that at the
inlet (despite the flux of mass is the same). Last term reflects the force associated to the inertial
(acceleration/deceleration) of the whole volume of fluid contained inside the vessel.

(5.10)
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Figure 5.2. Forcefon arectilinear vessel with varying section

This example can also bestsed to evaluate the force when the contraction is very sharp as it can be
the case of an orifice placed transversally in the vessel, which can represent a model for a
cardiovascular valve. In that'ease, formula (5.10) provides an estimation for the force pushing on the
upstream surface of orifice wall.

/s |
,// e -'I
U N )= __{-"’ ,,,f/,f -
— -V _ ;
_— ——4— >
= —_____f___'_-_-—-_,._______ \
T e

-'\’\\:\\

Figure 5.3. Force of a jet impacting on a flat plate

As a further simple example compute the force produced by a fluidgjet directed toward a planar
surface. With reference to Figure 5.3, consider a steady jet with average velocity U and cross-area A4,
directed perpendicular to a flat plate. Define the volume as bounded™by the inlet section, the
streamlines at the boundary of the jet adjacent to the external environment, assumed as air at
atmospheric pressure, the plate and the exit sections that are directed parallelto the plate. The balance
for this volume in the direction of the jet is straightforward to compute. Inertia_is.zero because the
flow is steady, the flux of momentum at the inlet is M = —pBU?A, where 8 can be confidently
assumed 8 = 1 being it a free jet. While the flux at the outlet does not contributeo this direction
(and is zero for symmetry in the transversal direction). Body force (gravity) is also zero in this
direction. Surface forces are not present on the lateral boundaries because pressure is=zero (equal to
the atmospheric value, that is taken as the reference zero value). Similarly, pressure is also zero at the
inlet section because pressure is constant inside the jet (this will be demonstrated rigorously later)
that is surrounded by atmospheric pressure. Therefore, surface force is non-zero only on the obstacle
and it is opposite to the force F made by flow on it, [T = —F.
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Insertion of these findings in the balance (5.3) shows that the force on the plate is only given by the
deviation of the incoming momentum

F = pU2%4 = pQU. (5.11)

These simple cases were presented to show appropriate simple means of evaluating the terms in (5.4)
under typical conditions, at least for a first approximation. In general, the integrals (5.5) provide the
mean for an“accurate evaluation of all terms.

The balance (5:2),can be extended to provide the balance of angular momentum. In which case every
term must be multiplied with the corresponding arm of the force. The details of this extension are not
reported here as they are not of primary interest for the topic of this book and do not bring conceptual
challenges. However, such extension is immediate in most situations using the same overall approach
described above.

5.2. Momentum balance*for a vessel

Following the same procedureythat we used above for conservation of mass, let us rearrange the
balance of momentum (5.2) for the.special important case of flow in a vessel where fluid motion
develops predominantly along the direction of the duct axis. Indicate again with x the longitudinal
direction along the vessel and with /A(t, x) the area of the cross-section that can vary along the axis
and in time, and the transversal velocities are assumed to be negligible with respect to the longitudinal
one whose average value is U(t, x).

Consider an infinitesimal length dx of sucha vessel and let us evaluate the component along the
vessel of the individual terms in (5.4), recallingsthat that the balance is made on a spatial volume
(instantaneously fixed). The volume under analysis is sketched in Figure 5.4; it is bounded upstream
by the cross-section of area A(t,x), where velocity isU(x, t) and average pressure is p(x, t). It is

bounded downstream by the cross-section of area A(t, & +dx) = A(t, x) + Z_idx’ where velocity is

U(t,x +dx) =U(t,x) + Z—de, and pressure is p(t, x ¥+ dx)h= p(t,x) + Z—de; it is also bounded
laterally by the perimeter curve C(t, x) that extends over the length.dx.

The inertial term is integrated over the volume dV = dAdx and reads

dpv, v, 0 au
I f o av pf = dA dx patf v, dA dx = pA o dx (5.12)
A A

%4
The flux of momentum across the two cross-sections and the lateral contour

v, z
M=— f pvidA + f p (vx + adx) dA + f PU U dCdx =

A(x) A(x) +g—ﬁdx C(x)

is simplified assuming that the velocity as uniform over the cross-section, which means v, = U and
£ = 1, and ignoring all terms of order dx?
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= —pU?A + (U2+2U6Ud )(A+6Ad)+ UJ dCdx =
7P p ax ¥ ox X)) TPY | n@REX =

(o
) 5 au , 04
= —pU*A+pU°A+ pZUaAdx + pU adx + pU | v,dCdx =
Cc
last integral above can be rewritten (see Figure 5.4) considering that the integral of v, dC is the rate
of increase ofthe cross-area, Z—?. Rearranging all terms

Figure 5.4. Indication of the quantities involved in the momentum balance for an infinitesimal
portion of a vessel.

au , 04 0A
= 2pUaAdx + pU adx + pUde =
ou ou J0A 04
=pUaAdx+pU(Aa+Ua+E>dx
The term in bracket is equal to zero for mass conservation (4.8) and the whole flux of momentum

becomes

au
M = pU — Adx. 5.13
pU——Adx (5.13)

Surface forces are composed of pressure acting on the two cross-sections, the wall shear stress acting
on the lateral surface and the contribution of pressure on the lateral surface, which may present a
longitudinal component when the cross-section is not constant. Surface forces are
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I = pA (+apd )(A+6Ad> cd +( +1apd> S, v =
=D p axx axx Tolax p zaxx"" LAT =

Last but one term has is the average wall shear stress, —t,, exerted by the lateral solid boundary to
the fluid; it has a negative sign as t, conventionally indicates the stress made by fluid to the wall.
Last term is the x-component of the pressure force on the lateral surface (pressure value is taken as
the mean between x and x + dx) and n, is the x component of the normal unit vector on the lateral
surface dS; 4 (notice that here we did not use the simplification dS; 4+ = Cdx to remark the relevance
of the change of-eross-section along dx, the tilting of the later surface, whereas C is the average value
along the length\dx). It can be noticed (see Figure 5.4) that the product n,.dS; 47 corresponds to the
projection of theslateral surface on the cross plane, thus it is equal to the change of cross-surface

94
ndeLAT = adx
Ignoring the higher orderterms in dx and simplifying

ap 0A 0A dp
= A — DA — — N dx — —dx = —A—dx — _ 5.14
[1=pA-—pA I Adx—p I dx —1oCdx +p I dx A I dx — 19Cdx (5.14)

Finally, the volume force, assumed imputable to gravity only f = —yVz, is obtained by the

dz, - . . .
component along the vessel f, = 17, integrated over the volume and gives (ignoring terms
containing dx?)

0z
_ . 5.15
G =~vA I dx ; ( )

where z stands for the vertical direction aligned with gravity. Combine all terms (5.12)-(5.15) of the
momentum balance (5.4) and divide by pAdx to abtain
0U+U6U_ 0(p+ ) 7o C (5.16)
ot " Cax  ax\p "YHIN oA '
Equation (5.16) is the law of conservation of momentum forylD streams, under the assumption of
uniform velocity over the cross-section and in presence of gravity only.

The left-hand terms represent the (Lagrangian) acceleration of'a 4D fluid element moving with
velocity U expressed in terms of (Eulerian) derivatives in a fixed frame of reference. The first term
on the right-hand side is the driving force that can be due either tosa pressure gradient (negative,
higher upstream and lower downstream) or to a difference of quote. This®€xpression underlines again
that pressure gradient and gravity play the same role in fluid motion./It is.eémmon habit using a
generalized pressure that includes gravity. Then (5.16) is usually rewrittem"without explicit mention
to gravity (or another conservative force) as

ou ou 1dp 1,C c 17

0t+U6x_ pox pA (5.17)
where p stands for the generalized pressure equal to p + yz = yh, where h is(the static head
previously introduced with equation (2.6) in fluid statics. Then, if needed, the actual pressure can be
recovered simply removing the static contribution due to gravity.

Last term is the friction on the lateral walls. This term depends on the velocity profile near the wall,
as shown for example by equation (1.9) for a Newtonian fluid. The 1D model however deals with the
mean velocity only, which is assumed to be uniform over the cross-section and does not provide
information about transversal velocity gradient. Therefore, the friction terms must be provided by
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mean of a model based on hypothesis on the velocity profile near the wall and the property of the
fluid. In some theoretical studies it is often neglected to evaluate the behavior in the limit case of flow
without viscous resistance. In some applications it is expressed as proportional to the ratio between
the velocity field U and the diameter of the vessel with the proportionality coefficient defined by a
model based on phenomenological assumptions.

5.3. Momentum balance in differential form for a continuum: Cauchy equation

The laws of conservation of momentum presented so far concerned balances over extended regions
and were notiintended to describe fluid motion in its fine space-time details. This can be achieved
when the balange of momentum is be formulated at the level of infinitesimal volumes or, more
precisely, in differential form.

To this purpose, startfromsthe balance of momentum expressed in global terms (5.2), divided by the
constant density for convenience,

ot

14 S

This balance is made up of four integrals, two on the volume of fluid and two on the surrounding
boundary. We want to transform the surface integrals, 2" and 4™ terms in (5.18), as volume integrals,
such that all integrals refer to the same=arbitrary volume and the equality can be extended from the
integral to the integrand terms. This is straightforward for the second integral in (5.18) where the
generic i component can be transformed as, follows

fa—vdV+f v(v-n)d5=%Vf de+%Sf TdS. (5.18)

fviv-ndSz f V- (rv)dV = f(viv-v+v-Vvi)dV=fv-VvidV. (5.19)
%4

S 14 14

The first equality used the Gauss theorem (3.8) applieditosthe vector field v;v; the second equality is
immediate to verify using the derivative of a product for vector terms, and last equality follows after
cancelling the terms V - v that is identically zero for mass conservation (4.9).

Last term in (5.18) contains the stress vector T acting on the surface d§. Apparently, at a point there
are infinite stress vectors that can act on surfaces with different orientations, and the identification of
the vector  that acts on the specific surface dS may look like a complex task. However, such an
infiniteness is only apparent because there is a single stress “state” about-apoint and the value of all
these individual vectors come from a combination of such stress state in.relation to the orientation of
the surface. Indeed, it can be demonstrated that the stress vector acting on/‘surface with normal n
can be expressed in general as

=T n; (5.20)

where T is the stress the tensor. It characterizes the stress state at a point, such that the stress vector
at that point acting on a surface with normal n is obtained by projecting the stress‘tensor over the
direction m, as by (5.20).

Result (5.20) is usually demonstrated using the Cauchy tetrahedron, which is built by the original
surface dS and its projection on the Cartesian planes as shown in Figure 5.5.
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Figure 5.5. Cauchy tetrahedron

Indicate with 7™ the stress vector acting on'the surface dS™, which is projection of dS on the y-z
plane perpendicular to the x-axis; and the same,for the other coordinate axes. First, we want to see
whether the stress = on the original surface.can be expressed as a combination of the stresses T(*),
), 7 acting on the surfaces normal to the’ Cartesian axes. Balance of the forces acting on the
tetrahedron gives the equivalence of the surface forces

7dS = T dS® + 1 ds®) F7@ds@ (5.21)

It is then easy to verify by simple geometry the projection that dS® = dS n;, where the n; is the i

component of the normal n to the surface dS. Introducing this into (5.21) gives
=190, + tn, + T@n,. (5.22)

If you define the stress tensor as a tensor made by three stress veetors,placed in column ri(j) =Ty

then equation (5.22) corresponds to (5.20) that is thus proven. Using €xpression (5.20) the fourth term
in (5.18) can be rewritten as a volume integral through the Gauss theorem

1 1 1

—frdSz—f'ﬂ‘-ndS:——fV-'ﬂ‘dV. (5.23)
P P P

S S

where the minus comes out because the normal in Gauss theorem is outward directed while it is
common to consider here the inward normal to agree with the convention that a“pesitive pressure
makes a force directed toward a surface (inward normal). Introduction of (5.19) and:(5.23) in the
momentum balance (5.18) allows rewriting in terms of volume integrals

v 1 1
f—dV+fv-VvdV:—fde——fV-']]‘dV.
at p p
74 14 14

%4
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This equality must be valid for an arbitrary volume, including any infinitesimal volume, therefore the
balance must apply to the integrands as well

1

0 pvw=if_ly.r (5.24)
—+v-Vov=—f—-V-T. :
ol T p

ot

Equation (5.24) is the Cauchy equation that expresses the law of conservation of momentum for a
continuums

The same ‘result*could be obtained in Cartesian coordinates by applying the balance of momentum
(5.18) to an infinitesimal cube of volume as shown in Figure 5.6.

L
v+ —dz
0z
at®
@ + dz
0z
A
dv
- | / v+ ——dx
‘. Jx
T
; (x)
dz| o~ Pl T + ax dx
) -
»T y dy
dx X >
v, &

Figure 5.6. Balance of momentum in an infinitesimal cube (values on the faces perpendicular to y
are not shown to for clarity)

Consider, for example, the x-component (then results can be immediately extended to the other
components). The first term in (5.18) applied to the infinitesimal cube, V = dx dy dz, becomes

v v
Jﬂ——de::—7?dxdydz. (5.25)

The second term includes the fluxes of momentum on the 6 faces

jvx(v-n)dS =

N

av, av,
= =V dydz — v, vydxdz — v, v, dxdy + (vx + T dx) (vx + T dx) dydz#+

+( +awd) Ly, dcl+( +awd>( +6Wd)dd =
Vy 3 y || vy 3 y |dxdz + | vy + ——dz | (v, + ——dz | dxdy =
_( 0V, 0V, v, oV, oV, 0V,

(5.26)

vxa+vx o + Uy 3y + v, 3y + vV, P + v, az>dxdydz=

= (- Vv, + v, V-v)dxdydz =
= v Vv, dxdydz

Bio Fluid Dynamics (Lecture Notes for Students)



Conservation of Momentum Page 57

The third term

f fdV = f.dxdydz . (5.27)
%4
Last term combines the stress forces on the six surfaces of the cube
aT(x)
J. T,dS = T,(Cx)dydz + r,(cy)dxdz + T,(Cz)dxdy - T,(Cx) + a—’;dx dydz +
S
6% (2)
ot Tt
- (T,(Cy) + # dy) dxdz — <T,(CZ) + 6—de> dxdy = (5.28)

B ar,(f) N arfc'” p GT)(CZ) dxdvdz =
- dx ay 0z xayaz =

=—(V-T),dxdydz

Where here we employed the same definition of the stress tensor T made up by the three stress vectors
relative to the three coordinates. Insertion of expressions (5.25)-(5.28) into the balance (5.18) gives
again the Cauchy equation (5.24).

The two terms on the left-hand side=of the Cauchy equation (5.24) represent the Lagrangian
acceleration of fluid particles previouslyintreduced in equation (3.26). The two terms on the right-
hand side are the forces acting on such particles, caused by intrinsic volumetric forces and by the
stresses made by the neighboring fluid elements.

The same procedure may now be performed for the conservation of angular momentum by writing a
similar expression including the arms of the individual terms. The derivation is somehow lengthy and
is not reported in details here because it does not produce further differential equations; the result is
remarkably simple. The conservation of angular momentumuimplies that the stress tensor T is a
symmetric tensor. This reduces the complexity of the 3x3 stress,tensor from 9 components to 6
independent components.

5.4. Momentum balance for Newtonian fluids: Navier-Stokes equations

Let us recapitulate the set of equations describing the mechanics of\a.continuum (still we have not
used any argument that this continuum is a fluid, only that it is incompressible). This is a system
composed by the conservation of mass (4.9) (continuity equation) and the €onservation of momentum
(5.24) (Cauchy equation)

V-v=0,

ov 1 1

—+v-VWw=—f--V-T; (5.29)
ot p P

which is a set of 4 scalar equations. The unknowns are the 3 components of the velocity vector and
the 6 components of the stress tensor, resulting in a number of 9 total unknowns. A set of 4 equations

with 9 unknowns is not a closed set, it cannot be solved until some additional information is provided.

The set of equations (5.29) is valid for a generic continuum; it applies to both solids and fluids. Before
being able to face any physical problem, it is therefore necessary to define the material that constitute
such continuum. We must introduce information about such a material, because the outcome depends
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on whether this behaves like a fluid a solid or else. In other terms, we must introduce the constitutive
law that specifies how internal stresses develop in consequence of the deformation of the material. In
the following, we’ll develop a constitutive law for fluids, following the general properties described
in section 1.2.

The first information for specifying the constitutive law comes from the statics of fluids. In Chapter
2 we have seen that under static conditions the stresses acting on a surface is to pressure that acts
normally_toward the surface; in formula T = pn (with the convention of the inward normal).
Comparison with, (5.20) immediately implies that in the limit case of static conditions, the stress
tensor is required‘to take the form

where I is the identity matrix.

The second information comes from the kinematics of fluids. In section 3.3 we have shown that
motion is composed by rigid translation and rotation plus a pure deformation. The latter is the only
elementary action which involves the relative motion of fluid elements, thus the only action that can
be responsible for friction and internal stresses. Therefore, we can express in general the constitutive
law for a fluid as

T =pl+f(D); (5.30)
where D is the symmetric deformation rate.tensor (3.21) and f is a general functional dependence.
Relationship (5.30) states that, once the function f. is defined, the 6 unknowns present in the tensor T
can be expressed in terms of derivatives of the velocity field plus a single unknown, pressure p. Thus
equation (5.30), provides a closure (balance betweens€quations and unknowns) to the system (5.29).

Fluids following the law (5.30), where stress forces are given by the rate of deformation, are called
Stokes fluids.

The third information comes from the definition of viscosity for a/Newtonian fluid. In section 1.2, we
showed that the stress due to shear flow along x on a surface with'normal y is given by formula (1.9);
which that can be restated with the current formalism as

T. — v,
Xy — May )

This expression is not symmetric and violates conservation of angular ‘momentum; however, it can
easily be made symmetric as

ov, 0y,
Ty = ‘ﬂ(@*ﬁ) '

without contradicting the experimental result (1.9) because the transversal velocity vy was zero. This

is an off-diagonal term of a form compatible with (5.30), suggesting that the function f(ID) appearing
in (5.30) is a linear one for Newtonian fluids.

Combining this set of information, the constitutive law for Newtonian fluids is written in general as
T =pl—2uD; (5.31)
or in individual Cartesian components
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0V, ov, 0dv, (avx avz>‘
P2y 4@*% Moz T ox
v, 0y, vy, v, 0dv,
' _“<W+W> PGy M aE ey
(Eivx N 6172) v, N av, ) v,
i Koz ™ ox K\ oz dy P Koz

Let us now look.how the stress tensor expression given by the constitutive law (5.31) reflects in the
surface force texm in the Cauchy equation (5.24). The surface force is the divergence of the stress
tensor, consider the“x,component for simplicity

0T,, 0T, 0T,
-V Tl == =
v Tl ( ax dy %7

5.32
op 0%y, " 0%v, 0%v, N d (dv, Ov, 0v,\ (.32)
~ Tax T H\ox2 ay?  0z? Hox\ax dy 9z )
dp
=—a+,uvz‘l7x

Insertion of this result into the Cauchy<equation (5.24) gives the equations for conservation of
momentum for Newtonian fluids: the Navier-Stokes equation

0 V= SF B + vV (5.33)
atvv—pfppvv, )

where v = % is the kinematic viscosity previously defined'in (1.10). This equation is also called the

law of motion for an incompressible Newtonian fluid, and répresents the expression of the 2" Newton
law rearranged for a Newtonian fluid. The left-hand side isithe acceleration of a fluid particle, the
terms on the right-hand side are the forces, per unit mass.’Respectively they are the volumetric force,
the thrust due to pressure difference and the resistance force due to internal viscous friction.

As discussed in Chapter 1, blood is a complex material for which the assumption of a Newtonian
constitutive relations is approximate. The reliability of this approximation was discussed therein and
it is not recalled here. In what follows we will limit our analysis to/Newtonian fluids, which are the
foundation for understanding most of the flow phenomena in the heart and large blood vessels. It is
remarked and must be understood that this is a model for blood flow:that may be good in many
situation, that is not perfect in general and can be inappropriate in other situations.

When dealing with gravitational volume forces only, as it is common in the cireulation, we have seen
that these can be rewritten in gradient form f = yVz. Therefore, it is common to fermally include the
conservative force in the pressure term substituting the quantity p + yz with the sole pressure symbol
p that represents the static head and is now meant to include gravity

0 Vo= —Lyp oy (5.34)
T v-Vv = 5 p+vVev. .
The set of equations given by continuity equation (4.9) and Navier-Stokes equation (5.34) is now a
formally complete set with the same number of equations (4 scalar equations) and unknowns (the 3
components of the velocity vector and pressure)
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V-v=0,

a—v+v-Vv=—le+vV2v; (5.35)
at p

This system of equations, continuity and motion, must be completed with the appropriate boundary
conditions. The Navier-Stokes equation is a partial differential equation containing second order
derivatives for velocity; therefore, roughly speaking, it requires two boundary conditions for velocity.
The first«€ondition is the impermeability at the boundary between fluid and solid; this means that the
normal component of the relative velocity must be zero (normal velocity equal to that of the boundary,
when it is moving). The second condition is the adherence to the wall; this means that also the relative
tangential velocity must go to zero at the wall. Therefore, the entire relative velocity vector must
vanish at a boundary. However, the two conditions are deeply different. Adherence is a purely viscous
phenomenon; the appearance of this additional condition is congruent with the fact that it is
consequent to the presenee of the viscous terms that is the only one containing 2" order derivatives.

The viscous, frictional term inthe Navier-Stokes equation produces energy dissipation. In a universal
perspective, total energy is conserved and friction is a mechanism of transformation of kinetic energy
into heat. Therefore, from the mechanical perspective, friction provokes a dissipation, a reduction of
the mechanical energy that is last because transformed into a different form of energy that is not
considered in a balance limited to meehanical aspects.

The kinematic viscosity is a small coefficient (for reference v = 10°® m?/s = 10 cm?/s for water).
Therefore, especially far from the boundaries, the viscous terms can be sometime neglected and fluid
behave in most cases approximately likefasnan-viscous one. Therefore the limiting case when
viscosity is zero, v = 0, can be useful as a modelin numerous applications. In this asymptotic limit,
we talk of ideal fluids (also called inviscid or frictionless). The equation of motion for ideal fluids is
the Euler equation

v 1

E-FU'V‘U:—;VP; (536)
that differs from the Navier-Stokes equation (5.34) for the absence of the viscous term only. The
Euler equation does not present friction and therefore conservesmechanical energy. Thus, it describes
reversible phenomena: if the velocity field v(¢, x) is solution of the Euler equation forward in time,
then the reversed field —v(—t, x) is also a solution backward in time? This was not true for the Navier-
Stokes equation due to the friction term that does not allow time reversal (reverse flow also would
have friction, it certainly does not transform heat back into Kinetic energyy):

This apparently small change brings along another important difference between Euler and Navier-
Stokes, the fact that the former is a 1%t order partial differential equation because it contains 1 order
derivatives only, which reflects into the fact that only one boundary condition can be,imposed for the
velocity. Namely, only the impermeability conditions applies to the Euler equation while adherence
does not. This is perfectly physically consistent because the adherence is a viscous phenemenon; ideal
flows have no viscosity and cannot have viscous adherence.

Euler equation is important because it allows some simple solution to specific applications; however,
care must be taken when applying the approximation of ideal flow. It can be usable over short regions,
where the small viscosity may be effectively negligible, and far from boundaries outside the regions
influenced by viscous adherence. This aspect will be taken up several times when dealing with
specific applications throughout the book
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A last consideration about Navier-Stokes (and Euler) equation regards the frequent case of flows that
are essentially unidirectional, where one velocity component is much larger than the others. To fix
the ideas, consider a motion that is predominantly along the x-direction, thus the transversal velocity
components are negligible with respect to the streamwise, v, = 0 and v, = 0.Now write the Navier-

Stokes equation over a direction transversal to the directions of motion, for example the y direction
v dv,, ov ov 10 0%v, 0%v, 0%v
A e e T Y (o e B A
at dx ady 0z pdy dx?  0y?  0z?
If we can neglect the velocity v, and its derivatives; in other words, if streamlines are straight and
parallel, then equation (5.37) reduces to

(5.37)

dp
3y 0; (5.38)

that, in presence of gravity; has the meaning

d
@(}?‘FYZ)—O.

This is a general and important result. Inregions where fluid motion is straight and parallel, the static
head (2.6), given by pressure plus gravity. if the latter is present, remains constant transversal to the
direction of motion.

In simpler terms, the law of fluid statics (2.5).holds along the directions without motion (transversal
to flow). This simple fact was sometime used in'section 5.1 when computing dynamic forces. It also
tells that the average pressure value in the equation, for a vessel (5.17) is actually constant over the
cross section. This basic concept will be used several times later in the book.
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6. Conservation of Energy (Bernoulli Balance)

6.1. Bernoulli energy balance

In a system where the only form of energy is mechanical energy, there are no other physical
mechanisms, or physical laws, other than conservation of mass and of momentum that can be included

to describe.the behavior of the system. The unique forms of energy concern kinetic energy %pvz (per

unit volume) and potential energy p + yz (per unit volume). The latter again underlining that pressure
plays the samerole of gravity which is commonly implicitly included therein for easier writing. The
law of conservation=of momentum already described the dynamic relationship between velocity (for
kinetic energy) and pressure (for potential energy); therefore, in absence of other forms of energy,
the conservation of energy must be in accordance with the only possible energetic transformations:
from kinetic to potential energy and vice versa, and kinetic energy can be dissipated for friction.

In this case, the law of gonservation of energy can be obtained directly from the conservation of
momentum (by appropriate multiplication with velocity). However, a different and particularly useful
expression for the conservation of energy that is of immediate interpretation can be obtained directly
from the Navier-Stokes equation under some specific hypotheses.

As a first hypothesis, assume that volume forces are zero or they are conservative forces such that
they can be expresses as the gradient of a force potential, like the gravitational force f = V(—yz). In
this case, and without loss of generality;"volume forces can be included into the pressure term that
has the form of a gradient as well. Now: make,the strong hypothesis of considering that the fluid
behaves like an ideal fluid with zero viscosityssuch that viscous energy dissipation is absent. The
equation governing the motion of an ideal fluid-is the Euler equation (5.36)

v 1

E+v-Vv: —;Vp.
In order to move forward, the second term on the left-hand$ide must be rewritten in an alternate form.
To show this, consider the x-component of that term in CGartesian coordinates

av, v, dv,
U'V‘le:Uxﬁﬁ'vyW Uz_a?;
now add and subtract the same quantity and write
Uy v, v, vy, vy, ov, v,
vV, = v, Tx + v, 3y + v, % + v, 7x —vya+v20——vza.

The 1%, 4™ and 6" terms can be grouped as derivative of squares, then evidence v, from 2" and 5
and v, from 3@ and 7"
10 v, O0v dv, dv
— 2 2 2 x Y x Z
U-Vle —Ea(vx +Uy +UZ) + vy(E_W>+UZ<E_W>.

The first term is the derivative of the square of the modulus of velocity v* = v;v; = vZ + vy + vZ;
then notice that the terms in parenthesis are the cross-components of the vorticity vector, and we can
eventually write
172

= — VyW, U,y

0
v-Vv|x=a2
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which in vector forms reads

2

v
v-Vv=V7—v><w. (6.1)

Insertion of the equivalence (6.1) into the Euler equation permits to rewrite it in the following
alternate form

AT LA D 6.2
5t 275 =X w. (6.2)

For the property ofithe cross product, the term on the right-hand side is perpendicular to both velocity
and vorticity. Let us now-project the vector equation (6.2) in the direction of a streamline, which is a
direction that is at every_point parallel to the velocity vector. To this aim take the scalar product of
every term in (6.2) with the.unit vector s = v~1v, to get (after multiplication with density)

v 0 /1
. — (242 =0. 6.3
’Dat s+as<2pv +p> 0 (6.3)

This equation tells that that, in an _ideal fluid, in absence of non-conservative forces, the total
mechanical energy (per unit volume) given by the sum of kinetic energy %pv2 and potential energy

p (which includes the potential of gravitational and other conservative forces, if present), can vary
along a streamline only when the flow accelerate/decelerate along that direction.

This finding can be made more explicit by integration of equation (6.3) between two points, point 1
and point 2, along one streamline

2
1 1 v
p1+§pv12 =pz+§pv12+p 57 5 (6.4)
1

which expresses the conservation of the mechanical energy (per unit of volume) between two points
along a streamline. Equation (6.4) represents the Bernoullistheorem or Bernoulli balance and states
that, when viscous energy dissipations are negligible, the total mechanical energy is conserved along
a streamline net of the last term (inertia) that is the energy spent to accelerate the fluid or acquired
during its deceleration.

For an immediate interpretation, it is common to define the total head
H=”_2+B="_2+h; (6.5)
29 v 29
which is a height that expresses the total mechanical energy per unit weightas the sum of kinetic
energy 5 plus the potential energy h, which is the static head previously defined by equation (2.6) in
section 2.1. Using the definition (6.5), the Bernoulli balance (6.4) can be written as

2

1 rov
_ e de- 6.6
Hl—H2+gfat ds; (6.6)

1

stating that the total head can vary along a streamline only when there is a variation of fluid inertia
along that path.
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The special simple case when the inertial term can be neglected takes particular relevance for
. . . . . p- . . . . . v

numerous applications. This simplification applies in general to flows in a steady state, having 5=

0; however, it also applies to unsteady flows at the instant of maximum or minimum velocity when

% = ( and to the motion averaged during the period of a periodic flow. In this case, last term in (6.6)

is zero and thetotal head (6.5) is conserved along a streamline
Hl = HZ . (67)

This situation’presents only the transformation of kinetic energy into potential energy (pressure) and
vice versa.

In order to show'the utility of the Bernoulli theorem in some simple applications, consider the case
of a reservoir with an exit at its bottom as shown in Figure 6.1, assuming the reservoir large enough
that we can consider the flow as approximately stationary

T
mm——

2

Figure 6.1. Flow existing from the bottom of a reservoir

Take a streamline starting from the free surface and reaching the outflow and state the Bernoulli
balance (6.7) using the definition (6.5) of static head writing gravitational term explicitly
2 2

Vi D1 vy D2

—+—+zi=—"—+—+2,. 6.8

29 ' ¥ Z1 29 'y Z2 (6.8)
Pressure is equal to the atmospheric pressure at point 1 on the free surface and at the point 2 that is a
unidirectional jet surrounded by atmospheric pressure. As the reservoir is large, we can neglect the
velocity (square) on the free surface with respect to that at the outlet4sThe previous balance simplifies
in

2
zZ; = 5 +2z.

Indicating with h = z; — z,, the total head bearing on the exit, the outflow velocity v = v, can be
immediately expressed as

v = J2gh. (6.9)

Velocity (6.9) is called the Torricelli velocity; it is the free-fall velocity of a particle subjected to
gravity only. Based on (6.9) it is possible to estimate the discharge exiting from the orifice as

Q = C.AJ2gh;

where A is the orifice area and C, is the coefficient of contraction that accounts for the contraction of
the cross-section of the existing jet, which for a sharp edge is about C. = 0.6.
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In a steady flow, in general, the change of fluid kinetic energy is balanced by change in pressure.
Therefore, for example, the fluid velocity increases in a horizontal converging vessel and pressure
decreases accordingly to the conservation of the total head; vice versa, in an expanding vessel,
velocity decreases downstream while pressure increases. Similarly, when you have a steady jet, with
velocity v, that impacts on a solid surface, the stagnation point on the solid surface experiences an
overpressure

Ap = = pp?
p=5pv;

because the entire incoming Kinetic energy is transformed into an increase of pressure.

The Bernoulli balance’is at the base of an important velocity measurement instrument called Pitot
tube that is shown in Figure 6.2. The Pitot tube is a small tube with a bullet-like leading edge facing
the incoming stream. It isqmade of two concentric chambers: the inner chamber communicates to the
outside from an opening.at the front tip; the outer chamber communicates to the outside through
openings on the lateral side./Fhen, the two chambers end internally with a differential manometer that
reports their pressure difference.

With reference to the sketch in#Figure. 6.2 we can apply the Bernoulli balance, under steady
conditions, separately for the two chambers along two streamlines both starting from two points
upstream that are very close each other, thus have the same velocity v and pressure p (point 0). The
first streamline selected is ending precisely ta"'the stagnation point (point 1) in front of the tube, the
other is one passing to the side near the lateral-holes (point 3).

—_—
—_

3
—_—

_ \

—
——
_

Figure 6.2. Pitot tube, sketch for calculations.

Consider first the path starting from the upstream point 0, passing through point, and ending to
point 2 on one side of the differential manometer. Apply the Bernoulli balance between 0 and 1,

2 2
v _ b "
2

Py
p p 2
Velocity is zero at the stagnation point 1 and we obtain that pressure measured in 1 is equal to the
upstream pressure augmented by the Kinetic energy that is transformed into pressure at the stagnation
point
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UZ
p1=p+t Pj-
Then, inside the tube the fluid is at rest and the laws of fluid statics hold. Ignoring gravity (without
loss of generality, because it can be included into pressure) we have that

U2

p2=p1=p+ P

Now consider the path starting from the upstream point 0, passing through points 3 and 4, and ending
to point 5 on'the ather side of the differential manometer. The Pitot tube is small enough that it does
not disturbs appreciably the fluid flow and we can assume that next to the tube v; = v and p; = p.
The Bernoulli balancescannot be applied between points 3 and 4 because there is no streamline
connecting the two.@However, the path from point 3 to point 4 moves transversally to the streamlines
and we can apply the law of statics (5.38) transversal to the direction of flow. Then, once entered into
the tube the same law of statics applies in the fluid at rest. This gives a constancy of pressure from
the outside up the manometer

Ps =Pa =pP3 =D
From these formulas, the pressure values.measured at the two sides of the manometer are
v? _
P2=P+P7' Ps =P
the former is often called the dynamic pressure, because it is the ambient pressure increased by the
kinetic head; the latter is the static ambientipressure. The pressure difference reading from the
manometer is

172
Ap = p—ps = o

that is immediate to transform into a velocity measurement

V= ZA—p. (6.10)
, p

The Pitot tube has an important applied relevance because it provideés a measurement of velocity
based on mechanical principles. It works without the need of neither@n external source of energy like
electricity nor digital post processing of data. It thus equips most airCrafts,and boats providing an
independent velocity measurement to rely under any circumstances up to the.case of failure of electric
support.

It is worth to underline that the pressure difference in equation (6.10) can be rewritten as a difference
of static head Ah, such that Ap = yAh. If the two chambers were connected to _fluid-filled vertical
ducts, the internal chamber would show a level of the free surface that is Ah higher'thanthe external
chamber. Such difference corresponds to the additional pressure imputable to the kinetic energy

v=,/2gAh. (6.11)

As a raw example, consider a boat travelling at a speed v. Immerge a small tube vertically and curve
its lower end such that its entrance faces the flow (at sufficient distance to assume the flow
undisturbed by the presence of the boat). Such a tube plays the role of the internal chamber of a raw
Pitot tube, the fluid therein will rise of a height Ah above the free surface of the surrounding fluid
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that represents the static head. Measurement of the Ah in the curved tube and equation (6.11) allow
evaluating the boat velocity though a purely mechanical balance.

The Pitot tube represents the archetype of velocity and pressure measurements used in clinical
practice through catheterization. Typically, clinical hemodynamic catheters are used inside the heart
chambers or in large vessels and present side opening to measure pressure and possibly front opening
to measure velocities.

In cardiovascular pulsatile flows, the simplified, stationary form of the Bernoulli balance can be used
during those time instants when the time derivative of velocity is zero. In particular, it is commonly
employed at the peak,of the pulsation to compute the pressure drop across cardiac valves.

With reference to“Figare 6.3 (left), consider the blood flow ejected across the aortic valve during
systole. Select a portion of streamline crossing the valve, take the first point inside the ventricle and
the second point at the.exit of the valve. The same approach can be used for flow across the mitral
valve (Figure 6.3, right),<The velocity is at its maximum during the pulsation and the time derivative
is approximately zero, thusBernoulli balance (6.4) reads

Figure 6.3. Flow across the aortic valve (left) or mitral valve (right)

Neglecting the upstream velocity (square) inside the chamber with respect to the'velocity at the exit
of the valvular tips the pressure drop Ap = p; —p, across the valve can be expressedqas a function of
the valvular velocity v = v, as

UZ

The velocity at the exit of the valve can be measured with relative ease, for example with Doppler
ultrasound, and allows having an estimate of the transvalvular pressure drop. Formula (6.12) is
dimensionally consistent; for example, when the valve velocity is measured in m/s and density in
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Kg/m?® then pressure is given in Pascal. In clinical practice, it is very common to express this balance
in a simplified form, with pressure drop measured in mmug and velocity in m/s. Transformation from
Pascal to mmpg requires a factor 133Pa/mmug, and using density p=1050Kg/m? then

2 ~ 4 2

. 1050
Pimmugl = 133 % 2 1% = * VY-

The simple“formula Ap = 4v? often called the simplified Bernoulli formula (which we remark is
valid only. when pressure is measured in mmug and velocity in m/s) is widely used in clinical
cardiology to‘estimate transvalvular pressure gradients. Given its frequent use, it must be kept in mind
that it was obtained-under the hypotheses of the Bernoulli balance (ideal flow), with the additional
assumptions that the upstream velocity is negligible and it is valid at the instant of maximum velocity.

The pressure drop‘evaluated at the instant of maximum velocity (6.12) is not necessarily the
maximum pressure dropsduring the period of systolic outflow across the aortic valve (or diastolic
inflow through the mitralwalve). At a generic instant the time derivative cannot be neglected and the
complete Bernoulli balance/{(6.4) applies

2

1 v
Ap=p1—pz=§p(v%—v12)+pf§-ds;

1
which can be rewritten

vy,
ot

where L, is the distance traveled between the two points and v, is the velocity averaged along that
path. Under the assumption that the upstream*velocity.is negligible, v; < v, = v, and that the

average velocity is approximately v,, = %v, then we«€an approximate the unsteady pressure drop by

1 2 2
APZEP(VZ —vi)+p Liz;

p vy, p POV
Ap =2 L, =cv? +=—1L,,. 6.13
P=gVi P e =V B G e (6.13)

The first term is the pressure drop due to transformation of pressure into kinetic energy, the second
is the energy stored into inertia. Typically, the two terms are ‘comparable in magnitude and present
different time phase. The former is in phase with velocity and.dominates about the instants of
maximum velocity; the latter is in quadrature of velocity™ and dominates during the
acceleration/deceleration periods.

6.2. Bernoulli balance with dissipation: localized energy losses.

Among the hypotheses of the Bernoulli balance, the one that can be unrealistic under several
conditions is the assumption of ideal fluid. Real fluids are not ideal and some“form of viscous
dissipation is always present.

In general, when the flow in a vessel passes across a reduction of area (like a valve or a vessel
narrowing like a stenosis) the flow accelerates across the reduced section and decelerates afterwards.
Thus, potential energy (pressure) transforms into Kinetic energy at the constriction where pressure
reaches smaller values, then the kinetic energy transforms back into pressure at the expansion.
However, also a net loss of energy occurs along this short track. Consider for example a straight duct
with a reduction of diameter during a brief portion of its length. After the constriction, velocity (and
kinetic energy) returns to the value it had before the constraint as dictated by mass conservation;
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however, pressure does not get back to its initial value and displays a net reduction. This reduction is
due to the energy lost for friction along the short tract presenting narrowing and expansion. We
consider these as localized energy losses, because they occur in consequence of a local disturbance
to the flow.

In general, dealing with friction requires the use of Navier-Stokes equation that introduces several
complexities#in the analysis. However, it is sometimes feasible to extend the formulation of the
Bernoulli'balance (6.4) by simply adding an extra term testifying the presence of energy dissipation

p1+p2—p2+p +pf—ds+AE (6.14)

including an explicit tegm AE accounting for the amount of energy lost traveling from point 1 to point
2. Equation (6.14) maintains the same form of the Bernoulli balance although it contains an additional
term that is in principle.unknown. However, under some circumstances the pressure loss can be
expressed in simple form as/@ percentage of the available kinetic energy. In that case, the generalized
balance (6.14) can be used inthe same way as the normal Bernoulli balance.

An exemplary case where the energy losses can be evaluated with relative ease is the case of a sudden
expansion and rigid walls as sketcheddn Figure 6.4.

A i U i
A, Uﬂ ip A, 2»;
1 I
| 2

X

Figure 6.4. Sketch for evaluating energy loss in a sudden expansion

To this aim, the balance of momentum
L, + M, =1II,;

should be written for the cylindrical volume of cross-area A, and length L, indicatedwvith dashed line
in Figure 6.4, starting adjacent to the expansion and ending in a far-enough downstreamsection where
the flow can be assumed to be returned to unidirectional.

The inertial term is

apvx du,

The flux of momentum occurs across the open part, of size A,, of the upstream section and across the
entire downstream section of area A,

Bio Fluid Dynamics (Lecture Notes for Students)



Conservation of Energy (Bernoulli Balance) Page 70

M, = —pUfA; + pU3A;;
assuming that the velocity is approximately uniform over both cross-sections (8 = 1).

The pressure term pushes upwards on the downstream surface of area A, where pressure is p,; it also
pushes, downward, on the entire upstream surface of area again equal to A,, here pressure is equal to
p, on the open part and it remains approximately constant on the closed part where flow is about
stagnatingythus the law of static applies

[y = p14; —p24; .
Summing up these.three terms and dividing by A> we obtain

du,

A,
P1=P2 =P L— pUlA—2+pUz- (6.15)

The balance (6.14) can-be rewritten making the dissipation term explicit

v? v2 617
BE=p{—potp——p—p |5 ds; (6.16)

1
then, assuming the flow sufficiently uniform we can exchange velocity and cross-section average

velocity and rewrite (6.16)

0z uz v,
DAE =py—pytfp = Py —p—oL. (6.17)

Now substitute the pressure difference (6.15)«int0+(6.17) to get

Uz U? Ay
AE = p7+p2<1—2A—2)

that can be rewritten in terms of one velocity only

ANt UE U A
0 = (1-3) 5 =m0 "—(172)' (618)
Equation (6.18) describes the loss of energy (per unit volume) in a sharp enlargement. It tells that
energy losses are given by a fraction n of the incoming kinetieenergy, while the remainder is
transformed into potential energy (i.e. pressure). The entity of such fraction depends on the degree of
the expansion. In the limit case of very large expansion, A, > A,, then p#=\1 ,.the incoming Kinetic
energy is unable to significantly affect the very wide downstream reservoirsand the entire incoming
kinetic energy is lost.

The result (6.18) is very instructive because it teaches that localized energy losses ¢an be in general
expresses as a fraction of the available kinetic energy
UZ
AE = np (6.19)

where the dimensionless dissipation coefficient  depends from the degree of disturbance created on
the streaming flow. In most cases, the dissipation coefficient cannot be easily expressed by mean of
explicit formulas like (6.18). However, its numerical value was determined experimentally in
numerous situations of practical interests and can be often found in literature.
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C. FUNDAMENTALS FOR MOSTLY UNIDIRECTIONAL FLOW

7. Unidirectional Flow in Rectilinear Vessels

7.1. Boundary layer

Viscosity is the unique property associated with the development of friction and to energy dissipation
in fluids«governed by the Navier-Stokes equation; particularly, in the vicinity of solid walls in
association, to_the phenomenon of viscous adherence. In order to understand the role of viscosity in
more depth, let'us analyze the details of the flow near the boundary in the simple case of perfectly
flat, rigid wall aligned with the flow. This configuration is specifically designed to explore the role
viscosity because.in absence of adherence the flow would be slip over the wall without resistance and
would be unaffected by.the presence of the wall.

Consider the flow directed along the x-direction of a Cartesian set of coordinates, with the wall set at
y = 0, and neglect the velocity-and its variation along the transversal z-component (two-dimensional
flow). The stream-wise component of the Navier-Stokes equation for this case is

0V, 0V, v, 1dp 0%v, 0%v,
ot o YWy T Toax T Va2 Ty )

We have seen that the kinematic viscgsity in front of the last term is a small number. Therefore, the
viscous term is often negligible locally-==However, viscosity has a fundamental role the proximity of
solid boundaries because it is associated tosthe boundary condition of adherence, which applies
irrespective of the value of viscosity. As a result, viscosity unavoidably affects the flow near a solid
boundary (because of adherence) while its influence is expected to become progressively smaller
moving away from it. In other terms, there is always a region next to the wall boundary, which is
called boundary layer, where the role of viscosity is upavoidably important. As a possible definition,
in mathematical terms, the boundary layer is the region'next to the boundary where the entity of the
viscous term in the Navier-Stokes equation is comparableswith other terms.

(7.1)

U

external flow external flow

B e . V£
y ""‘—__, .'." (5(X)
__--F > boundary layer L

PEg i boundary layer

Y yYyYvyYvyYvyYvyvrvyvyvyvyvvyyvyy

Figure 7.1. Boundary layer development on a flat plate.

Consider a uniform unidirectional flow, with velocity equal to U at every point, that encounters a
plane surface of negligible thickness. As shown in Figure 7.1, when the incoming uniform profile
gets in contact with the surface the velocity at the surface goes to zero because of adherence. As the
fluid travels downstream, the slower fluid elements close to the boundary decelerate those
immediately above thus extending the influence of adherence for a thickness of fluid over the surface.
This process continues and the thickness influenced by the viscous adherence increases downstream.
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Roughly speaking, the flow field can be divided in an external flow, not reached by the influence of
adherence, and a boundary layer that is directly affected by viscosity.

The thickness of the boundary layer is indicated with §(x) and it increases downstream. The upper
limit of the boundary layer is not identified by a definite edge because the influence of viscosity
decreases progressively with height. Nevertheless, the order of magnitude of §(x) can be obtained
by estimating the order of magnitude of the different terms in the Navier-Stokes equation (7.1) and
applyingithe definition that the thickness bounds the region where the viscous term is comparable
with the others:

Let us discussthesvarious terms in equation (7.1). First, the time derivative can be ignored because
the flow is steady. For estimating the magnitude of the second term, the longitudinal transport term,
at a point x, we candake.one velocity upstream, say at x = 0, that is equal to U and one downstream,
say at a distance 2x insidesthe boundary layer, which is a fraction of U, say kU. Here k is a number
smaller than 1, but still‘a fintte fraction of 1 and not infinitesimal (in order of magnitude arguments,
k is said to of the order of magnitude of 1). Thus, when the value of x is small, the velocity derivative
at x can be roughly estimatedvby the difference between velocity at 2x and at 0 divided by the
distance, while the velocity therein is’estimated as the mean value between the same quantities
vxavx~KU+U.KU—U~U_2; 7.2)
dx 2 2x X
where the symbol ~ stands for “of the order of magnitude of” and coefficients that are about the order
of unity are eventually left out.

When estimating the third term (the second transport term), the order of magnitude of the transversal
velocity, v, can be devised by the continuity equation that in 2D reads

Ove Oy _

dx  dy
The x-derivative can be estimated as above; the y-derivative from the unknown value v,,, minus the
zero value at the wall, divided by the boundary layer thickness. Thus (7.3) tells

0. (7.3)

u v,
—~2 7.4
~~> (7.4)

The velocity v, for the second transport term in (7.1) is taken by (7.4) and the y-derivative is
estimated by the velocity U outside the boundary layer, divided by the thickness &

_____ bl (7.5)

that turns out to be of the same order of the other transport term (7.2). Let us ignore for. the moment
the pressure term in (7.1), as the boundary layer develop even in absence of presSure‘gradient thus it
should not play a key role.

Following the same lines, the viscous terms is
0%v, 0%v, u U U
v axz + ayz ~V (ﬁ + ﬁ) ~V§ ; (76)

where we ignored the first term in parenthesis with respect to the second because we expect 6 to be
small, to be more precise it is assumed that § « x.
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In the boundary layer, the viscous term is of the same order of magnitude of the other terms. Equating
(7.6) with (7.2) or (7.5) we obtain
U U? _
VerT

and therefore the order of magnitude of the boundary layer thickness turns out to be

5~ \/% (7.7)

The estimate(Z.7) shows that the thickness of the boundary layer grows with the square root of the
downstream distance. The boundary layer is thin when viscosity is small and gets thinner when
velocity is higher."The exact coefficient that is in front of the square root of (7.7) depends on the
specific definition of boundary layer thickness. Some texts suggest setting the edge of the boundary
layer where velocity differs.of a predefined small percentage to the external velocity, others use the
velocity square (momentum)..ln any case, equation (7.7) has a general validity and the coefficient in
front varies from about 2 tQ 5;,depending on the exact definition of § and on the specific situation
under analysis.

Let us try to understand further the originof the boundary layer thickness. The mathematical structure
of the viscous term in the Navier<Stokes equation corresponds to a phenomenon of diffusion. It
represents the diffusion of a disturbance to velocity (set to zero by adherence) from the wall into the
bulk flow. Indeed, pure diffusion of a whatsoever field f(t,y) along the a direction, say y, is
described by the diffusion equation

9] ik

of _ 0%

ot 0y?
where D is the diffusion coefficient (in Navier-Stokes'corresponding to the kinematic viscosity).

(7.8)

The connection between diffusion and boundary layer development is immediate considering the dual
problem of what discussed above, that of a fluid initially.at rest over an infinite plate that is abruptly
set in motion with velocity U. In this case the origin of boundary“layer development occurs at an
initial time, say t = 0, and it is uniform in space; whereas in the previous example boundary layer
developed from a spatial position, x = 0, and did not change instime;

When the boundary layer is uniform along x and grows in time, the Navier-Stokes equation reads

0V, 0%v,
— =y 7.9
ot _ ay?’ (7.9)
that is exactly a diffusion equation like (7.8). This is a linear partial differential equation of parabolic
type that was largely investigated in the past. The solution to (7.9) with boundary condition v,.(0,t) =

U is the error function

U A 7.10
— _ 2\o(t) . .
v(y,t) =U - ). e ds ; (7.10)
with

o=+V2vt. (711)
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representing the width of the velocity profile which starts from U at the wall and decreases away from
the wall reaching v, = 0.005U at y = 2. The velocity profile (7.10) is shown in Figure 7.2, where
we defined the thickness of the boundary layer by

5(t) = 20 = 2V/2vt . (7.12)

10

0 V.0 v 0 )

Figure 7.2. Velocity (left) and shear stress (right) above a moving wall.

The same solution (7.10)-(7.11) can be reached.by the perspective of shear rate ‘Z—I;j‘. Consider that the

wall motion creates a difference in velocity,from the value at the wall equal to U to zero infinitely
above. This velocity difference is equal to the integral of the velocity gradient

U= | —Zdys 7.13
oy 8% (7.13)

that is produced by a wall shear stress due to adherence thatdis,t, = M% . When the wall sets in
y=0

motion, at t = 0, the shear stress at the wall is ideally infinite although its distribution 7(y) has a

finite integral (7.13). Then the walls shear stress progressively decreases in time to ensure the same

velocity difference while it diffuses away from the wall. The propagation of shear stress is again a

diffusion process ruled by the diffusion equation (7.8) for f = Z—Zf. The solution to (7.8) with the

constraint (7.13) is the well-known Gauss function
1( vy 2
e _ U 5ct)
dy a(t)
in association with the width a(t) given by (7.11). Then the solution (7.10) cansbe recovered by
integrating (7.14).

(7.14)

We have shown that the development of the viscous boundary layer is simply a phenomenon of
diffusion of shear from the wall with thickness given by (7.12). To complete the parallel between the
two cases, it is instructive to apply this physical interpretation to the original situation of a steady
flow over a plane wall leading to the expression (7.7). In that case, the spatial variation under steady
conditions can be transformed into the same diffusion problem by considering an observed moving
with velocity U. This observer starts at t = 0 from the edge of the plate where § = 0 and reaches at
time t the position x = Ut where the thickness is given by (7.7). Thus, the moving observer sees a
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boundary layer thickness that grows with time t = g with the same law given by (7.12) and the

coefficient in (7.7) is defined by
X
= —. 7.15
) 2/2vU (7.15)

The parallel between boundary layer development and viscous diffusion process is fundamental for
the physieal interpretation of adherence and of its influence in different conditions.

In a closed gonduit, the boundary layer cannot grow indefinitely, because its diffusive growth
eventually saturates.the available space. Therefore, in a vessel of diameter D, the boundary layer
terminates its growthiwhen § ~ D /2 at a position x = x. Inserting these values in formula (7.15) it
IS possible to estimate'the length of an entry region involved in boundary layer development in a duct
by

1 UD* Re
~— 2 =2Cp, 7.16
32 v 32 ' (7.18)

where Re = UV—D is the Reynolds number. The boundary layer grows as by (7.15) from the start of the

Xg

duct, at x = 0, to reach an approximately.steady thickness about x; afterwards, for x > x, the flow
can be assumed as fully developed (Spatially uniform) and it does not vary appreciably with the
distance x > xj.

These estimates are obtained under the assumption of steady flow and the unsteady case will be
considered later. For providing estimates in real arteries, let us assume that this approach is reliable
when applied to the time-averaged flow. In the Aorta, mean velocity is about 50 cm/s and diameter
about 3 cm; the entry flow length is over 100 diameters (a few meters), therefore the flow is never
fully developed. Vice versa, in small arteries the boundary:layer fills the entire vessel after less than
one diameter downstream the entrance.

U D %z /D
Aorta 50 cm/s 3cm 142 Never fully developed
mid-vessel 10 cm/s lcm 10 4 \
small-vessel 5 cm/s 2.5 mm 1 | Immediately fully developed

7.2. Steady Uniform Planar Flows

Navier-Stokes equation cannot be solved in general; however, a solutionscan be found under special
simple conditions that may present applied relevance. We present here the-analytical solution of the
Navier-Stokes equation for a few simple cases corresponding to steady (independence on time),
unidirectional (velocity vector has one non-zero component) and uniform=(indépendence on the
position along the flow). These initial examples will naturally lead to the important case of fluid
transported in a cylindrical vessel.

(1) Flow induced by a moving surface above a fixed wall (Couette flow)
With reference to Figure 7.3, consider two plane surfaces, placed at a distance d, with the upper
surface moving with constant velocity U relative to the fixed lower surface.
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U
W X

Figure 7.3. Elow induced by a moving wall.

Make the hypothesisthat the flow is unidirectional, v, = v, = 0; that flow is two-dimensional, thus
derivatives along z are neglected; that flow is in a steady state; thus, time derivatives are neglected,

and that flow is due to"the*wall motion only without pressure gradient Z—Z = 0. The assumption of
unidirectional flow implies, by the continuity equation, that the flow is also uniform

avx+6vy+6vz=0 R 6&=0

ox [0dys 0z 0x
The Navier-Stokes equation in the direction perpendicular to the direction of motion simply states
that pressure does not vary along y and z;/thus, pressure is constant everywhere. The only non-zero
unknown is the longitudinal component of velocity that is a function of the transversal position,
v, (y). With these assumptions, the Navier-Stokes equation in the direction of the flow (taken as the
x-direction) takes the extremely simple form

0%v,

557 = U (7.17)
that must be solved with boundary conditions due to adheregnce v, (0) = 0 and v,.(d) = U.
The solution is immediate to find
v () =V (7.18)

the velocity increases linearly from zero at the lower wall to the value.of the moving wall as shown
in Figure 7.3. The shear stress is constant

; (7.19)

as briefly shown in the section 1.2.

(i1) Flow between parallel walls.
Consider the flow induced by a pressure gradient between two plane walls, placedat a distance d.

Make the hypothesis that the flow is unidirectional, two-dimensional, and stationary=Following the
same argument used in the previous example, the continuity equation implies that the flow is also
uniform. When the flow is uniform and unidirectional, the Navier-Stokes equation in the transversal
tells that pressure does not vary transversal to the direction of motion and that the transport term is
identically zero in the direction of motion. Thus, Navier-Stokes becomes in the direction of motion
(taken as the x-direction) is
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10p  0%v,

l[—)a = V—ayz ; (720)

) = 0, where we have placed

that must be solved with boundary conditions due to adherence v, (i—%

the x-axis as located in the mid-line between the two walls.

In this case,the pressure gradient can be considered as the known quantity that forces the flow. For

simplicity, call it k = _%z_Z’ with the minus sign because pressure is higher upstream than

downstream to induce a positive velocity. The solution to (7.20), being x a constant, is immediate to
find and it gives the"parabolic profile

K [(d? 5
v (y) = Z(T -y > (7.21)

It is zero at both walls andshas a maximum value at the mid-line between the walls. The shear stress
corresponding to the parabolic profile (7.21) is linear

dv, dp

T T TPy = 5y (7.22)

taking its maximum value 7, = ipk% with opposite sign on the opposite walls.

7.3. Steady Uniform Flow in a Circular¢Vessel (Poiseuille Flow)

The previous flow fields were presented just, to_introduce the case of higher applied relevance of
steady uniform flow in a rectilinear vessel with €ircular cross-section. This case represents the
effective flow that establishes under steady conditions inimany actual vessels along the circulation. It
thus applies to veins, where flow is approximately steady, as well as to the time-average flow in some
arteries or in slowly varying unsteady flows (as explained later in this section).

With reference to Figure 7.4, make the hypothesis that the"flow is unidirectional, axially symmetric
(circular symmetry), and stationary. Thus, as we have seen above, the continuity states that the
velocity field is also uniform along the direction of the vessel, taken as the x direction. Pressure is
constant transversally to the direction of motion and the transport_term is identically zero in the
direction of motion. The unknown is the stream-wise velocity that varigs'on the cross-section v, (y, z).

Under these hypotheses, the Navier-Stokes equation simplifies to

1dp 0%v, 0%v,
Ea =V < ayz + aZZ . (723)

The additional assumption of axial symmetry means that the velocity does not vary along the

circumference at a given radial distance, and we may write v, (y, z) = v, (r) where'r'= |/ y? + z2.
The viscous term in (7.23) can thus be further simplified passing from Cartesian coordinates (x, y, z)
to cylindrical coordinates (x,r, @) and ignoring the dependence from the angular position & because
of the hypothesis of axial symmetry. For this simplification, the derivatives in Cartesian coordinates
y and z are transformed into derivative with respect to the radial coordinate r by
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o ard
dy dyor’
02 9 (oray\ _0*r d (or\* 9*
35~y \ayar) ~ a7 * (o) o7

where

or 'y 9 1 y
dy r’
The same canbe'written by analogy for the z-coordinate to give

0* 0% [(9fr 9'r\9 (6r)2+(6r>2 0> 10 o _16( a)
dy?  9z2 T\@y?  0z%)or dy 9z) |arz " ror " orz _ror\ or)

In cylindrical, axially symmetric coordinates, equation (7.23) can thus be rewritten as

10p 10/ dv,

e ok (7.24)
Equation (7.24) can be solved forthe unknown velocity profile v, (), in correspondence to a given
pressure gradient that represent the driving force to the flow, k = — %g—z.

Figure 7.4. Coordinates and flow in a circular vessel.

The adherence boundary condition in this case is v, (R) = 0, and'we notice that, differently from the
case between two walls discussed above, there is only one boundaryseondition for the second order
differential equation (7.24). This is a common consequence of the‘transformation from Cartesian to
cylindrical coordinates because the other boundary at » = 0 is not a physical boundary, it is rather a

singular point for the presence of the factor % arising in the coordinate transformation. Here a
regularity condition |v,(0)| < oo must be applied and it takes the place of+the second boundary
condition.

Rewrite (7.24) as

kK 0 ( avx)
v Tar\"ar )’
and integrate over r
K av
2 X
——r =r——+A4,
2vr r d

where A is an integration constant, thus
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Integrate again over r and get

K
—Erz = v,(r) + Alog(r) + B;

where B is@nother integration constant. For the regularity condition A = 0, and using the boundary
condition‘at the wall, B = —ﬁRz.

The solution eventually is
K
ve(r) = = (R* =17); (7.25)

which corresponds to a paraboloid solid profile with maximum velocity at the center of the vessel
decreasing to zero at the wall‘as shown in Figure 7.5.

Figure 7.5. Velocity profile in a circular vessel.

The corresponding wall shear stress is

dv,

R Rdp

7o = T(R) TRl T TP T 2 (7.26)
which represents the friction exerted by the wall on the flowing fluid:
The flowing discharge can be computed by integration of (7.25)
_5 fR i = mKR*
Q= novxrr—B vl
and the average velocity
2
__Q _1xR% (7.27)
mR?2 8 v

Equation (7.27) is also important as it provides a relationship between the forcing pressure gradient
(the cause) and the resulting mean velocity (the effect). Using (7.27) the solution profile (7.25) can
be expressed in terms of the mean velocity instead of pressure gradient
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7‘2
v (r) =20 (1 - ﬁ)’ (7.28)
which also shows that the maximum velocity at the center of the duct, » = 0, is equal to 2U, twice
the mean velocity and the wall shear stress (7.26) can also be expressed as

U
Tg = —4‘u§ (729)

In this simple_situation, where the Navier-Stokes equation could be solved exactly, it is immediate
computing the mementum velocity-correction factor S that appeared in (5.7)

R
2 [ virdr 1 4
B = —fo u = 8[ (1—5?)2sds == (7.30)
0

TR2U2 3’

It is worth to remark that given a flow rate Q, the pressure loss per unit length increases with the
fourth power of the vessel diameter

1op 8vQ

“pox  mR*’

it is therefore natural to recognize that.the decrease of the vessel size is accompanied in the vascular
network by division of the vessel into~multiple smaller vessels each bringing a much smaller
discharges to avoid the development of unphysiologically increase of the wall shear stress in the
smaller downstream vessels.

The steady flow solution (7.25) or (7.28) is the result of a balance (7.24) between the force that move
the fluid due to the pressure gradient pushing over.the vessel area, mR? Z—Z, and the viscous friction at

the vessel wall that resists to the motion 2mRt,. In‘other terms, this flow is associated with a
continuous pressure loss due to viscous friction.

We have seen in the previous chapter that local energy dissipation represents a fraction of the
available kinetic energy. Here too, the distributed energy dissipation can be expresses proportional to
the available kinetic energy: energy dissipation per unit length is the pressure gradient (kKinetic energy
is constant) thus

dp pU?
T f(Re) e
where f is a dimensionless friction coefficient (the minus sign is introduced to have positive
quantities and a positive friction factor). This formula was previously introduced by dimensional
arguments in equation (1.14), where it was also shown that the friction coefficient must depend on
the Reynolds number, Re. In this case, where we have solved the dynamical equations, it is possible
to determine the exact expression of the function f(Re). Recasting the relationship (¥:27) obtained
from the flow solution, in the form (7.31), the friction factor for Poiseuille flow is
64

f(Re) = Re (7.32)

where the definition of the Reynolds number for this situation is

UD
Re = —

(7.31)

.
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Equation (7.32) shows that the smaller the Reynolds number and the higher are the energy losses due
to viscous friction; vice versa, when the Reynolds number is high, viscous losses decrease
progressively (asymptotically to zero when Re — o). The Reynolds number represents a
dimensionless ratio grading the relevance of viscous effects on the flow; therefore, it is of
fundamental importance for classifying the type of flow. It represents a ratio between the Kinetic
energy available to the flow and its ability to dissipate energy. The smaller the Reynolds number the
more the flow is a viscous smooth one, its energy is low with respect to the ability to dissipate. The
higher the,Reynolds number and the more vigorous and energetic the flow. We will see shortly that
when the Reynelds number is higher than a certain threshold the flow is so vigorous with respect to
its ability to dissipate that a simple viscous mechanism is insufficient to ensure a stable balance. In
that case, the Poiseuille flow is unstable and turbulence appears to increase viscous dissipation.

7.4. Oscillatory and Pulsatile Uniform Flow in a Circular Vessel

Blood motion in cardiovascular vessels, can be close to steady only in small capillaries and veins. In
large arteries, flow typically presents a pulsatile behavior, which can be seen as given by a mean
motion plus a fluctuation of comparable entity. Let us now move forward and consider the solutions
of unsteady flows, starting from simple cases and progressing toward more realistic ones.

(i) Sinusoidal Oscillatory flow
Consider the case of flow given by an‘oscillatory pressure gradient of the sinusoidal type
10

,E£ =K sin wt ; (7.33)

where the frequency w = 2?” and T is the period of the oscillation. Under the identical hypothesis used

for the Poiseuille flow and only removing the assumption‘ef steady flow, the unknown function is the
unsteady velocity v, (t, r) that obeys the Navier-Stokes.equation that in this case reduces to

v, 10 /ov,
T% | kesinot = v=—,( 7=y 7.34
3t + K sin wt vr6r<r 6r>’ (7.34)

with no-slip boundary condition at the wall, v, (t, R) = 0, and ‘regularity condition at » = 0. The
linearity of equation (7.34) tells that that the solution must be time periodic with the same frequency
w of the forcing (7.33) although possibly a different phase (a combination of sine and cosine, or —
more properly- an imaginary exponential). The solution of equation_(7.34) with its boundary
conditions can be obtained analytically as

e

v (t,7) = =—|1 — ———L]e'®t +c.c. (7.35)

2 =
I n(r52)

Formula (7.35) contains the function J,(x) that is the Bessel function of 1% typefof order 0; the
complex conjugate, c.c., is part of the solution included to ensure that the final quantity is real. For

example, the real sinusoidal function is written in terms of complex exponential sin wt = — % elwt 4
ée‘i‘*’t and can be expressed as sin wt = —%e"“’t + c. ¢. The denominator in solution (7.35) is just a
constant to ensure satisfying the boundary condition at » = R. The amplitude of the oscillation is

Bio Fluid Dynamics (Lecture Notes for Students)



Unidirectional Flow in Rectilinear Vessels Page 82

given by the ratio % it is higher for high pressure gradient and for slow oscillations. The term in
square bracket is a complex number that modifies the phase of the flow along the radial coordinate r.

To better understand this result, solution (7.35) can be preferably expressed in terms of dimensionless

parameters as
T —im
Jo <§W 2 ) izt

v (t,r) = —|1— e"“"T +c.c.; (7.36)

2w i
Jo (W %)

where the dimensionless coefficient

w 2 D
W=R|—==—; (7.37)
VT AT

is the Womersley number that gives a measure of the degree of unsteadiness of the oscillation.

w=1 =3 W= m

Figure 7.6. Oscillatory velocity profile in a circular vesselat different Womersley number.

The Womersley number can be interpreted as the ratio between the vessel diameter and a measure of
the thickness of the boundary layer that develops during the period T of the oscillation. Indeed we
have seen before that the thickness of a boundary layer reaches in agime ¢ a value proportional vvt;
in this case the boundary layer is allowed to grow for a time proportienal to T; therefore the

denominator of (7.37), v/vT, is a measure of the maximum thickness thatthedoundary layer can reach
during the oscillation. Velocity profiles at different values of the Womersley, number are shown in
Figure 7.6. When W is small, the oscillation is slow, the boundary layer has the time to fill the entire
vessel and the flow is a sequence of velocity profiles close to the Poiseuille type that'is in phase with
the pressure gradient because of the linear relationship between velocity and pressure gradient in
Poiseuille solution. On the opposite end, when W is large, the oscillation is rapid, the viscous
adherence has not enough time to affect the internal regions of the wall. The viscous boundary layer
is limited to a thin region near the wall while the center of the vessel moves nearly as a flat profile
with marginal influence of viscosity. The viscous layer near the wall is in phase with the external
forcing and gets progressively out of phase away from the wall because pressure gradient here
balances with velocity time derivative rather than velocity itself.
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In mathematical terms, for large W, or sufficiently away from the wall out of the viscous layer, the
velocity is not influenced by viscosity and the solution can be obtained neglecting the viscous term
in equation (7.34), resulting in the asymptotic solution

K K iwt
v (t,r) = - cos wt = o€ +c.c. (7.38)

which corresponds to the limit of solution (7.36) when the ratio between Bessel function tends to
zero. In the opposite condition, when W is very small, or very close to the wall, the inertial term in
(7.34) is negligible with respect to the viscous term and the asymptotic solution is given by (7.25)
that can be recast'using the forcing (7.33) to give

1% r?\ Koim_ 2\ o
vx(t,r)=—Z§W 1_ﬁ 51nwt=%§W 1—ﬁ e + c.c. (7.39)

that matches with the limit of solution (7.36).

(ii) Pulsatile flows

The oscillatory solution deseribe above is useful to understand the main phenomena entering into
play in general time-period flow. Indeed, flow in cardiovascular vessels is usually pulsatile: unsteady,
periodic in time, with non-zero timezaverage velocity. In a straight vessel, pulsatile flow is obtained
by a combination of steady flow and a.series of sinusoidal oscillations. Under the hypothesis of
unidirectional flow, the transport term/in the Navier-Stokes equation is absent and equations are linear
(see (7.24) and (7.34)). Therefore, the solution corresponding to an arbitrary time-periodic pressure
gradient

1 ap i27m£
b ox = —Ko t Z Kpe T (7.40)
n
or an arbitrary mean velocity
. t
U(t) = Uy + z Upe ™7 4 (7.41)
n

can be obtained by appropriate linear combination of solution(7.25) and (7.35), or (7.28) and (7.36).

A Reynolds number can also be introduced for the pulsatile flows as'Re = l:/—D, using a velocity scale

that can be the mean value or the amplitude of the oscillation, that tells hew intense is the bulk flow
with respect to the ability of viscous dissipation.

In unsteady periodic flows, it is sometime useful to introduce another dimensionless number, the
Strouhal number (see also equation (1.16)), defined as

D w2 _
T UT  Re’
The Strouhal number represents a dimensionless frequency of the oscillation. It can be appreciated
that the length travelled by particles during an oscillation is proportional to UT; therefore, the Strouhal
number can be seen as the ratio between the diameter and a measure of the distance travelled by
particles during a period. For high St, the oscillations are rapid and fluid particles oscillate for length
smaller than the diameter; low St means that particles travel several diameters during each oscillation.

St (7.42)

The solutions for pulsatile flow are then given by a Poiseuille parabolic flow made with the mean
velocity plus the individual solutions of sinusoidal flows (like those in Figure 7.6). Examples of
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pulsatile flows solutions, given by a mean flow and a single sinusoidal oscillation of amplitude equal
to the mean flow, are shown in Figure 7.7 for a same average velocity and different values of the
Womersley number. For low values of W the velocity profile is a sequence of Poiseuille solutions
evaluated with the instantaneous values of the mean velocity; on the opposite end, as W increases,
the solution presents an inversion of the boundary layer flow in the annulus near the wall.

W=3 W=20

Figure 7.7. Pulsatile velocity profile in a circular vessel at different Womersley numbers.

To give an idea of the order of magnitude for these dimensionless numbers in the circulation, the
following table provide indications of typicalwalues in main vessels. It shows that flow is effectively
unsteady in major arteries of clinical interestswhile it becomes well described by the Poiseuille
solution in smaller vessels as well as in veins.

U [cm/s] D [cm] Re w St

Aorta 100 3 10000 20 0.04

Middle arteries 30 1 1000 5 0.05
Small arteries 5 0.2 30 1 0.05
Arterioles 0.1 <0.1 <0.5 <0.5 ~1
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8. Elements of Turbulent Flow

8.1. Introduction to Turbulence

We briefly anticipated that the Reynolds number represents the ratio between the available kinetic
energy that corresponds to the thrust of the flow Ap~pU?, and the viscous stress that represents the

ability to dissipate kinetic energy by regular friction T~u % When the Reynolds number exceeds a

certain threshold, the kinetic energy can be excessively high, or the ability to dissipate can be
insufficient, @nd the regular motion is unable to reach a balance between incoming energy and
dissipation. In=that=case the regular flow solution, called “laminar flow” because assumes fluid
streaming across parallel laminae, is unstable and the fluid develops turbulent swirling motion to
dissipate the excess«energy. This point was analyzed systematically for the first time in the famous
experiment performed by Osborne Reynolds (back in 1883) describing the transition from laminar to
turbulent flow in a circularpipe under steady and uniform conditions.

In that experiment, water was allowed to flow in a glass-walled (transparent) pipe and a small amount
of dye was released continuously at the center of the pipe near the inlet. When fluid velocity was
small enough, dye trajectory was rectilinear. This type of motion was said to be laminar; fluid motion
is unidirectional and uniform in agreement with the hypothesis used for the Poiseuille solution; thus,
the velocity field was described by selution (7.25). When velocity approaches a certain critical
threshold, the dye trajectories started to display a slightly wavy pattern indicating that the flow was
not perfectly laminar. As velocity further increased above a critical value, the dye rapidly mixes and
spreads filling the entire pipe. This type of flow was said “turbulent”; velocities are irregular in space
and in time with an apparently random behavior.

Application of dimensional analysis to such an=experiment tells that any kinematic flow property
(like, for example, the amplitude of turbulent fluctuations) must depend on the size of the circular
pipe, measured by its diameter D, by the intensity of the flow, given by the mean velocity U, and by
the properties of the flow, which in Newtonian flow aresSummarized by the kinematic viscosity v.
There were no other parameters that could be varied in the experiment. These are 3 parameters that
are based on 2 dimensional units (length and time); from dimensional analysis any properly
normalized dimensionless quantity can depends on a single dimensionless parameter constructed
using such 3 dimensional parameters. The dimensionless parameéters the Reynolds number (this is

where the name comes from) Re = UV—D. When the Reynolds number is'below a critical value Re,, the

flow is laminar, when it is above the critical value the flow is turbulent. Fhe,transition from laminar
to turbulence occurs over a small interval about Re.,. = 2500, although.the‘exact figure depends on
the degree of disturbance that are present in the experiment.

The same concept applies to other types of flow. For most flow arrangements 1t4S possible to build a
Reynolds number with an appropriate velocity scale U and an appropriate lengthsscale’L, e.g. Re =

UL . . . . .
— such that flow is laminar when the Reynolds number is below a critical level, whose'precise value

depends the specific arrangement, and becomes turbulence when it exceeds it. Forsflow behind a
cylindrical obstacle, these scales are evidently the upstream velocity and the cylinder diameter. In a
steady boundary layer developing over a flat plates, as discusses in section 7.1, the only external
length scale available is the distance from the origin of the plate x, thus the effective Reynolds number

therein, Re = % grows downstream and indicates that the laminar boundary layer remains stable
only up to a certain distance from its origin and it becomes turbulent afterward.
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For many decades, the physical origin of turbulence was unclear. The laminar Poiseuille flow is a
solution of the Navier-Stokes equation, thus, the observation that this solution does not realize may
rise doubts on the validity of those equations for describing fluid motion in general. However, this is
not the case. The Navier-Stokes equation is a nonlinear equation; as such, it has not necessarily a
unique solution and can admit multiple solutions to the same problem. In the case of pipe flow there
is one laminar solution, that is steady uniform and unidirectional, and there are infinitely other
unsteady and irregular turbulent solutions. When the Reynolds number is small enough, the viscous
friction isylarge enough to damp the turbulent solution; thus, any irregularities will decay and the
solution conyverges toward the laminar solution that is the only stable and physically realizable
solution. Vicewversa;, when the Reynolds number is larger, the laminar solution becomes unstable
because the flow has an.excess of energy that cannot be dissipated through the simple linear friction,
thus this solution dees net realize physically. Any small disturbance to that solution tends to move
the flow away from it{whereas turbulent regime is a stable and realizable configuration. The selection
of one or another of the many possible turbulent solutions depends on the details of the initial and
boundary conditions. The selution can also jump from one turbulent solution to another when
disturbed by small perturbations'that are unavoidably present in physical systems.

The point that deterministic equations/like Navier-Stokes can give rise to apparently random solutions
has been debated for years in the last decades; however, it was recognized that even much simpler
deterministic nonlinear equations ‘could=present analogous behavior. This was described as the
concept of deterministic “chaos” where the selution of deterministic equations produce apparently
random behaviors. Probably the simplest.equation exhibiting such behavior is a difference equation
(where time-derivative is replaced by a difference between discrete time instants) with no spatial
dependence. Thus consider the variable wu;, Withazalues in the open interval 0 < u;, < 1, where k is
the discrete time variable, obeying the following evolution equation

Upyr = A (1 — w) 3 (8.1)

and A is a parameter that plays a role analogous to the Reynolds number for this abstract evolution
equation. Equation (8.1) has a steady solution, immediately found by setting u,,; = u, , which is

U = '1/1;1 (the other solution u;,, = 0 is out of the interval of defipition). Until 1 < 3 this solution is

stable, any initial condition eventually converges to the steady solution. When A increases the steady
solution becomes unstable, the system becomes unsteady, for small increases of A the solution jumps
alternatively between two values, as A increases a little further thessolution jumps between more
values, until for 1 = 4 the solution oscillates randomly over the entirednterval (0,1). It is important
to underlined that equation (8.1) is deterministic (as the Navier-Stoke gquatioh is); therefore, once
the initial condition is set then the associate solution follows univocally, while.different realizations
are the result of setting different initial conditions. It should be remarked, however, that the solution
at a certain time Kk is extremely sensitive to the value used as initial condition; extremely close initial
conditions rapidly diverge and after a transient period give rise to macroscopically.different solution.
Initial differences can be limited to a far decimal digit, or the last significant digit in=a numerical
calculation, the smaller the difference the longer the transient, eventually the solutions diverge
exponentially and become uncorrelated. This behavior is known as “Sensitivity to Initial Conditions”
(SIC). Indeed, the smooth dependence of solution on initial/boundary conditions (that solutions
relative to nearby conditions produce nearby solutions) is generally valid for linear systems only and
does not necessarily applies to nonlinear systems.

This behavior also applies to the Navier-Stokes equation, with the additional complexity that
irregularities occur both over time and over the three spatial dimensions. This means that any small
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difference on initial or on boundary conditions can give rise to different turbulent solutions.
Moreover, any small external perturbation is analogous to small changes to the initial condition for
the following evolution and may drive the system across different turbulent solutions.

This means that an experiment about fluid turbulence performed under identical conditions produces
different solutions because a laboratory cannot reproduce conditions that are exactly identical to
arbitrary accuracy. This is a fundamental conceptual problem that cannot be solved in principle, and
in practice with numerical computation methods as well, because the boundary or initial conditions
can be knownwith a finite accuracy only and such small uncertainty reflects to large differences in
the solution. Moreover, numerical calculus uses a finite accuracy, that may be even different between
different computers, and it can happen that numerical solutions of the same determinist equations
produce differentresults when performed on different computers/compilers. As a result, when talking
about turbulent flows.one cannot focus on an individual realization of that field, that is just one
solution among infinite.many others equally possible, and should rather pay attention to the main
properties that are commeon to all turbulent realizations of that flow.

Physically, turbulence enhances'energy dissipation and therefore it is normally a threat of excessive
energy consumption in the vascular girculation. Another property is the unpredictability of its chaotic
fluctuations that makes turbulentflows difficult to control, model, and manage. On the other side,
turbulence has several positive implieations; first of all, it makes life possible by enhancing mixing
and diffusion. While viscous diffusion is an extremely efficient mechanism to distribute substances
at very small scales, turbulent dispersion dominates mixing at larger scales. For example, viscous
diffusion length, that grows proportionally to®/ve, in water takes a few hundredth of a second to reach
one millimeter, a few second for one centimeter; and over one hour for one meter. On the contrary, it
is in everyone’s experience that accelerated turbulent dispersion dominates the mixing and heat
propagation at scales larger than, typically, a“few millimeters. It is evident how turbulence is
ubiquitous in nature and how it ensures the mixing that is experienced in everyday life.

8.2. Average fields and Reynolds Equations

Turbulent flows are complex and irreproducible; nevertheless, the"different realizations of turbulent
flows under similar conditions present common characteristic, like the' mean velocity or the amplitude
of fluctuations. These properties are also those that present a ‘practical interest. The most common
strategy to tackle the problem of turbulence relies on statistical methods, searching for a description
of the average motion (responsible for transport) and of the statistical properties of turbulent
fluctuations (responsible for dispersion). This is such a common practiceithat the study of turbulence
is often considered that of statistical fluid mechanics.

Indicating with an overbar the averaging operator, a turbulent function, e.g:.the‘velocity field v, can
be expresses as the sum of its average value v and the fluctuation v’

v(t,x) =v(t,x) +v'(t,x). (8.2)
which implies that v’ = 0.

There are several different ways for defining an average operator in turbulence, from spatial to time
to filtering, with different filtering functions acting over a finite region of space and/or time. Before
choosing a specific averaging operator among the infinite possibilities, it is important to define the
properties that it must satisfy. In the classical approach to turbulence, the Reynolds average operator
is used, which restricts the choice to those operators that satisfy the Reynolds rules. These comprise
the linearity conditions that given two fields u and v and two constants a and b
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au+ bv = aii + bv ; (8.3)
the commutation with time or space derivative
v_ov  ov_0v. (8.4)
at dt  Jx Ox
and the invariance
v = uv - (8.5)
that can be intuitively understood considering that the average term behaves like a constant with

respect to the averaging operation because it does not vary within the (space or time) domain over
which the averaging is performed.

Reynolds used the most straightforward approach to averaging, considering the time average over a
period T that defines the.duration of fluctuations due to turbulence under the assumption that the time
changes associated with the evolution average flow occur over much longer time scales

= 1 (%2 , ,
(L, x) =?fT v(t+t,x)dt ; (8.6)
2

We are now ready to write the equations foer the mean velocity applying the Reynolds average operator
to the continuity and the Navier-Stokes equations. Applying the mean operator to the continuity
equation and using (8.4) gives

Vo=Vep=0; (8.7)

which tells that the mean velocity is also a divergence-free field. By difference, it is immediate to
verify that also the fluctuating velocity field is divergence-free

Viv=V-@+v)=V-v+V-2"<=V-v =0. (8.8)
The same approach can be applied to the Navier-Stokes.equation. To make it simple, consider the x-

component of the equation written in a Cartesian system of coordinates, see equation (5.34), that
when averaged gives

avx p ”
5t —+v-Vy, = —;— +VvV*v (8.9)

where we used rules (8.3) and (8.4) to separate the terms and exchange derivative and averaging
operator. The second term in (8.9) is nonlinear and does not allow assimplification based on the
commutation and (8.4) between averages and derivatives. Let’s us look atthis.term in detail

v Vv, =
= @, +v) (xa:vx) + (9, +vy) 2T ) (U, +vx) L@, +v) o, +vx)
- vx%+5y%+ﬁz%+vxzvx+vyivx Z’a;;
+§xg_f+ﬁy%—?+ﬁz%+v;%+v§%—?‘+vz'a;z".

These terms can be simplified further by realizing that the average values can be taken out of the
average operator based on the invariance rule (8.5). Therefore, we can rewrite the last equality
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v Vv, =

_dv, _ 0D, ov, ,0v, ,0v, ,0v,
+ + v, —+v,—+v,—

Ve 0x Yy dy Vxox Ty dy Grr

v, v, _0v, -0D, -0D, - 0D,
+U ==+ Uy ——+ U, —+ + + :

Ve ox Ty TV, T Gy T ey T V2,
It is immediate to notice that the first term on the right-hand side is the transport equation written for
the mean‘velocity. The third and fourth terms (second line) are both zero because they contain the
mean of the fluctuating components that are zero by definition. Second terms can be simplified by
adding the average“of a null terms v, V- v’ that is zero because of (8.8); thus, the equality can be

rewritten

___v _ ,0v, v, 0v, ,0v, ,0v, Qv
'U'va= v-va+vxE+vyE+vZE+ —_— —_—
oV, v, av;v'y ov,v,
+ ;
dx dy 0z
where we used the product of derivatives in the last passage.

= vk, +

This result can be reinserted in the original equation (8.9) and rewritten in vector terms to better
highlight the new structure of the equation
ov

o 1 _ 1
E+v-Vv=—;Vp+vV2v—;V-']TR. (8.10)

where the last term is written using the symmetric Reynolds stress tensor defined by
ij=pﬂ@. (8.11)

Equation (8.10) is the Reynolds’ equation. It corresponds to the Navier-Stokes equation when
expressed in terms of mean velocity. The Reynolds equationddiffers from the Navier-Stokes equation
for the additional terms that contains the Reynolds stress. Interestingly, the Reynolds stress term has
exactly the same form of the stress tensor terms previously found in the Cauchy equation (5.29);
however, this equation is for the mean velocity, which is ‘not the physical velocity but only a
mathematical filter of it. The Reynolds stresses therefore are not realstresses experienced by physical
fluid elements, they are fictitious stresses that represent the influenceof the turbulent fluctuations on
the mean velocity. The Reynolds stress tensor accounts for the energy‘that.is lost by the mean flow
because it is transferred into the fluctuations.

The Reynolds equation produces simpler, smoother solutions because of the,enhanced dissipative
mechanism introduced by the Reynolds stresses, thus avoiding the contemporary presence of many
interleaving scales within the flow. This simplification is payed, on the other side, by the-fact that the
Reynolds equation is not closed: it includes 6 further unknowns, the Reynolds stresses,, that cannot
be obtained by the equation itself. The appearance of novel unknowns in the averaged equation is
what is known as the closure problem of turbulence. Either equations are complicated and unsolvable
(Navier-Stokes) o they are not closed (Reynolds) because they present additional unknown terms.

There are numerous models to provide a closure to the Reynolds equation by adding additional
equations for the terms (8.11). It must be remarked, however, that all such models are not obtained
from first conservation principles; thus, closure models are approximations, they can be non-accurate
in general and rely on numerous empirical coefficients. They are more reliable in canonical flows of
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practical relevance where extensive experimental and numerical studies permitted to establish reliable
models. In general, the closure problem is still open, although several advances have been performed
during last decades to allow numerical approximate solutions of turbulent flows.

8.3. Turbulent flow over a wall

A turbulentsflow of paramount applied interest is that flowing near a solid surface under the
hypothesis that the mean flow is steady and unidirectional. It cannot be solved exactly, as it was done
for laminar flows, because of the closure problem. Nevertheless, some result can be achieved by
properly combining all information available.

Consider a turbulent flow over a flat surface as sketched in Figure 8.1. Assume that the average flow
is steady and two-dimensional, thus derivatives of mean quantities along t and z, assumed the
transversal direction, (are_zero. Also assume that the mean flow is unidirectional, v, = , = 0. By
continuity we have the only unknown is the x-component of the mean velocity that can vary with the
distance y from the wall: v,((y).

The Reynolds equation along the transversal direction simply state that the mean pressure p is
constant transversal to the mean“flow, as can be immediately verified. The x-component of the
Reynolds equation

10p 0%v, d%*v,. 0%, oV, v, av;v'y v, v,
_E£+V<ax2 +6y2+622)_ ax oy oz’
simplifies with these assumptions to

0%, av;v;, ¢~ Taop

dy?2 0y “wpox.
Make the additional assumption that the mean pressure gradient is zero; such that the motion is driven
by the presence of a velocity away from the wall. However, it.can be demonstrated that the presence
of a mean pressure gradient, that is constant over y, would affect the value of velocity away from the
wall but without a direct influence on the profile of velocity. In thisSimple formulation the Reynolds
equation provides the following relationship

2 = N
0“0,  Ov,v,

v 52 " ay (8.12)
It is noticed that both terms in (8.12) present a derivative along y; after integration®we have
av, —
VE — Uy = constant ;
this constant has the dimension of a velocity square and it is commonly written as u?
vaai;—?vg,zuf; (8.13)

where u, is called the friction velocity whose physical meaning will be clear shortly.
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Equation (8.13) tells that there is a property of the turbulent wall flow, that we call the square of the
friction velocity, that is constant over the entire velocity profile, from the wall to above the wall.
Looking carefully to the two terms in (8.13) we can recognize that, when multiplied with the density

p, they represent the mean viscous stress T,,, = M%—? and the turbulent Reynolds stress TRy, =

—p?v&,, respectively. Therefore, equation (8.13) tells that the total shear stress, given by the sum of

viscous plus turbulent stresses, is constant over the turbulent profile; the former dominates close to

the wall, where turbulence stress reduces approaching is the wall where velocities are zero, while the

turbulent strgss dominates away from the wall where the influence of viscosity progressively

decreases, as'shown.in Figure 8.1. Equation (8.13) is valid also at the wall where turbulent stress is
zero because velocity and its fluctuations are zero and the viscous stress at the wall t, is

0, 5

Ty = 'DVW = pus . (8.14)

y=0

Equation (8.14) tells that thefriction velocity is given by

_ T
u*—\/;. (8.15)

Given the global picture, consider firstthe limiting situation very close to the wall. Here viscous stress
dominates and equation (8.13) can be approximated as

0D,
ay,

which can be integrated, with boundary conditionv, (0) = 0, to give the velocity profile very close
to the wall showing that velocity grows linearly from the wall

~ 1,2

v = Uy,

U, u

u, Vv
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Figure 8.1. Turbulent flow over a flat surface.
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Expression (8.16) indicates the existence of a viscous length scale, given by y, = ul at which distance

v, (y.) = u,, that provides the order of magnitude of the size of this inner layer dominated by viscous
stresses.

Far from the wall, at distances much larger than such length scale, y > y,, the turbulent stress
dominates over the viscous one. Equation (8.13) does not allows to solve the velocity profile in this
limit; nevertheless, we can confidently assume that the variations in the velocity profile (its y-
derivative), should not depend explicitly on viscosity. Thus, in first approximation, the velocity
gradient can/only  depend on the turbulent stress, which is estimated from (8.13) to depend on the
friction velocity, and,by the distance from the wall that is a length scale of the spatial amplitude of
turbulent fluctuation.*Functionally we can write

o =f(w.y). (8.17)

The relation (8.17) representsraphysical law and, even though the function f is unknown, is must be
dimensionally consistent. Dimensional analysis allows simplifying it in the following form
ov. 1u,
— = (8.18)
dy ky
where k is a constant that must be evaluated experimentally. This constant is known as the Von
Karman constant, it was estimated to take'thewvalue k = 0.4 in most turbulent wall flows. Integration
of (8.18) gives

i = (y ) - 8.19
Uy = T n XX (8.19)
where y, is the integration constant that is unknown because there is no boundary condition that can
be enforces given that this profile is not valid at"the*wall. The integration constant y, has the
dimension of a length and should be expressed proportional to the only existing length scale y,, and

can be written as y, = iul transferring the lack of knowledge from y, to the dimensionless constant

a. With this substitution, equation (8.19) is rewritten in a formsanalogous to (8.16) as

U, 1 u,
u—j = Eln (avy) ; (8.20)
where the coefficient a is unknown and should be evaluated experimentally for the different
situations. The solution (8.20), although obtained with several approximations and hypotheses, was
demonstrated to be a very good representation of real wall-bounded turbulentflows under numerous
different configurations, with or without pressure gradients, and in different'geometries. It is valid for
wind blowing over the sea or over a town, for water flowing in rivers as well as‘in cylindrical pipes.
A distinctive feature of profile (8.20), sketched in Figure 8.1, is its slow modulation-after an initial
steep region close to the wall. Therefore, the turbulent profiles are commonly very flat,in contrast
with the laminar parabolic profile.

The velocity profile in equation (8.20) is not an exact solution; it presents two dimensionless
coefficients, k and a that must be estimated experimentally, and the friction velocity u, that provides
the intensity of the actual flow. Friction velocity was defined by (8.15) and it is the only velocity scale
available in this context of generic flow without reference to conduits discharge or external velocities.
However, once the details of the flow are provided, the friction velocity can be obtained from
macroscopic measurable quantities. For example, in a conduit, the friction velocity can be related to
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the pressure gradient that induces the mean flow. To this aim, consider a steady and uniform turbulent
flow inside a vessel of constant cross-section, the global balance of momentum between two sections
has zero inertial and zero flux of momentum terms, it simply states a balance between the force due
to pressure difference and the resistance due to wall shear stress

Aadp
. 8.21
fo Cox '’ (8.21)

where C and A are the perimeter and the area of the vessel, respectively; equal to 7D and %Dz ina

circular vessel=0f diameter D. Use (8.15) and (8.21) to obtain the relationship between friction
velocity and pressuregradient,
wp_4 u? pU?
_r__ —g—""_ . 8.22
pPY =82 gp (8:22)
valid for a circular vessel only. This expression has a form identical to equation (7.31) when the

. L. . . .. u?
friction coefficient is given'as fi(Re) = 8?

The value of such a friction coeffieient can be estimated by pushing a little further the previous results
D as follows. The logarithmic profile is'valid for a large portion of the duct. Therefore, there must be
a certain distance from the wall y where the local velocity is equal to the average velocity U in the
duct. Express this distance as proportienalto the duct diameter y = a'D, with a’ an unknown
constant; we can write in formulas that a'value,a’ must exist such that v, (a'D) = U. Inserting this
condition in (8.20) gives

u 1 ( Ub u*> _

R AT

where b is the new unknown constant (b = aa’), Whichwas experimentally estimated in circular
vesselsto be b = 1.13.

(8.23)

Equation (8.23) can be rearranged to provide an expression for the friction coefficient that can be
rewritten as

% = k—\1/§1n (% Reﬁ) = 0.884In (2}%\/?) . (8.24)

which is an implicit expression for f(Re) in turbulent flow; whereas in lamipar, (Poiseuille) flow the
friction coefficient was evaluated in (7.32).

The previous evaluations permit to have initial estimates of pressure loss and velocity profile for the
simple case of steady, uniform turbulent flows. In unsteady and in spatiallysnon-uniform flows,
expressions for the wall shear stress and for the energy losses are not available in general. Few results
are in laminar flows (like those in section 7.4) and almost none in turbulent flows.
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9. Quasi Unidirectional Flow in Large Vessels

9.1. Mass Balance in Tapering and Branching Arteries

Tapered geometry, where the cross-sectional area decreases downstream, and branches, extracting
flow from the main vessel, are characteristic elements in many arteries. Let us verify what mass
balance tellsfabout these situations. Consider first a tapered vessel and assume the duct as non-
deformable. The discharge Q = UA is constant along the vessel, thus when area A decreases velocity
U must increasé following mass balance equation
dQ du dA
T =AU =0; (9.1)
from which the velacitysshould increase at a rate
du Q dA
=" >0 (9.2)
This result does not realize, physiologically because velocity must decrease when the vessel size
decreases to avoid excessive frictionshat would result from a relationship like (7.29).

Indeed, in real arteries the discharge deCreases downstream Z—i < 0 in virtue of the side branches. At

the same time, the velocity must decrease downstream Z—Z < 0 to avoid increase of friction; these
considerations give a relationship between area reduction and discharge reduction. Extract the
velocity gradient from mass balance (9.1) andisimpose that, differently from (9.2) it must be negative

d0_2lde @M. 03)

Condition (9.3) can be restated as

1dQ 1dA
TQdx TAdx’ 54

telling that the relative (percentage) reduction of discharge must be larger than the relative reduction
of area, otherwise velocity would increase downstream.

This argument becomes more immediate when applied to bifurcationss Consider a vessel with area
A, and discharge Q, = UyA,, Where U, is the velocity, that bifurcates intotwo equal daughter vessels,
each of area A; and discharge Q; = U;A,. Mass conservation tells

UOAO = 2U1A1, (95)
where, as discussed before, we want the condition that velocity reduces in smaller.vessels, U; < U,
when A; < A,. Using (9.5) this implies that

Uy 24,

U 4
Thus, although the individual daughter vessels reduce their size, the sum of their areas must increase.
Indeed, the total cross-sectional area increases downstream at every branching.

(9.6)

To get an idea of this geometric effect, consider the diameter of the Aorta, the first artery after the
heart, whose diameter is approximately 3 cm. The total cross-section of blood vessel at the root of
Aorta is approximately A,,,+, =~ 7 cm? where flow has a velocity about U,,,+q =~ 1 m/s, which
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corresponds to a discharge Q ~ 700 cm3/s. A similar discharge must cross the entire cross-section
of the vasculature at any level of branching. Consider that at the capillary level blood velocity is
smaller than 1 mm/s, this means that the total cross-section of capillary bed is close to 1 m?2. Thus,
the cross-sectional area increases over 1000 times during progressive branching.

9.2. Flow in/Curved Vessels

The motion of a fluid in a curved in curved vessel presents some differences with respect to the
laminar flown a'straight vessel (Poiseuille flow), because fluid particles cannot proceed by parallel
trajectories given‘that particles on the inner side of the bend would travel a shorter path than those on
the external sidef

INT EXT

Figure 9.1. Flow in a curved vessel.

From a dynamic perspective, fluid particles are subjected*to centrifugal acceleration, proportional to
the square of their local velocity and inversely proportional to the curvature of the trajectory, v?/R.
Particles on the internal side have smaller radius of curvatare and those near the center of the vessel
have a higher velocity. As a result, a pressure gradient developsytransversally to the main flow
direction pushing towards the external side across the center of the vessel. Then, for conservation of
mass, flow returns from the external side to the internal sidesalongthe walls. This gives rise to
circulatory patterns on planes transversal to the main flow, as sketched.n Figure 9.1, which are called
“secondary circulations”.

Flow in curved vessels always develops secondary circulations. These take the/form of two symmetric
circulating cells when the curvature is planar, when the system presents @ mirror symmetry relative
to the plane containing the curve. Most arteries, however, present a double curvature, mathematically
described as curvature and torsion like a portion of a helical duct. A helical curve cannot be contained
in a plane; it presents a radius of curvature on a plane and a torsion that depart from.that plane. For
example, a helix developing along the z direction can be described by its coordinates xy= R cos 9,
y = Rsind, z = ¢, along a generic parametric coordinate 9. When ¢ = 0, the curve/is planar and
can be approximated locally by a portion of a circumference of radius R (curvature % and no torsion).
When ¢ # 0 the curve cannot lay on a plane because it presents a torsion and can be approximated
locally by a helix with curvature Rzicz, and torsion Rzicz. In presence of a torsion, the symmetry of
the two cells is broken of an amount that depends on the degree of torsion. One secondary circulatory
cell becomes dominant and occupies the core of the vessel while the other is pushed close to the wall
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(see in Figure 9.2, left picture). Flow in real, doubly curved, arteries is thus composed of the main
streamwise motion plus a rotation, due to the dominance of one secondary circulation cell. The result
of such a combination is that fluid particles move downstream along helical trajectories. This is
remarkably noticeable in the aortic arch like that shows in Figure 9.2. Helical trajectories develop
also in many bifurcations, like the carotid and the iliac bifurcations.

The presence”of a non-planar curvature and the development of helical trajectories during blood
advancement is considered to have a physiological significance and represent a natural optimal flow
pattern in ‘several, respects. In particular, the presence of small degree of swirl gives rise to open
trajectories of bleod elements near the wall, which avoid development of closed stagnation regions
even in presence/©f local area enlargement/constriction or of lateral inflow/outflow. This corresponds
to a higher degree-of wash-out over the vessel endothelium reducing the risk of aggregation and of
development of arteriosclerosis.

Figure 9.2. Helical trajectories in the Aortic arch. Secondary flow from ‘numerical study and
associated sketch (left), measurement from magnetic resonance (right) (credit, right picture:
Oechtering et al. J Thorac Cardiovasc Surg 2020;159:798, with permission from Elsevier):

9.3. Flow in Elastic Vessels

Avrteries are elastic and deform in virtue of the pressure changes associated to the flowing blood inside
the vessel. In order to analyze the interaction between vessel elasticity and fluid flow let us first make
a premise with a very basic background of solid mechanics that is required to analyze how the
deformation occurs in presence of a change in pressure.
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Consider a vessel or diameter D and thickness s, assumed small, subjected to an increase of pressure
dp inside its lumen. Vessel deformation obeys the law of motion for the elastic material, which
simplifies into an equilibrium of forces given that the inertial and transport parts are usually
negligible. With reference to Figure 9.3, internal stresses into the tissue are indicated by = and they
are assumed constant over the thickness. The equilibrium equation for this case is

25 = dpD . (9.7)

Equilibrium (9.7) is evaluated in the undeformed configuration, thus assuming that deformations are
small (rigorously speaking, infinitesimal); indeed, arterial deformations are usually less than 10% and
this approximationsis acceptable in this context.

The equilibrium™“ef forces must be combined with the constitutive equation describing the solid
material and how internal stress develop when the tissue deforms. The constitutive equation, for an
elastic continuous material subjected to small one-dimensional deformations, is a linear relationship
between stress and straingdeformation), which in this case reads

dD

R 9.8
TED, (9.8)

where E is the Young modulus of elasticity that describes the elastic stiffness of the tissue.
Combination of (9.7) and (9.8) permits to.evaluate the change in vessel diameter, dD, in response to
an increase of pressure, dp,

i &R 9.9)
D 2Es
Then, mass conservation permits to evaluate the change of thickness, that for small thickness gives
ds _ _db 9.10)
S D
S
T\ Ap T

Figure 9.3. Deformation of an elastic vessel.

This elementary background on solid mechanics can be integrated with the equation of fluid flow in
a vessel to analyze interaction between fluid flow and elastic tissue. The foundation of the
phenomenon of wave propagation in elastic vessels is presented below.

Consider the equation of continuity (4.8) and of motion (5.17) for a vessel
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0A 0A ou
E + Ua—x + A a—x =0,
au ou 1dp
"V T pax T
In writing the second of (9.11) we made the additional assumption that friction is negligible, as it
does not alter/qualitatively the propagation phenomenon and would only produces an attenuation of
the propagating wave.

(9.11)

The additional relationship needed here is the coupling between vessel size, A, and fluid pressure, p.
Making the additienal assumption that the vessel has uniform properties along its axis, this
relationship does not‘vary along at different positions and can be expressed as A(p). The existence
of a relationship A(p) permits rewriting any derivative of the vessel area, in time or space, in term of
derivative of pressure

0A _dA ap
ox,t dpox,t’

(9.12)

. dA f . .
where the function - characterizes the vessel elastic response. For example, in the case of

infinitesimal deformation of the Tinearly‘elastic vessel discussed above, this function is obtained by
the relationship (9.9) that can be recast.as

dA J(AD

dp «Es '
Let us simplify further equations (9.11) ‘for” propagation phenomena assuming that the wave
propagation velocity, the celerity c, is much largerthan the physical fluid velocity, ¢ > U. This means

that the second (convective) term in both equations (9.44),can be neglected with respect to the first
(inertial) term; indeed, when changes in time are mainly_imputable to a phenomenon of propagation

then % ~ c:—x > U% . In this approximation, and using (9.12), the system (9.11) can be rewritten

(9.13)

1dAdp oU

Adpot Tox

du 10dp

ot Tpox
Now take the time derivative of the former and the space derivative of the'latter, and subtract the two
results; in doing so, make the additional assumption that the term %% is a property of the vessel that

0,
(9.14)

can be considered as slowly and little varying such that we can neglect its derivative. We obtain the
equation for pressure

- =0
Adp 0t? pdx?
This can be rewritten in canonical form as
9%p 9%p
_ 22 _0. 9.15
gz Caxz (519)

which is the well-known wave equation where
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c= éd_p = E ; (9.16)
p dA pD

is the celerity of the wave; the second equality in (9.16) is obtained using equation (9.13) and it is
valid in the limit case of infinitesimal deformation.

The generalsolution of the wave equation (9.15) is

p(t,x) =p(x £ct); (9.17)
which corresponds to a rigid propagation of the pressure fields without change of shape.

The previous analysis was outlined in terms of pressure; however, it can be replicated in terms of
velocity, subtracting the“derivative in space of the former equation in (9.14), multiplied by AZ—Z, and

the time derivative of'the latter, multiplied by p. This results in a wave equation identical to (9.15)
with velocity U in the place_of pressure p, whose solution is a rigid propagation described by an
arbitrary function U (x + ct)) dictated by the initial condition.

For reference, using the second equality (9.16) it is possible to estimate the celerity in Aorta, where
E ~ 10°N/m? and s/D ~ 0.1, between’3 to 5 m/s. Smaller vessels are relatively more rigid and
celerity increases to about 10 m/s in‘peripheral arteries. The celerity formula (9.16) is often used to
estimate the Young modulus of arteries, their stiffness, which is a pathological degeneration typical
of ageing. Celerity is measured by recording the pressure peak at different positions along the
vasculature and it is obtained by the distance between the measurement points divided by the time
difference between the passage of the wave:

The linear analysis of pressure pulse propagation/presented here is based on several assumptions. A
general nonlinear treatment is complicated and it is out.of the present scope. However, it is instructive
to mention how the approximations would affect the general solution (9.17).

First, the assumption of a fluid velocity much smaller“thanycelerity, which led to neglecting the
nonlinear term in (9.11), does not consider that the effective propagation velocity is U + ¢ and not
just c. This means that the propagation velocity is not constant'along the vessel, and the pressure
wave does not propagate rigidly. Considering that in the circulation pressure and the velocity waves
can be assumed as roughly in phase, the peaks of the pressure wave.move faster than its trough, which
gives rise to a sharpening of the front side of the pressure wave. Secondly, the celerity (9.16) is not a
constant number, it changes with the vessel size and it is inversely proportienal to the square root of
the diameter D in the approximation given by the second equality in (9.16)./Fhus, the propagation is
faster where the vessel is smaller and vice versa producing a further effect'whereby the wave changes
its shape during propagation. Ultimately, a non-zero friction would produce,the attenuation of the
wave that is smoothed out while propagating downstream.

9.4. Impulse Propagation at a Bifurcation

When a pressure wave reaches a bifurcation, it is partly transmitted downstream continuing the
propagation into the daughter vessels and it is partly reflected backwards (see Figure 9.4). Thus, at a
bifurcation there is a superposition between the incident wave (i) moving downward, the reflected
wave (r) propagating upward and the two transmitted waves (t1 and t2) downward.
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reflected

incident

Figure 9.4. Wavespropagation at a bifurcation.

In order to quantify this‘phenomenon, we can express the continuity of pressure at the junction, stating
that pressure takes the samewalues when seen from the position of the different vessels

Di t Dr= Peas Pi+DPr = Dr2; (9.18)
and the conservation of mass that'gives aselationship among discharges
Qi 70»= Q1 + Qr2 - (9.19)

Assuming that the incident pressure py#is_known, there are 3 unknown pressure values and two
equations (9.18) that put them in relation. Incorder to move forward we can consider the additional
equation (9.19), and verify is it can be restated/n terms of pressure. To this aim, we need to find a
relationship between pressure and discharge.

Consider a generic sinusoidal pressure wave p(x,t) = Fpei“’("‘“) and the corresponding velocity

wave U(x, t) = Fye'@®=; hoth are in the form (9:17)and represent a solution of the wave equation
(9.15). Substitution of these expression into any of the two equations (9.14) gives the relationship

Fy = %. This indicates that, at least in a simple wave, the discharge can be related to pressure through

_A 9.20
Q= Pl (9.20)
This relationship between flow and pressure is commonly expressed«as
P, _Prc.
0=, 2=, (9.21)

introducing the concept of impedance, Z, that is a characteristic of a vessel.
Introduction of (9.21) in (9.19) gives, with (9.18), a system of 3 equations

pi + Pr = Dt1»

Pi t Dr = P2,

Pi—Pr _Pu + Pt2
where the subscript 0 at the impedance stands for the parent vessel and the numbers 1 and 2 for the
two daughters. Substitution of the first equations into the third gives a single equation relating incident
and reflected waves

(9.22)
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pi_przpi+pr+pi+pr

Zo Zy Zy
This can be rewritten introducing the coefficient of reflection R
1 1 1
Zy Zi Z, ZiZy—Zyl,—ZyZ
Pr_p Rp=%o %1 2o _Z1%27 %%z 7 2ol (9.23)
bi i+i+i Z1Zy + ZoZy + ZoZ4
Zo Iy Z

and a coefficient of transmission can also be obtained after substitution into the first equations in
(9.22).

A perfect bifurcation would be able to transmit the pressure pulse downstream with no reflection,
R = 0, which realizes when 22 = ‘Cﬁ + 22 We know (remind equation (9.6)) that A; + A, > Ay, and
1

Co ;
that the celerity in a smaller.vessel is usually higher, therefore in real bifurcation the reflection is
effectively small, although_net exactly zero. Thus, most of the pressure pulse is transmitted

downstream and only in small“part reflected upstream.

Figure 9.5. Wave reflection in the Aorta.

An important place where reflected waves can be effective is the pulse propagation aleng the Aorta
where it encounters the iliac bifurcation. This phenomenon is sketched in Figure©.5¢As a starting
model consider a simplified configuration where there are no side branches or geametric changes
along the vessel. The incident pressure wave (i) starts from the aortic root and reaches the bifurcation
after a time T (which takes typically a value about 0.1 s, given by the ratio between the length of the
Aorta, say something about 40 cm, and the celerity, say about 4 m/s). At this point, the reflected wave
(r) travels backward from the bifurcation and reaches the aortic root after a time 2T. Therefore, the
pressure pulse that one measures at the root is the sum of the incident pressure wave, that is given by
ventricular contraction and is made of a single impulse, plus the reflected wave that is similar to the
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incident wave, but it is lower in amplitude and delayed of 2T. Physiologically, the backward
travelling waves sustains the pressure at the aortic root after the initial impulse has passed and (with
multiple reflections) ensures its slower decay during diastole. This sustained pressure helps
maintaining the aortic valve closed and it is believed to help providing allowance to the coronary flow
during diastole. There are, however, other mechanism involved and it is still unclear whether the role
of reflection is;fundamental or secondary. In any case, it is important to be aware that the time profile
of pressure'measured at any place does not reflect only the primary cause generating pressure (like
ventricular contraction at the aortic root) as it also includes the contribution of reflected waves.

9.5. CollapsibleVessels

Arteries present a'positive transmural pressure and typically operate under stretched conditions. There
are, however, some' other biological districts where internal pressure can become lower than the
external value and the'wessel be subjected to contraction. A contracted vessel maintains the circular
geometry for small defermations only, then it undergoes to a bending instability and collapses
reducing sharply its area as shown in the generic “tube law” sketched in Figure 9.6. A collapsed vessel
gives high resistance to the flow and increased pressure losses.

p

nonlinear
regime

linear elastic
regime

collapsible
regime

Figure 9.6. Tube law for collapsible vessels.

To exemplify possible implication of this fact, consider a vessel where flow starts with a given
upstream transmural pressure p, at x = 0 that decreases downstream, for example following the
Poiseuille law

128 Q
=p— = . 9.24
p(x) =po———Hp3* (9.24)

If the discharge Q increases, the pressure reduction is more pronounced along the vessels and the
diameter decreases as well. Under certain conditions, when the upstream pressure is relatively low or
the vessel is long enough, transmural pressure can become negative and, from the tube law, it can
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enter in a collapsible regime. A collapsed vessel further increases the pressure losses and enhances
the level of collapse rapidly reach a level that does not allow any increase of discharge.

This phenomenon is called “flow limitation™. It is common when pressure difference is obtained by
a reduction of the downstream value, like sucking from a straw capped at the top. It also occurs when
the pressure is increased upstream to try pushing a higher discharge, because it may lead to more
pressure losses than how pressure was increased upstream. Thus, pressure gets further reduced
downstream and leads to the collapse of the vessel that does not allow flow passage. Flow limitation
typically occursin airways, where one cannot blow more than a limited air rate otherwise the airways
collapse andblowing is reduced. It can also occur in male urination or in some long veins. This
phenomenon was mugh studied in the giraffe jugular vein, whose long neck represents of prototype
for the analysis inwa living system.
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D. ADVANCED ANALYSIS OF SEPARATED FLOW

10. Vorticity and Boundary Layer Separation

10.1. Vorticity and irrotational flow

The fluid veleeity was assumed so far as the fundamental quantity for characterizing fluid motion.
Velocity.gertainly is the most immediate and intuitive vector field to describe flows; however, it may
not be able to.evidence features of the underlying dynamical structure, like stresses, mixing or
turbulence, that'depend on velocity gradients. The weakness of a description based on velocity alone
is particularly criticalwhen the fluid motion features the presence of vortex structures. It will be clear
shortly that vorticity 1s©ften a preferable fundamental quantity for the analysis of incompressible
fluid dynamics.

Vorticity vector field»*was. previously introduced through equations (3.6) and (3.7); it is
mathematically defined as theseurl is of the velocity field

w(x,t) =Vxvxt); (10.1)

and represents the local rotation rate of fluid particles. More than that, it allows emphasizing the
physical structure that hides behind the velocity field; it also provides a complete mathematical
description of the flow and allows recevering the whole velocity field once the boundary conditions
are imposed.

The interpretation of vorticity is particularlysintuitive in two-dimensional flows, when only the x and

y components of the velocity field exist with, no.change along z. In this simple case, vorticity has
0vy

: . a .
only the z-component, perpendicular to the plane of motion, w =%_E’ and physically

corresponds to (twice) the local angular velocity of asfluid particle. In fact, while moving with the
velocity of a particle, the presence of a positive vorticity corresponds to a vertical velocity increasing

: ] . : { . .
horizontally, % > 0, and a horizontal velocity decreasingvertically % < 0. Itis easy to understand,

see Figure 10.1 (leftmost sketch), that this type of velocity variation.represents a rotational motion on
top of the particle translation. The general background behind'this interpretation was previously
described in section 3.3.

The relevance of vorticity is not limited to local rotation. The spatial distribution of vorticity
characterizes the different possible types of fluid motion. For this.reason, vorticity is commonly
considered the skeleton of the flow field and the fundamental quantity to/describe the underlying flow
structure. It is common to loosely describe a vortex as a region where fluid metion presents circular
or swirling streamlines; however, it is more appropriate to define a vortex as,a region of compact
vorticity as shown in the central sketch of Figure 10.1. The intensity of a vortex is’hormally measured
by its circulation, normally indicated with I', that is the surface integral of the (normal component
of) vorticity contained inside a certain region (the vortex area) that, by the Stokes'theorem (3.9), is
equivalent to the circulation of velocity along a closed circuit surrounding the vortex area.

'=|w-ndd=9¢v-ds. (10.2)
Jo maa=y

The other fundamental flow patterns in fluid flow is the shear layer, an elongated layer of friction
between streams moving with different velocity. Following the right sketches in Figure 10.1, a shear
layer is best described as a layer of vorticity, a vortex layer. Thus, the boundary layer discussed
previously in section 7.1 is a vortex layer adjacent to the wall that develops because of the velocity
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difference between the outer flow and the fluid attached to the wall for viscous adherence. The
intensity of a vortex layer is measured by the difference of velocity, the velocity jump, commonly
indicated by y, between the flow above and below the layer; which is equivalent to the line integral
of the vorticity along a line crossing the layer. Vortices and vortex-layers are the fundamental
vorticity structure in flow fields. Their different three-dimensional arrangements and their
combinations_give rise to the complexities of all evolving flows. The analysis of these vorticity
elements allows a more intimate descriptions of incompressible flows and provides guidelines for an
intuitive understanding of their evolution.

Shear layer
Vortex

Vorticity at @ point

| f-\ T‘e
J

Boundary layer

Figure 10.1. Vorticity corresponds to the local rotation of & fluid particle. The spatial distribution
of vorticity gives rise to different flow structures. An accumulation of vorticity in a compact region
corresponds to a vortex; an elongated distribution of vorticity corresponds to a shear layer that,
when it is adjacent to the wall, is a boundary layer.

The fundamental role of vorticity can also be appreciated from™a_mathematical perspective. It
originates from the mathematical decomposition due to Helmholtz telling that any (sufficiently
regular) three-dimensional velocity field can be expressed as the sumgsof,two contributions: one
irrotational component, that can be expressed as a gradient of a scalar patential ¢, plus one rotational
component expressed as the curl of a vector streamfunction field 1, that has'’zerodivergence V- ¢ =
0. In general, one can write

v=Vp+VX. (10.3)

If one takes the curl of the velocity (10.3), the curl of a gradient is identically zero,and vorticity is
contained in the rotational component only. The curl of (10.3) provides

w=VXx((Vxy)=VV-y) -V, (10.4)

where the second equality is obtained by standard identities between derivatives. Adding the
condition that the streamfunction has zero divergence gives the Poisson equation

Vi = —w, (10.5)
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relating vorticity and streamfunction. An important point shown by this relationship is that the scalar
potential ¢p does not contribute to vorticity as it represents the irrotational component of the velocity
and, as such, it does not include rotations. The Poisson equation (10.5) is a linear elliptic equation
that can be solved by numerous means; the important concept to be learnt is that the rotational
component of the velocity field, V x 3, can be obtained from the knowledge of vorticity field.

It this respegt; the irrotational component of the velocity field is particularly simple in incompressible
flows. Itparticipates to the conservation of mass only and it does not involve the equation of motion.
This is immediate,to verify by taking the divergence of (10.3). Recalling that the divergence of a curl
is identically, zero, the rotational field automatically satisfies the continuity equation (4.9) that
becomes one equation for the potential only

Vip =0. (10.6)

Equation (10.6) is linearequation of the elliptic type, known as the Laplace equation. It is a
homogeneous equation that has a unique solution driven by the boundary conditions only and can be
solved by innumerable methods. It is important to remark that such velocity component represents an
irrotational flow dictated by the continuity equation only, thus it can satisfy the instantaneous balance
of mass but it does not include any balance of momentum because the Navier-Stokes equation and its
evolutionary mechanism are not'employed. In other words, the irrotational component in (10.3) can
be obtained by kinematic congruence due«to mass conservation whereas it does not include dynamic
phenomena.

The implications for this analysis are importantito describe the flow fields. A flow without vorticity
is made of an irrotational velocity field only that can be specified without involving the balance of
momentum. The equation of motion can be then employed, when required, to derive the pressure
distribution corresponding to the known the veloeity field. In the case of irrotational flow, this can be
performed with the simple Bernoulli equation for an ideal flow because energy dissipation is absent
in an irrotational flow. In fact, the viscous term of the"Navier-Stokes equation, Vv, which can be
written for an incompressible flow as V X w, is identically zero for a flow without vorticity.

The velocity decomposition is the key tool to recognize the role of vortices in a flow because only
the dynamics of vorticity involves the balance of momentum? A vortex, as said, is a region where
vorticity has accumulated; now we can also state that a vortex'is not necessarily a region exhibiting
circulatory motion. As shown in Figure 10.2 (left picture), the velocity field corresponding to an
isolated vortex is purely rotational, its streamlines rotate about the vortex and describe a circular
motion. However, when an irrotational contribution adds on top of the same vortex, the irrotational
velocity may modify the apparent vortex signature in terms of streamlines and the circulatory pattern
remain hidden behind an irrotational contribution. To explain this point, let,us consider the same
vortex of Figure 10.2 (left) with an additional uniform flow, a rigid translatienal motion from top to
bottom that is evidently an irrotational component and does not affect the value of vorticity and of
shear rate anywhere. The resulting flow fields are shown in Figure 10.2 (central and rightmost panels)
for increasing values of the uniform motion. The three fields of Figure 10.2 present exactly the same
vortex, the same gradients of velocity at all points. The rotational velocity field is always the same,
corresponding to the leftmost picture, only an irrotational flow is added to the others; nevertheless,
from a superficial qualitative view in term of streamlines the underlying vortex may not be equally
recognizable.
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A}

Figure 10.2.(A vartex is a region where vorticity has accumulated; it is not necessarily a region
exhibiting cirealatory motion. A flow made of a vortex only is made of circular streamlines (left
panel). The streamlines are modified when a uniform vertical flow of moderate (center) ad high
intensity (right panel).is added. In the three panels the vortex is unchanged, and so is shear in the
flow.

Fluid dynamics phenomena related to.evolutionary dynamics, friction, dissipation, forces, boundary
layer, vortex formation etc., are_dominated by the rotational part of the velocity field, while the
irrotational velocity contributes in/terms of transport and mass conservation only. Therefore,
conceptually, a flow field can be described from the dynamics of the vorticity, plus an irrotational
contribution to adjust mass conservation accordingly to boundary conditions. This is why, when the
flow field is not simple or mostly unidiregtional, vorticity, and vortices in which vorticity organizes,
is the fundamental quantity allowing a properinterpretation of flow evolution.

The vorticity is thus the fundamental quantity fordescribing a fluid flow. From the knowledge of the
vorticity field only, the entire flow field inside a‘given_geometry can be reconstructed. Technically,
by inversion of equation (10.5), plus an irrotational.eomponent that is solution of (10.6), both are
linear elliptic equations that can be solved by numergus means (either analytic or numerical). It is
therefore tempting to analyze the dynamics of fluid metion.following the evolutionary dynamics of
the vorticity itself; then solving the two linear equations for finding the complete velocity vector field
that automatically satisfy mass conservation and obeys the boundary,conditions. This is often useful
because vorticity occupies only a small fraction of the flow field, and takes standard shapes that allow
their immediate characterization.

The vorticity field has the further simplifying property that it obeyssthe same zero-divergence
constraint of the velocity in an incompressible fluid: vorticity is a field with*zero divergence (simply
because the divergence of a curl is zero by definition)

V-w=0. (10.7)

This means that the vorticity field cannot take arbitrary geometric shapes: Therefore, vorticity
typically develops in terms of vortex tubes (whose associated velocity circulates‘around the tube) or
of vortex layers (associated with a difference of velocity, a shear rate, across the layer)..\Moreover,
the total vorticity contained inside a vortex tube is conserved like the discharge in a‘tube of flow: a
vortex tube cannot terminate abruptly, and must either be a closed ring or terminate by spreading into
avortex layer. Thus, we will use this knowledge to get a deeper description of complex cardiovascular
flows.
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10.2. Vorticity equation

Vorticity is an vector field that follows a deterministic evolutionary law. Its mathematical expression
can be immediately derived from the conservation of momentum: namely, the Navier-Stokes equation
(5.34) that can be rewritten in terms of vorticity. Start by taking the curl of the Navier-Stokes equation
(5.34)

v
ot

Recall that (under sufficient regularity conditions) derivatives are linear operators and can be
exchanged with the curl derivative operator, we get

1
V X +Vx(v-Vv)=—;Vpr+viV2v.

Jw
3 + VX (v-W) =vWw; (10.8)

where the pressure term, like-any other conservative force, disappears because the curl of a gradient
is identically zero. The secondterm in (10.8), which is nonlinear, requires some care. Consider the x-
component of this term in a'system of Cartesian coordinates

0 v, ov. avz> 0 < v, v, 6vy> 3

zZ
X . = —_— [
VX (w-Vv)l, 0y<vx % + vy 3y + v, P 7\ " Ox + v, 3y + v, %

d (dv, (dvy 0 (0v, OJv, d (dv, OJv,
= ”x&(@‘@‘)“’y@(@‘a—z Tg\ay T )T
ov, 0v, 0Vy 0%, \, 0v, 0V, B 0v, 0V, B vy, dv,, B v, dv,

5y ax " 9y 8y .ay 9z 0z ox 0z 9y 0z 9z

Recognize now that the terms in bracket are the x vorticity component, and use the continuity equation
to group 2" and 3™ terms and 5™ and 6" terms in last liné‘as follows

v, 0V, N <6vy N 6UZ> 0y, 0v 0vy vy <6vy N avz>
dy 0x dy 0z JOy<y 0z Ox 0z \Jdy 0z
0V, 0v, B v, v, B v, 0V, N duy 0v,

dy 0x 0x dy 0z Ox( '@z 0x

0v, 0v, 0V, 0v, 0V, 0V, N v, Ow, N (avx v, 0Jv, avx> ;

VX (w-W)|,= v Vo, +

= vV, +

- v-wa+ay dx 0x dy 0z ox = @z 0% dy 9z 9y oz

where in the last passage we added a term, in brackets, that is equal.tozero. Now group the terms
properly as

VX V)|, = vV, —

vy (0v, 0Jv, av, (avx 6v2> 0v, (0v, Ov,
dx \dy o0z dy \dz Ox 0z \@dx OJy
= vV, —wVv,.

Reinserting this result into (10.8) gives the vorticity equation

Jw
E+v-Vw=w-Vv+vV2w; (10.9)

which represents the Navier-Stokes equation expressed in terms of vorticity.

Despite the apparent mathematical complexity, the qualitative inspection of the terms in this equation
permits to extract some important concepts regarding vortex dynamics. For example, it can be
immediately recognized that the vorticity equation does not contain the pressure (or any conservative
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force like gravity). In fact, the distribution of pressure has no direct influence on vortex dynamics; on
the contrary, however, pressure depends on vorticity that rules friction and energy losses and, if
required, it can be obtained in the aftermath once velocity is known.

A first property that is read from the vorticity evolution equation is that if vorticity is zero at one
instant it remains zero afterwards. This important fact is immediately seen by inspection of equation
(10.9), because all terms containing the vorticity spatial derivatives are identically zero when vorticity
is zero thus the time derivative is also null and vorticity cannot depart from a zero value. This
observation has'the important implication that vorticity cannot be created inside the fluid; therefore,
it can only be generated at the interface between the fluid and the boundary. This apparently simple
fact is a fundamental element for the study of vortex dynamics: in incompressible flows vorticity does
not appear spontaneously within the fluid, the only place where vorticity can be created is at the
boundary between fluid and tissue. Indeed, the issue of the generation of vorticity, and vortex
formation in particular,.is’a key one and it will be extensively discussed in the next section.

Equation (10.9) tells that, ence, vorticity is somehow generated, it is subjected to few possible
evolutionary phenomena. The primary one is that vorticity is transported with the flow as if it was a
passive tracer (although not effectively passive, because velocity is related to vorticity itself). This
phenomenon is provided by the two terms.on the left-hand side of (10.9) that represent the Lagrangian
time derivative of vorticity over fluid“elements that move with the flow. The first term is the time
variation of vorticity at the fixed position crossed by the particle; the second term gives an increase
of vorticity when a particle points in a-direction along which vorticity grows (i.e. when velocity is
aligned with a positive gradient of vorticity): They take a form analogous to, for example, the first
two terms in equation Navier-Stokes equation (5.34), describing the change of velocity (acceleration)
on a moving particle. Therefore, summarizing,vorticity of a fluid element moves with the local fluid
velocity, like a tracer, but the value on such element can change its value in virtue of additional
phenomena ruled by the two terms on the right-hand side of (10.9).

The first term represents the phenomenon of increase of vorticity by vortex stretching. To visualize
this, consider a small cylindrical element of fluid alignedswith the vorticity vector, as sketched in
Figure 10.3. That cylinder of fluid translates with the local velocity as discussed above; moreover,
the presence of a velocity difference between the two ends deforms/the cylinder. Following Figure
10.3, when the velocity component parallel to vorticity is lower at thesbase and higher at the top of
the cylinder, as time proceeds the cylinder elongates, it is stretched by the velocity gradient (and
shrunk in the transversal direction for the conservation of mass). Well, the vorticity vector behaves
in the identical manner as material fluid, when fluid is stretched the wartiCity vector is stretched as
well and the vorticity value increases, whereas the cross-size reduces and.the‘total amount of vorticity
in the cross section, measured by the circulation I', is conserved. This phenomenon occurs in presence
of a velocity gradient in the direction of vorticity, i.e. w - Vv > 0. This term represents the stretching
and turning of vortex lines as if they were lines of fluid. A further important aspect of this term is that
it is exactly zero in a two-dimensional flow. In a two-dimensional flow, the vortiCity«S perpendicular
to the plane of motion and there is no velocity gradient out of plane; therefore, vortigity stretching is
intrinsically a three-dimensional effect.
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Figure 10.3. A fluid element with vorticity'is transported by the local velocity and stretched by the
component of velocity gradient aligned'with verticity. This gives an increase of vorticity although
circulation is conserved.

Before turning the attention to the last term containing~the viscous effects, let us recapitulate the
dynamics of vorticity in absence of viscous effects. First,an element of fluid that contains no vorticity
remains without vorticity afterwards. This is the first of the three Helmholtz’s laws for inviscid flow.
Then, the vorticity is a vector that behaves like a small string element of fluid. It moves with the flow
and it is stretched and tilted with it. This is essentially the second,Helmholtz’s law. The third law,
follows from the fact that vorticity is a field with zero divergence and the total vorticity contained
inside a vortex tube (or a vortex filament, when the tube is‘thin), measured by its circulation, is
conserved along the filament while it moves with the flow.

The picture becomes extremely simple and intuitive in a two-dimensional flow, or in a motion that is
locally approximately two-dimensional. In this case, the vorticity veCtor has a unique non-zero
component perpendicular to the plane of motion, therefore it loses its veetor.eharacter. Stretching is
absent and vorticity and can be treated a scalar quantity that is simply transported with the flow. The
value of vorticity is stuck onto the individual fluid particles, vorticity simply accumulates into vortex
patches, redistributes into vortex layer, accordingly to the motion of fluid particles:

The last, viscous term in the vorticity equation (10.9) introduces the effects of friction and energy
dissipation in terms of vorticity. The action of viscosity on vorticity is analogous‘to that of heat
diffusion or diffusion of a tracer like ink or smoke. The spatial distribution of vorticity is smoothed
out by viscosity; therefore, a sharp vortex reduces progressively its local strength while it widens its
size in a way that the total vorticity is conserved. In general, the diffusion process is of simple
interpretation. Like in any diffusive process, the rate of diffusion is higher in presence of sharp
vorticity gradients, therefore the magnitude of viscous dissipation become increasingly relevant
where vorticity presents changes over short distances. This leads to the most important aspect of
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energy losses in fluid motion: viscous dissipation is most effective at small scales. Viscous diffusion,
for example, gives rise to the annihilation of close patches of opposite sign vorticity. This has a
peculiar consequence in three-dimensions when two opposite-sign vortex filaments get in contact,
the opposite-sign vorticity locally annihilates and oppositely pointing vortex lines (that cannot
terminate into the flow) reconnect. The viscous reconnection phenomenon is the underlying
mechanism leading to topological changes, metamorphoses of three-dimensional vortex structures,
and increased dissipation by turbulence; for this reason, it will deserve further discussion later in this
chapter when describing the interaction between vortices,

In summary, the'dynamics of vorticity is made by its transport with the fluid elements, intensification
by three-dimensional straining of such fluid elements, and smoothing by viscous diffusion. A
dynamic that sees=vorticity arranged into tubular and sheet-like structures ensuring a continuity of
vortex lines. Some exemplary realizations of vorticity dynamics will be discussed later; before then,
however, it is necessary.to address the aspect of the generation of vorticity.

10.3. Boundary layer separation and vortex formation

As remarked above, in incompressible flows vorticity cannot be generated inside the fluid domain.
Vorticity can only be created at the boundary in consequence of viscous adherence between the fluid
and the surrounding tissue. Vorticity 1S produced because the no-slip condition applies at the interface
between the fluid and the solid surface gives rise to a vortex layer adjacent to the boundary; such
layer then progressively diffuses away“from the wall through the viscous diffusion mechanism to
produce a smooth boundary of vorticity at the boundary. The boundary layer thickness corresponds
to the length at which the viscous diffusionvpenetrates from the wall into the flow, which is
proportional to v/vt as taught from equation (7.22). The boundary layer was introduced in section 7.1
as the region adjacent to the wall where the velocity rises from the zero value that it takes at the
boundary to a finite value away from it. Howeverg#its interpretation as a vorticity layer is more
intuitive for addressing vortex formation processes.

The boundary layer has a fundamental importance in fluid mechanics as it represents the unique
source of vorticity in a flow field. In order to fix the ideas, considera set of Cartesian coordinates at
the wall, with x and y parallel to the wall and z perpendicular toit,at the wall the normal vorticity
vanishes for the adherence condition and the others take a simpleform

N :E)vz_avy _ _avy
* 9y 0z oz ’
dv, Jdv, v,
Y%z "oz oz
ov, 0vy

w, = E — W =0 ;
therefore, assuming x as the local direction of the velocity, the adherence generates.the vorticity
component w,, perpendicular to it (as if the flow moves over wheels, with vorticity representing their
axis) and vorticity generation begins, locally, as a two-dimensional phenomenon. It is also immediate
to recognize that the components of vorticity at the wall correspond to the wall shear rate and, after
multiplication with viscosity, to the wall shear stress (WSS, t,)

To, = +,ua)y ,

Tor = —Hary (10.10)
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which, we’ll show later, takes particular relevance in cardiovascular physiology and pathology.
Therefore, the wall vorticity is often employed interchangeably with wall shear rate (sometimes,
given the constancy of viscosity, also with wall shear stress).

In small vessels, the thickness of the boundary layer is comparable to the diameter and fills the entire
flow field. At such small scales, as found in arterioles and capillaries, viscous diffusion is the
dominant phenomenon; vorticity is generated for adherence and quickly diffuses into the whole
domain.4n this case compact vortices, with rare exceptions, are absent. On the contrary, in large blood
vessels orinsidesthe cardiac chambers, the boundary layer often remains thin and it is capable to
penetrate for'diffusion over a small fraction of the vessel size. Indeed, until it remains attached to the
wall, it has a relatively small influence to the flow and it only represents a viscous slipping cushion
for the outside metion: However, under many circumstances, it happens that such a thin boundary
layer detaches from the"wall and enters into the bulk flow. This is the process of boundary layer
separation, when thin_layers of intense vorticity penetrate in the main flow and give local
accumulation of vorticitys/and eventually to the formation of compact vortex structures.

Boundary layer separation is_key in the development of complex motion in large blood vessels. It
occurs as a consequence of the local deceleration of the flow, which is normally associated to
geometrical changes. The process‘of boundary layer separation is sketched graphically in Figure 10.4.
When flow decelerates, the upper edge of the boundary layer is subjected to deceleration as well and,
because of incompressibility, when the longitudinal velocity decreases downstream the vertical
velocity must increase moving away from the .wall thus producing a local growth of the thickness of
the vortex layer at the same location (Figured10.4 top picture). This tongue of vorticity is lifted and
gets strained by the outside flow that has higher velocity. Although vorticity is transported by the
local velocity, it is also closely related to veloeity and describes its spatial variations; therefore, as
vorticity is strained away, the longitudinal velocity profile therein reduces and the vorticity at the wall
below decreases as well. As this process progresses;” opposite sign wall vorticity appears, and a
secondary boundary layer develops below the separating shear layer (middle picture). The separation
point at the wall, from where the separation streamline”departs, corresponds to the place where
vorticity is zero. The secondary vorticity is itself decelerated in its backward motion and is lifted up.
Eventually, it cuts the connection between the original boundary layer and the separating vorticity
that detaches and enters into the flow (bottom picture). During this process, it is important to remind
that the local velocity transports vorticity but the latter is not a passive tracer, it is made of velocity
gradients that, when transported, alter the underlying structure: of“the flow itself affecting the
rotational component of velocity in virtue of equation (10.5). Figurex104 shows qualitative velocity
profiles and streamlines that develop in correspondence of the separating vorticity field.

Boundary layer separation is thus a consequence of the local deceleration of'the flow. In other terms,
separation develops in presence of an adverse pressure gradient (pressure growing:downstream) that
pushes from downstream and decelerates the stream. The most common way to have an adverse
pressure gradient is that of a geometric change: a positive curvature of the wall, fikesan enlargement
in a vessel. In this case, the velocity decreases, for mass conservation, Kinetic energy decreases and
the value of pressure increases for the Bernoulli balance. Therefore, boundary layer separation
develops when a vessel increases its cross-section as it may occur behind a stenosis, or at the entrance
of an aneurism. An extreme case of geometric change is that of a sharp edge; this is often found at
the entrance of a side-branching vessel, and certainly on the trailing edge of the leaflets of cardiac
valves. In the case of sharp edges, the flow deceleration is so local that the position of boundary layer
separation is definitely localizable at the edge. The vorticity that developed on the upstream side
detaches at the sharp edge and leaves the tissue tangentially.
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Figure 10.4. Sketch of the boundary layer separation process. The dark gray indicates layers with
clockwise vorticity, the light gray is counter-clockwise; streamlines and velocity profiles are drawn.
The deceleration of the flow produces a local thickening of the boundary layer due.to mass
conservation balance (upper panel). Such emerging vorticity is therefore lifted and transported
downstream by the external flow (see arrows). A shear layer then extends away from the wall and
produces a secondary boundary layer, with oppositely rotating vorticity (mid panel). The separated
clockwise vorticity tends to roll-up while the secondary layer lifts up for the same initial
mechanism, because it backward motion is decelerating (see arrows). Eventually, the separating
vortex layer detaches from the boundary layer and becomes an independent vortex structure.
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The process of boundary layer separation involves a competition between the tendency of vorticity
layers to become progressively sharper and their tendency to become thicker for viscous diffusion.
Therefore, sharp, well recognizable vortices are generated in large vessels where the role of viscous
diffusion is smaller. Vice versa, in small vessels, the process of boundary separation is often inhibited
by the dominance of diffusion that quickly smooths out the separating vorticity.

e

I

lir

Figure 10.5. Vortex formation from a sharp edge obstacles“The shear layer separates from the
upstream “‘wetted” wall and rolls-up into a spiral. The ¢ight turns in the inner part of the spiral
spread for viscous diffusion into the inner core of the formed vortex:

Geometric changes are not the unique possible source for the development of a flow deceleration.
Immediately downstream of branch sucking fluid away from a mainsvessel, the velocity reduces and
an adverse pressure gradient develops. Similarly, boundary layer separation-develops for the so-called
splash effect, when a jet reaches a wall and produces high velocity streamlines that decelerate when
they are deflected along the wall. Finally, the local flow deceleration” can also be produced by
previously separated vortices. A vortex that gets close to a wall gives rise to,a localized increase (or
reduction, depending on its circulation) of the flow velocity at the wall belowg“and a corresponding
deceleration immediately downstream (or upstream). The vortex-induced boundary layer separation
is a frequent phenomenon that may become particularly critical in some applications..In fact, the area
of principal separation is often localizable and properly protected, whereas a separation induced
downstream due to a previously separated vortex may occur at unexpected locations.

The separation of the boundary layer represents the starting phase of the vortex formation process.
The featuring property of any shear layer, as shown previously with Figure 10.1, is the difference of
velocity between its two sides: the farther side of shear layer that detaches from the wall moves with
a speed that is higher than the side closer to the wall. Therefore, the separating shear layer curves on
itself and eventually rolls-up into a tight spiral shape. Now, during the rolling-up process, the distance

Bio Fluid Dynamics (Lecture Notes for Students)



Vorticity and Boundary Layer Separation Page 115

between two successive turns of the vortex layer progressively reduces, with the closest neighboring
turns at the center of the spiral. The viscous diffusion process smears out this tight spiraling structure
into by a compact inner core with a smooth distribution of vorticity. The roll-up and the formation of
an isolated vortex behind a sharp edge obstacle are shown in Figure 10.5. The degree of smoothness
depends on the level of viscous diffusion relative to the strength of the flow that induces separation,
namely it depends on the value of the Reynolds number.

The vortex formation from a smooth surface is still described by the picture given above, where a few
additional elements of complexity can be emphasized. First, the actual position of separation depends
on the local flow structure; it cannot be preliminarily identified and may even change during time.
Furthermore, given that the vortex formation process affects the surrounding flow field, it particularly
influences the progress of separation from a smooth surface where the separation point can largely
vary. Furthermore, separation from smooth surfaces is subjected to a more direct interaction between
the forming vortex and._the nearby wall where the viscous dissipation effects normally support the
formation of smoother vertex structures.

One typical example of the'external separation from the smooth surface of a bluff body is shown in
Figure 10.6 featuring the formation.of oppositely rotating vortices from the two sides of a circular
cylinder. In such an example,#vorticess interact and influence the opposite separation process
eventually producing a sequence of alternating vortices, known as the von Karman vortex street, that
is usually found behind bluff bodies{ The development of alternating vortices is quite a common
phenomenon when previously separatedvartices may influence vortex formation in nearby regions.
It is also present, with some differences; insinternal flows when a vortex formed on one side of a
vessel creates a vortex-induced separation on a facing wall. That, in turn, may induce a weaker further
separation in a sort of wavy pattern extending and decaying downstream.

Figure 10.6. Formation of vortices behind a circular cylinder. Oppositely rotating vortices separate
from the two sides of the body in an alternating sequence. The previously separated clockwise
vortex detached from the upper wall translated downstream, a counter-clockwise vortex has been
formed from the lower wall, and a novel clockwise vortex is under formation from the wall above.

The internal separation, with the following formation of a vortex inside of a vessel is in general a
smoother phenomenon because the presence of confining walls does not allow vortices to grow into
large structures, keeps vortices more constrained to smaller sizes and is more affected by viscous
diffusion. Nevertheless, the presence of a vortex inside a vessel may give rise to alteration for the
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entire flow. It has a blocking effect that locally deviates the streamlines modifying the wall shear
stress distribution, possibly producing further separations. It changes the unsteady pressure drop and
in a branching duct, it may affect the relative flows division in the daughter vessels. An example is
given in Figure 10.7 that reports the vortex formation in the bulb of a carotid bifurcation. During the
systolic acceleration, the boundary layer separates tangentially from the common carotid artery and
develops a smeoth roll-up within the bulb close to the nearby wall. During deceleration, the formed
vortex locally affects the wall shear stress inside the bulb with multiple opposite sign wall vorticity.
It has a blecking effect that deviates the streamlines at the entrance of the internal carotid artery into
a faster jet./It, produces secondary vortex-induced separation inside the internal carotid; that
eventually (not shewn in the picture) gives a secondary vortex formation and a further small
separation little downstream.

Figure 10.7. Formation of vortices in a model of a carotid bifurcation. Thefaccelerating systolic
flow (upper panel, at peak systole) leads to a smooth boundary layer separation.at the carotid bulb.
After the peak (lower panel) the vortex just formed at the bulb either interacts with the bulb
boundary layer creating multiple small vortices, and gives rise to a vortex-induced.secondary
separation in the oppositely facing wall of the internal carotid artery. The same phenomena in a
much weaker version are noticeable also on the opposite side at the entrance in the external carotid
artery.

A peculiar phenomenon associated with the vortex formation process can be outlined when the flow
enters from a small vessel into a large chamber forming a jet whose head is the forming vortex. Here,
after the very initial roll-up phase, a measure of the length of such a jet is given by the product of Ut
where U is the velocity at the opening and t is the time. In this case it is enlightening to define a
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dimensionless vortex formation time, VFT, as the ratio of the jet length with respect to the diameter
of the opening D
Ut

_ 2t 10.11
VFET ) ( )

The formation_time represents a dimensionless number that characterizes the progression of vortex
growth and<allows a unitary description under different conditions. In reality, the definition of
formation,time has a more profound physical meaning. The separating shear layer has a strength given
by the jJump afvelocity between its two sides, given approximately by U, and translates downstream
with a velocity.that.is something like the average of velocity on the two sides of the layer, which is
U /2, thus it feeds the circulation 7" of the forming vortex at a rate

ar 1

—_~_ypz?. 10.12

dt ~— 2 ( )
The formation time thus”also_represents the dimensionless measure of the vortex strength, the
circulation I' = %Uzt, normalized with UD.

The definition (10.11) can be extended to the case when either U or D vary during time, by integration
of the ratio U/D during the period of vertex formation.
U(t)

VFT= | —=dt
D(®)

10.4. Three-dimensional Vortices

The vortex formation process described above is'given in terms of two-dimensional pictures. It allows
an immediate and intuitive understanding of the fundamental phenomenon because the initial phase
of any vortex formation process is, with rare exceptions; locally two-dimensional and the three-
dimensional organization of the vorticity enters into play-at seme later stages.

The simplest case of three-dimensional vortex formation is that frem a circular orifice, in that case
vortex formation has a circular symmetry and the forming three-dimensional vortex tube has the
shape of a ring. Vortex rings are well known objects in fluid dynamies as they are easily generated
using a piston-cylinder apparatus. A vortex ring is a stable vortex structure, it has an axial symmetry
and vortices with a shape close to a ring also tend to the axisymmetric shape by an internal
homogenization. Because of their stability, vortex rings are often encountered in nature, including
when puffing smoke out of the mouth.

Figure 10.8 shows one instant during the formation of a vortex ring behind acircular orifice. The
vorticity distribution on a transversal section (left panel) shows the shear layer’separating from the
orifice that eventually rolls-up into the jet head; however, this planar picture correSponds to a three-
dimensional vortex structure that is more difficult to represent on paper. (The™vortex ring
corresponding to the vortex core is shown in the same picture (right panel) to emphasize the main
element of the three-dimensional vortex. In general, however, there is some ambiguity on the effective
delineation of a vortex boundary. This is not a big issue in two-dimensional systems when the entire
vorticity field can be shown in color scale on the picture plane and the different elements of the vortex
structure are immediately recognized, from the separating shear layer, to the rolling-up spiral, to the
vortex core. This is also not an issue in this simple case that presents an axial symmetry and vorticity
has only the azimuthal component: this flow is conceptually planar. Indeed, its three-dimensional
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representation, on the right panel of Figure 10.8, certainly contains less complete information, and
the choice of the vortex core boundary severely influences the three-dimensional structure that is
eventually visualized.

Figure 10.8. Formation of a vortex ring from a circular sharp orifice. Left panel: distribution of
vorticity on a transversal cross-cut; the vortex=core is indicated with a dashed line. Right panel:
three-dimensional view of the vortex ring core.

Despite their simplicity, vortex rings represent an instructivesexample as they contain the first seed
of three-dimensional vortex dynamics. A vortex ring presents a self-induced velocity that is due to the
curvature of the vorticity lines (lines everywhere tangent to theworticity field), an effect that does not
exists in two-dimensions. This follows from the relation between velocity and vorticity because a
vortex line corresponds to a velocity field that rotates around theJing; therefore, when vorticity is
arranged in the form of a curved vortex tube, the associated rotationslso induces a translation of the
curved tube itself. Thus, once formed, a ring continues to translatezdownstream for its own self-
induced velocity field. Such a self-induced velocity gives rise to a peculiar limiting process of three-
dimensional vortex formation: during its formation, the vortex ring is continuously fed by the rolling-
up shear layer separating from the orifice edge, therefore its circulation grows+and the self-induced
translation velocity of the vortex ring rises and exceeds that of the separatingshear:layer that is not
more able to feed the vortex. At this point, the primary vortex detaches from thedayer behind with a
phenomenon known as pinch-off, at the same time the newly separated vorticity rolls-upin the wake
of the main vortex, a phenomenon that is shown in Figure 10.9. This limiting process occurs for a
critical value of the vortex formation time that is about VFT,, = 4. Above this limit, the vortex ring
cannot grow as a unique structure and multiple vortices develop in its wake developing higher
dissipation. It was found that the VFT in the human heart is close to this optimal limit and it decreases
in diseased hearts.
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Figure 10.9. Formation of a multiple vortex_ring from a circular sharp orifice with a vortex
formation time higher that 4 presenting the/pich-off. Left panel: distribution of vorticity on a
transversal cross-cut; the two main vortex coresare indicated with a dashed line. Right panel: three-
dimensional view of the vortex rings core.

The case of vortex ring formation after a circular opening represents the simplest case of three-
dimensional vortex formation. Let us move forward and<consider the flow across an orifice with
slender shape. In this case, the opening has a variable curvature and the separating vortex ring will
not be circular and rather present a variable curvature. Therefore;“the self-induced velocity, that is
proportional to the curvature, will be different along the vortex tube and will progressively further
deform it. When this deformation becomes high enough, the<compact tubular vortex structure
becomes unstable and breaks down into smaller elements, that in tarn_deform into even smaller ones,
until they become small enough to be dominated by dissipation for viseous effect. One exemplary
case of the three-dimensional vortex formation from non-circular opéning is shown in Figure 10.10
where the vortex ring develops from an orifice made by two half circles'eennected by straight edges.
The behavior described above is rather common for vortex formation from a three-dimensional
geometry; boundary layer separation gives rise to irregularly shaped vortex structures, which become
unstable and break down into progressively smaller structures that eventually undergo to a rapid
energy dissipation.

The three-dimensional vortex formation from smooth surfaces, after a constriction like a stenosis or
in a vessel enlargement, introduces additional elements of complexity that do not allow drawing a
simple unitary picture of the involved phenomena. The initial instants following boundary layer
separation and initial roll-up are essentially two-dimensional with a moderate influence from the
three-dimensional structure. Afterward, the three-dimensional development leads to widely different
results depending on the separating geometry, the interaction with the nearby walls and with other
surrounding vortices.
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Figure 10.10. Three-dimensional vortex formation from a slender orifice at four instants in
sequence. One quarter of the entire space is shown for graphic clarity (allowed\by symmetry); the
vorticity contours are reported on the side planes to help understating thesthree-dimensional
arrangement of the principal vortex filaments. In the initial phase, the formed vartex loop presents
a variable curvature and deforms because of the different self-induced translation speed; this leads
to further deformations until the vortex structure loses its individuality and becemessa,set of
entangled three-dimensional elements that rapidly dissipate for viscosity (credit: Domenichini. J
Fluid Mech 2011;666:506, with permission by Cambridge University Press).

Before moving further ahead in this topic, it is important to remark that the vortex formation process
is not just a kinematic adjustment of the flow but it has dynamical consequences. The generation of
a vortex is associated with the development of a force on the walls from where the vortex originates;
this “vortex force” is given by the rate of growth of the vortex impulse
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F=%, I=pfw><de: (10.13)
remarking that the integral is non-zero only where the vortex is formed, thus vorticity changes during
time. To clarify this point, consider the case of generating a vortex ring, which represent the roughly
early stage of many three-dimensional vortex formation processes. The vortex impulse of a vortex
ring of circulation T' and radius R has only the component directed along the vessel axis, say x,
(perpendicular to the plane containing the ring) which is I, = pI'mR?; therefore, given that the radius
does not vary orvaries very slowly during the formation process, the force is proportional to the rate
of growth of'thewortex circulation

T
E, = pnR?> — = EpRZUZ; (10.14)

that, using (10.12) turns out to be proportional to the square velocity across the orifice. This vortex
force is due to the unsteadiness of the formation process. In a pulsatile flow, the vortex force (10.13),
or (10.14), produces a continuotis hammering localized onto the region of the tissues where the vortex
develops.

10.5. Vortex Interactions with other Vortices and with Walls

The ideal vortex formation picture deseribed above is complicated when two or more vortices come
nearby each other, because they likelyuinteract’in an intense and irreversible manner. The interaction
of vortices involves many different and yery.complicated phenomena. In the simple case of two-
dimensional vortices that come in close encounter, they reciprocally induce a rotation velocity each
other. When such vortices have the same sign, theyirotate together one around the other, winding up
one over the other to eventually merge into a‘single larger one made by the sum of them. On the
contrary, two vortices with opposite circulation, a vortex pair, translate together for the self-induced
velocity (similarly to what a vortex ring does) along arstraight or curved path depending on their
relative strengths. Again, the differential velocity inside each. single vortex produces the winding up
of one’s vorticity on other, however such vorticity strips are ofopposite sign and do not merge rather
they annihilate each other and reduce the individual vortices’ strength. WWhen opposite vortices are
very close they give rise to a single vortex with circulation equal to the algebraic sum of the original
circulation, thus they annihilate when the circulations are equakand opposite.

The interaction between three-dimensional vortex structures oceurs prevalently between two
oppositely rotating portions of vortex tubes (because they are more likely driven one toward the other,
while concordant 3D tubes tend to separate) and begins with the local interaction between the closest
portions. One example of the interaction between two identical vortex rings issshewn in Figure 10.11.
Initially, the local interaction is approximately two-dimensional: the nearby oppositely rotating
tubular elements induce the velocity each other and try to translate away. This produces a local
stretching of the three-dimensional vortex tube, a stretching that accelerates while'the tubes become
closer. In addition, the close vorticity elements also tend to locally wind up ©@ne¢@nother. The
interacting structures develop increasingly small scales until viscous diffusion becomes a dominant
effect, at this point the reconnection of vortex lines occurs: adjacent opposite vorticity is annihilated
by dissipation and the vortex tubes tend to fuse one onto the other.

The interaction between two identical vortices, like that shown in Figure 10.11, may result into a
complete vortex reconnection and new vortex tube. More often, however, one vortex is stronger than
the other is, only part of their tubular structures reconnects and such incomplete reconnection gives
rise to new structures with a complex branched topology of vortex lines (see also Figure 10.10 where
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some vortex reconnection occurs). In general, the vortex structures resulting from the fusion of
interacting vortices typically presents a very irregular geometry. Differential curvatures, that give
sharply variable self-induced velocity and local motion, and differential vorticity strength, that give
axial flow along the tube. These are all elements that tend to rapidly further deform the vortex,
produce further reconnections and give rise to smaller vorticity structures. In other terms, an irregular
three-dimensional vortex structure is overall unstable, tends to destroy itself, and it is short lived. The
more a vortex is regular, like a vortex ring, the more it remains coherent and lasts longer.

<

. Y

Figure 10.11. Vortex interaction between two identical impacting vortex rings; the brightness of
the filament indicates the strength of the corresponding vorticity. When oppositely rotating vortex
tubes get close, they produce a localévortex stretching due to the self-induced velocity (from left to
central panels). During stretching, the boundary between the vortices becomes locally sharper until
the filaments fuse one into the other forwviscous effect (from central to right panels). After vortex
reconnection a new structure is formed,/typically its geometry is irregular, the vortex is often
unstable and short lived.

Vortices also interact with the nearby walls; a phenomenon that is particularly relevant in closed
geometries like the cardiovascular chambers. The vortex=wall interaction can be subdivided into two
different phenomena: the irrotational interaction, that.is a'consequence of the wall impermeability;
and the viscous interaction with the vorticity that develops at the wall for viscous adherence. Let us
consider the two effects separately.

The first, irrotational interaction is due to wall impermeability only, and occurs before considering
any generation of vorticity at the wall for adherence. In that scheme, when an isolated vortex, that
would induce a rotary motion with circular streamlines, approaches an impermeable wall, the
streamlines must deform to avoid crossing the boundary. As newsVorticity cannot appear, the
modification of the flow field due to the presence of the wall can only be imputable to the
development of an additional irrotational field, expressed as v;,.,. = V¢, that satisfies the condition
of impermeability at the wall. This additional flow is given by solution Laplacesequation (10.6) with

condition that the additional velocity cancels the original velocity, say v, perpendicular to the wall,

d . - L . .
%z —v, -n. The solution of this linear equation is unique. The same solution®can also be

constructed considering symmetry arguments allowing a more immediate perception of the
modification induced by the presence of the wall. Consider the flow that would be ‘induced by an
image vortex placed below the wall. We remind that the velocity induced by a vortex in a region away
from it is also irrotational. With reference to Figure 10.12 (left panel), consider then the irrotational
flow that would be induced by an image vortex identical and of opposite sign of the real one, placed
symmetrically below the wall. Such an image vortex gives an irrotational flow whose velocity
perpendicular to the wall that is opposite to that of the real vortex, and thus ensures that the fluid does
not penetrate into it, it therefore corresponds to the sough correction induced by the presence of the
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wall. This representation allows more immediate understanding of the effect induced by the
correction. The velocity parallel to the wall has the same sign of that due to the real vortex and
therefore the velocity adjacent to the wall increases (splash effect). In addition, the image vortex also
induces a velocity to the real vortex that accelerates or decelerates (depending on the direction of the
circulation) with respect to the background flow because of this image effect. For example, a
(clockwise) vortex that just formed from a wall underneath is decelerated by the image below the
same wallgwhile it accelerates when it approaches a wall on the opposite side.

2

Figure 10.12. The interaction of a vortex with the wall produces two separate effects. First (left
panel), the condition of impermeability is satisfied by a distortion to the vortex-induced flow that
is equivalent to having an opposite vortex'placedhsymmetrically below the wall. The presence of
such a “image” vortex increases the tangential velocity next to the wall, and induces a translation
velocity to the otherwise still vortex. The second effect (right panel) is due to viscous adherence,
the development of a boundary layer and eventually avortex-induced separation.

The second phenomenon, additional to the image effectpthat@arises when a vortex gets near to a wall
corresponds to the development of a vortex-induced boundary layer because of the viscous adherence.
A vortex plus its image create a local velocity gradient along the'wall, acceleration followed by
deceleration. This perturbation, as previously discussed, may give rise to a vortex-induced boundary
layer separation and to the formation of secondary vortices as sketched in Figure 10.12 (right panel).
Such secondary vortices are of opposite sign and weaker than the main one; thus, they tend to wind-
up around the main vortex giving rise to close interaction of oppesite_sign vorticity that partly
annihilate. The development of such thin shear layers during the interactionsis counterbalanced by
viscous spreading that is more intense when geometric scales get smaller, thus, the intensity of the
interaction depends on the strength of the vortex, its closeness to the wall and size of the region, i.e.
it depends on the value of an appropriately defined Reynolds number.

When the vortex-boundary interaction described above applies to a tract of a three=dimensional vortex
tube, it applies first to the portion that is closer to the wall and eventually affects the following three-
dimensional dynamics. First, the image effect gives a local change in the velocity“that induces
stretching and deformation of a vortex filament. Second, when the vortex gets closer, it eventually
interacts directly with the vortex-induced vorticity distribution. This is an interaction between
oppositely circulating vorticity. That gives rise to the local wind-up of the wall vorticity around the
approaching vortex and to reconnection with its vortex lines. Eventually, the approaching vortex
crops for the partial annihilation of the region closer to the wall, which unbalances the three-
dimensional vortex structures that tends to rapidly further deform and develop small structures near
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the wall that are eventually dissipated. As a result, the interaction of a coherent vortex with a wall can
give to change in the topology of the vortex or, more often, to a progressive dissipation of the entire
structure.

10.6. A Further Account to Turbulence

Let us enter"smoothly into the physics of turbulence by deepening a little further the concept
introduced in Chapter 8. We’ve said here that vortices form for the separation of the boundary layer
creating structures driven by the large-scale geometry of the fluid domain. After vortex formation,
the vortex can _undergo to instabilities or to interaction with other vortices and nearby walls. These
phenomena defarm and break the overall, large scale geometry of the vortex loops that, after
sequences of instabilities and reconnections, eventually transform the original vorticity into several
irregular small structures. Such small-scale elements present sharp velocity gradient, high viscous
friction, and are rapidly.dissipated.

Physically, on average, large‘scales vortices of the size of the containing geometry are continuously
formed; these large vorticesarewunstable and produce progressively smaller flow structures until they
are small enough to be dominated.dy viscosity and dissipate. From a high-level perspective, the
resulting vortex-dominated flow witnesses the simultaneous presence of continuously generated large
structures with others of all intermediate sizes developed by instability of larger ones, and from these
down to the smallest vortices dominated by viscosity. A measure of the complexity of such a flow
field can be provided by from the ameuntsof such contemporary vortices, measured by the ratio
between the largest scale, say L, given by,size, of the surrounding geometry (the diameter of the
orifice, or the size of an obstacle, for example), .and the smallest friction-dominated one, that we
indicate with n. When L is comparable to n, the flow is a regular one because the generated vorticity
is immediately smoothed out by viscosity; this is what happens in small vessels. On the other end,
when L is much larger than 7, the flow presents fluctuations over a large number of intermediate
scales from L to progressively small sizes up to the smallest scale n. The order of magnitude of this
complexity was be estimated for the case of a statistieally“steady turbulence on the basis of the
phenomenological theory due to Kolmogorov in 1941.

A flux of energy, indicated with &, is injected in the flow at a scale clgse to L, say the energy forming
a vortex behind an orifice. We have said that, when L > n, the:large'generated vortex breaks down
into smaller vortices, which in turn then break down into smaller gnessand so on. In other terms, the
energy rate responsible for the generation of the large vortex is transfefred to smaller scales with
essentially no dissipation until the size of the vortices is small enough andsenergy is eventually
dissipated into heat by the smallest vortices that approach the viscoussScale n. Therefore, in a
statistical balance, the incoming energy rate e corresponds to the rate of energy dissipation. It can be
hypothesized that at small enough scales the statistical properties of turbtlence,become locally
uniform and isotropic, independent on the details of how turbulence was generated. In»this picture,
the properties of the fluctuations of velocity depend only on the energy rate ¢ that arrives from large
scales and is transferred to the small scales. This homogenization allows drawing & simple picture
based on dimensional arguments, the rate of injection of kinetic energy (per unit mass) in the large
scales is dimensionally given by a velocity square divided by a characteristic time. It can be estimated

as proportional to the kinetic energy to U?, being U a characteristic velocity, divided by the time, 3

needed to cover the entire domain of size L. Thus, the energy rate can be estimated (as order of
magnitude) by
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3
g~UT. (10.15)

In such statistically steady, spatially uniform and isotropic condition, the viscous scale will depend
solely on the amount of energy flux and by viscosity

n=f(v). (10.16)
This is a dimensional equation involving two units. By dimensional analysis, it is immediate to obtain
the estimate, up.to a multiplicative constant set to unity,

- (V_3>Z_ (10.17)

&

The viscous scaled defined by (10.17) is also called the Kolmogorov scale. As said above, the degree
of complexity of turbulent flows is represented by the amount of interleaving scales, which can be
estimated by the ratio

1 3
4 4 3
LA (ﬂ)“ — Ret; (10.18)
W L5e \V
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that is proportional to the Reynolds number at the power % That again represents the measure of a
distance between the scale of available:energy and viscous dissipation scale.

As a further remark, these estimates demonstrate how the Navier-Stokes equations, that do not allow
general analytical treatments, may be difficult to~be tackled even by numerical approaches when
turbulence develops. Numerical solutions are based on a spatial discretization and it requires accuracy
up to about the Kolmogorov scale to possibly reproduce the details of dissipative phenomena.
Therefore, the space spanning the entire length of interest, whose size is proportional to L, must be
sampled with a resolution about the size n. Thus, the number of sample points along any spatial
direction must about L/n and the total number of pointssrequired to sample a three-dimensional
volume of fluid moving in turbulent regime is something like

L\? 9
Nyp ~ (ﬁ) _ Rei. (10.19)
The estimate (10.19) sets a limit to the actual feasibility of a comprehensive description of turbulent
flows at large Reynolds number. Due to this limitation, turbulence literature was mainly based on
solution of the Reynolds equations, or different version of them based on different averaging/filtering
introducing a “closure” model for the unknown terms appearing therein as/iscussed in section 8.2.
All such closure methods are however approximate and their reliability limited te.relatively simple
flows. As a result, turbulence remains an open challenge and it is important to build a physical picture
of possible turbulent phenomena in flows of interest.

In general, we may think of turbulence as a system of entangles and interacting vortex elements of
disparate sizes. Ranging from the large size generated by the boundaries, to the smaller size where
the flow is smoothed out by viscous effects. Understanding that turbulence is generated by a sequence
of interacting three-dimensional vortices allows its description in terms of the energy cascade
described above. An external energy input (like a pressure difference across a valve) pushes a fluid
across an orifice or along an irregular vessel bend. The flow thus generates energetic vortices whose
size is comparable with that of the container. These large vortices interact and produce smaller eddies,
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that further interact producing turbulent eddies of progressively smaller size capable to dissipate
kinetic energy into heat. At the lower end of this energy cascade, very small eddies are entirely
dissipated and do not generate anything smaller.

An increased friction between fluid elements and enhanced energy dissipation with respect to regular
fluid motion characterizes turbulence. In fact, the development of turbulence is the strategy used by
fluids to dissipate the excess energy. When a fluid motion presents a large kinetic energy (high
velocity); the fluid may be unable in a regular motion to maintain equilibrium between the external
energy source@nd viscous dissipation, in that case regular flow is unstable and instabilities increase
the particle pathsby developing swirling motions and small scales with higher shear rate to increases
viscous dissipation up to equilibrium regime. The Reynolds number represents, through (10.18), the
ratio between the'kinetic energy introduced in the large scales, proportional to pU?, and their ability
to dissipate with shear stress, grossly estimable as proportional to pvU /L. When the Reynolds number
increases above a certain‘threshold, regular flow becomes unstable and turbulence appears creating
smaller scales to enhance’dissipation. That’s why every realization of flow motion presents a critical
value of the Reynolds numberabove which the motion enters into turbulence.

In the cardiovascular system, turbulent flows are rarely encountered. The largest scales of motion
achievable in the arterial network cannotsexceed the vessel size, of a few centimeters at most. The
Reynolds number is normally well below one thousand, with the exception of the largest vessels. The
flow in the ascending Aortic and, sometime, in the cardiac chambers can reach values of the Reynolds
number up to some thousands. When turbulence develops, it is weak turbulence with an energetic
level that does not influence dramatically:the main dynamics. It should be remarked, however, that
cardiovascular flows are not steady and some changes in the picture above are expected. In unsteady
pulsatile flows, when the Reynolds number is ligh enough to suggest the presence of turbulence, the
highest levels of turbulence are recorded during-the deceleration after the peak of the flow. In fact,
the flow received energy during the phase with high velocity and has to dissipate such energy during
deceleration; the fast-moving fluid particles get closer@pproaching the preceding one, and therefore,
the energy-filled fluid enhances instability phenomenaduring deceleration that supports turbulence.
Vice versa, during acceleration fluid particles gain energy while moving away from each other and
the flow is more stable.

The most frequent appearance of turbulence in the cardiovascular system occurs in the aortic artery
that, on the other end, is the main artery and is involved in numerouspathologies. The flow across
the tri-leaflet geometry of the aortic valve provokes a rather complex» three-dimensional vortex
formation that, associated with the large Reynolds number (roughly from*3;000 to beyond 10,000 at
peak systole), produces weak turbulence. Weak turbulence may also develop during the diastolic
filling of the left and right ventricles when the jet across the mitral or tricuspid valve, respectively,
gives rise the formation of three-dimensional vortex structures that interaet-with, the surrounding
ventricular tissues.

Boundary layer separation, vortex dynamics and weak turbulence represent key elements in the
interaction between fluid flow and surrounding tissues in large vessels. Understanding these
fundamental phenomena is necessary to allow proper interpretations of fluid dynamics in
cardiovascular regions of interest. They are particularly relevant for pathological developments and
will be discussed in the next chapters.
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11. Separated Flow in Large Arteries

11.1. Arteriosclerosis and boundary layer separation

Arteriosclerosis is the deposition of substances transported with blood on the internal walls of the
arteries provoking a progressive reduction of their lumen. The initial phase of arteriosclerosis can be
imputed to multiple causes, like the inflammation of the arterial wall giving a thickening of intima-
media layer, pathologies of the endothelium reducing its protective function, or just the progressive
deposition‘ofdipid material. The individual arteriosclerotic risk level depends on numerous causes
ranging from, the properties of substances transported, their affinity with endothelium, to genetic
predisposition. Qn top of all these biological reasons, certain characteristics of fluid dynamics play a
fundamental role,“both for the initiation and for the progression of arteriosclerosis, and represent a
recognized risk factor for its development.

Flow and surrounding tissuesycan only interact though the exchange of dynamic actions: forces and
stresses. Blood flow interacts'with the endothelial layer of the arteries though the wall shear stress
(WSS), which is recognized toshave a primary role in the development of arteriosclerosis. On the
biological side, an abnormal WSS_on the endothelium triggers a signaling that induces vascular
inflammation. On the purely mechanical side, the endothelium is made of elongates cells that are kept
aligned with the flow by the normal/wall shear stress. When the wall shear stress is abnormal and not
directed along the vessel, stresses may progressively alter this alignment of endothelial cells that get
randomly oriented. In that case, the endethelium becomes rougher and more prone to deposition of
lipid substances transported with the blood.

Wall shear stress changes during the heartbeat @ccordingly to the pulsatile nature of blood flow.
Therefore, several measures were introduced to'identify a relation between the presence of anomalous
wall shear stress and arteriosclerosis. The most immediate'measure is the value of the time-averaged
wall shear (TAWSS) stress during the heartbeat, of duratien T,

1 T
TAWSS = f WSSdt. (11.1)
0

Low or negative values of TAWSS were shown to often correspond with the locations developing
atherosclerosis. More modern indices were also introduced to.better*underline the importance of
reversal of WSS for pathology; one of those is the oscillating shear index (OSI) that is defined

|, wssat| |

0Sl=1—"7——;
J, Iwss|dt

(11.2)

that approaches zero when the WSS is predominantly positive and increasesstowards 1 when WSS
reverses its sign during long time intervals.

The WSS quantity contained in (11.1) and (11.2) refers to the stream wise component. lmgeneral, the
wall shear stress is a vector tangent to the endothelium, as shown in formula (10.10). Vector quantities
are more difficult to be synthesized into simple indicators because they also account for directional
alterations that can be related with complex physiological phenomena. For example, the presence of
helical flow, discussed above in section 9.2, may help reducing the presence of stagnating regions
and the development of atherosclerosis; however, the description of arterial blood motion at such a
detail is difficult with current diagnostic tools and a satisfactory identification of the role of fluid
dynamics is still out of reach of clinical practice.
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The general rule is that the risk of atherosclerosis is related to the presence of anomalous wall shear
stress on the endothelium, sharp fluctuations and spatial gradients, especially when stresses are
reversed with respect to the main flow direction. It is evident that boundary layer separation and
vortex formation are key causes for the development of flow reversal and anomalous wall shear stress.
Additionally, regions with flow reversal are associated with higher blood stagnation and material
aggregation. Therefore, as a driving concept, the location of boundary layer separation can be
confidently‘assumed as a region with higher risk of atherosclerosis.
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Figure 11.1. Regions with higher chances of boundary layer separation, which are also higher risk
of atherosclerosis.

It is fundamental to be aware of which regions may, at least qualitatively, present higher chances of
developing boundary layer separation and thus higher risk of atherosclerotic developments. We have
seen in the previous chapter that boundary layer separation occurs insthose regions where velocity
presents a spatial deceleration along the wall. Figure 1.1 displays some.typical geometric conditions
where this can happen. Separation is largely expected after a vessel narrowing/expansion, which can
happen in presence of stenosis, at an enlargement, which is typically dugstesthe wakening of arterial
wall leading to aneurysms. Both are pathological conditions that will be discussed in more details
later in this chapter. Boundary layer separation can also occur under physielogical conditions for
example at a bifurcation. In particular the carotid bifurcation presents an enlargement (carotid sinus)
on the side of the internal carotid, which represents a typical region at risk. In general, however, any
branching leads to local flow decelerations that may give rise to boundary layer separation. We have
also seen that a vortex, after its formation, interacts with the wall and gives rise to seeondary boundary
layer separation. Therefore, any important boundary layer separation may proveke secondary
separation and create regions at risk even somehow away from those regions considered critical by
geometric consideration only.
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11.2. Stenosis

Stenosis is a pathological condition corresponding to reduction of the arterial lumen due to
atherosclerotic deposition; Figure 11.2 shows the various stages during development of a stenosis that
ends up with the progressive blockage of the vessel. From a mechanical, fluid dynamics perspective
it can start from a small disturbance in the flow that reduces the wall shear stress and facilitates
deposition of*material. This reduction of the vessel size provokes boundary layer separation and
further disturbance that in turn reduces the wall shear stress downstream and enhances deposition.
The narrowingsof. the vessel reduces the availability of blood-transported oxygen in the downstream
organs served bysthat vessel; a phenomenon known as ischemia. Stenotic narrowing is a self-sustained
phenomenon where its appearance induces further growth; therefore, it is extremely unlikely to record
a reduction of stenesis‘during time in absence of a therapeutic intervention. Eventually the stenosis
can even lead to a blockage of the vessel and give rise to extreme consequences to the organ supplied
by the downstream vascular network.

Normal Fatty Fibrofatty Advanced/vulnerable
vessel streak plaque plaque

Figure 11.2. Progression of arteriosclerosis from normal®vessel to formation of a critical stenosis
(credit: Npatchett, CC BY-SA 4.0, via Wikimedia Commons).

Stenosis reduced the flow and causes ischemia to the regions, whose_.blood (oxygen) allowance is
provided by that vessel. Sometimes, secondary circulatory pathways.can partially overcome this
issue, although allowance through secondary vessels is rarely suffiCient, when the oxygen request
increases above a minimum rate, because of exercise or stress.

In addition to the partial or total blockage of the vessel, the main riskyof a.stenosis is its partial
breaking with the release of a small fragment (a thrombus) that is transported downstream. Along the
branching arterial network, vessels become progressively smaller until such transported element is
unable to pass through and, at a certain level of the branching, it gets blocked in.a"vessel closing it
and not allowing blood availability to the tissues perfused by that vessel. For this reason, stenosis is
also studied to assess its “vulnerability” to break up and release fragments. This depénds whether the
stenosis is well perfused, it is hard passive material or it is composed of different blocks of materials.
The process of rupture of a stenosis can be influenced -besides its composition- by the presence and
entity of vortex formation therein. Indeed, it was shown before, in equation (10.13), that vortex
formation gives rise to dynamic hammering on the underlying tissue that may increase the risk of
making the stenosis unstable and release fragments.
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Figure 11.3. Stenosis in the carotid artery (credit, left picture: Henry Vandyke Carter, Public
domain, via Wikimedia Commons; right picture: Blausen.com staff (2014). "Medical gallery of
Blausen Medical 2014". WikiJournal of Medicine 1 (2)- DOI:10.15347/wjm/2014.010. ISSN 2002-
4436, CC BY 3.0, via Wikimedia Commons).

One typical site at risk of stenosis are the two carotid bifurcations (symmetric on the two sides of the
neck) as shown in Figure 11.3. The right or left common carotid artery bifurcates into the external
carotid artery, bringing blood mainly to the muscular elements of the head, while the internal carotid
artery grants blood allowance to the brain. The latter is of greater importance in relation to the
associated pathological consequences. The internal carotid artery isalso one of the vessels at higher
risk of atherosclerosis because it originates at the carotid sinus, an enlargement right at the bifurcation
that is a site where separation can occur naturally and is particularly pronge to development of stenosis.
The consequence of stenosis at the internal carotid is the reduction of bleod@llowance to the brain.
Its partial breaking can have consequences like ictus, which can be severevor, temporary (TIA,
transient ischemic attach) or be fatal leading to death.

Carotid sinus is so prone to development of the atherosclerotic plaque that it is commonly monitored
as an indicator for the individual predisposition to develop stenosis in other segments ‘ofthe arterial
network. Its analysis is also relatively easy because the carotid is a superficial artery onthe neck and
can visualized with good quality by simple ultrasound imaging like Doppler echography.
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Figure 11.4. Procedure of carotid endarterectomy surgery. The carotid presents a stenosis at the
bifurcation (left image)gthe vessel is opened and atherosclerotic material is extracted (middle), the
vessel is then sutured (right), (credit: Blausen.com staff (2014). "Medical gallery of Blausen
Medical 2014". WiKiJousnal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-
4436, CC BY 3.0, via Wikimedia Commons).

Therapeutic strategies for carotid stenosisat the early stage are made of blood thinners to reduce the
risk of further aggregation and growth. \When the stenosis presents a high degree of blockage or it is
at risk of rupture, therapies are based/on regular (invasive) surgery or endovascular (trans-catheter)
surgery. Carotid endarterectomy is a commen surgical approach to remove the arteriosclerotic plaque
at or near the carotid bifurcation. Its diffusion also follows the relatively simple access to the carotid
bifurcation. The procedure is schematically,sketched in Figure 11.4. The carotid lumen, once the
blood transit is temporarily deviated, is accessed through a longitudinal cut on the arterial wall. The
deposited material is then removed and the artery is sutured. During the suture, a small patch is
commonly added to the artery wall to avoid a reductien of the lumen of the sutured artery. Evidently,
the shape of such a patch influences the geometry of thie reconstructed vessel, the distribution of wall
shear stress, which in turn influences the risk of restenosistafter surgery. Patches are made large
enough to ensure a good passage of blood; however, they must not be too large to avoid excessive
enlargements and boundary layer separation, which is a major risk factor for the therapeutic outcome.
Monitoring the flow in the reconstructed artery, for example with color Doppler ultrasound, is
important to assess the risk associated with fluid dynamics.

Invasive surgical therapies are often substituted by endovascular procedures; shown schematically in
Figure 11.5. The endovascular approach is commonly preferable to subjectss with additional risk
factors, like aged patients, that may suffer for an invasive procedure. In.endovascular surgery, the
vessel is accesses through a guided catheter that releases an endovascular prasthesis (stent). A balloon
is expanded pressing the plaque at the wall, without removing it, and a prosthesis,is placed on the
expanded vessel restoring a sufficient lumen to allow blood passage. This prosthesis alters the vessel
geometry and may create an elasticity mismatch. These changes affect the fluid dynamics and the
interaction between flow and tissue, which may in turn alter the distribution of wall shear stress. Cases
of restenosis are observed and may sometime be imputable to the alteration of blood ‘motion, which
should be monitored as a measure of the quality of the therapy.
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Figure 11.5. Carotid endovascular prosthesis, Internal carotid artery with stenosis (A), prosthesis
placement with catheter (B), final configuration with normal blood flow restored (C) (credit:
National Heart Lung and Blood Institute, NIH;Public domain, via Wikimedia Commons).

Another major site at risk of stenosis is the coronary tree. Coronaries are the arteries that bring
oxygenated blood to the myocardium, the heart musclei*The two main coronaries, the right and left
coronary arteries (RCA and LCA), originate just behind.the aortic valve from two of the three sinuses
of Valsalva (described later in Chapter 13). Thus, the heart pumps blood from the left ventricle cavity
into the Aorta and, right after the aortic valve, part of thai“bleod return to the heart to feed its own
myocardium. As shown in Figure 11.6, the RCA feeds the myeeardium on the side of the right
ventricle, the LCA divides into circumflex and in the anterior'and posterior interventricular arteries
to feed the left ventricle and the interventricular septum.

We previously discussed carotid stenosis as a life-threatening ‘disease because it reduces blood
allowance to the brain. Similarly, coronary stenosis is a life-threatening.disease because reduces blood
allowance to the heart. The consequence of a coronary stenosis (see Figure 44.7) is the ischemia of
the myocardium that, for this reason, reduces its ability to contract. When.the, degree of coronary
blockage is almost complete, the oxygen allowance reduces to near zero andithe region of muscle
perfused by that coronary can undergo to myocardial infarction. When the lack of oxygen persists for
some time that tissue dies and becomes necrotic.

Myocardial ischemia, or infarction, affects the ability of the heart muscle to contractythus the ability
of the heart to pump blood into circulation. An extended infarction, due to stenosis in alarge upstream
artery, leads to the inability for the heart to pump enough blood and can lead to death if not recovered
rapidly before the infarcted tissue dies. A small infarction or ischemia, are primarily detected in terms
of reduction of the cardiac function; thus, their symptoms are those of a cardiac disease, and they are
first detected by cardiac dysfunction, although they originate from a vascular disease.
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Figure 11.6. Major coronary arteries that supply blood to the myocardium (credit: Servier Medical
Art. Annotations by MikaelyHaggstrom, M.D. Reusing images, CC BY 3.0, via Wikimedia
Commons, adapted)

The most common approach to recognize the presence of myocardial ischemia is thus that of
echocardiography to observed whether.some regions of the cardiac wall present reduced contraction.
Sometimes, the blood allowance is sufficient for an approximately normal contraction at rest, while
it becomes insufficient under stress or exercise. Therefore, it is also common to perform a stress
echocardiography (by exercise, or using (pharmacologic stress in patients who cannot perform
exercise) to recognize contraction abnormality:in presence of a higher demand of oxygen. This occurs
in presence of small stenosis as well as when some blood is able to reach the region through secondary
circulatory pathways. Suspected coronary stenosis aresthen verified by coronary angiography that
permits to visualize the blood flowing into the corehary.tree and thus the lumens of the coronary
arteries. Such assessments are based on geometric properties only and do not consider explicitly the
effective fluid dynamic performance of the vessel presenting a stenosis. This can lead to an
overestimation or an underestimation of the narrowing in terms of.effective functional relevance.

A more advanced approach to evaluate the impact of a stenosis is based on measuring the fractional
flow reserve (FFR), the ratio between blood pressure upstream~and downstream the narrowing to
verify whether there can be secondary pathways ensuring blood ‘allewance downstream the lesion.
Coronary pressure measurements for FFR are performed during.ceronary angiography with a
coronary pressure guidewire. FFR is considered the most reliable assessment of coronary artery
disease; however, the need of invasive measurements may limit its routine.diagnostic application.
Therefore, noninvasive alternatives to FFR were later introduced based on ‘teproducing the fluid
dynamic in the coronary vessel by mean of numerical solution of the Navier-Stokes equation in the
geometry extracted by CT angiography. This approach, which took the name FFRcx; was'successfully
evaluated in a series of clinical trials and it is currently proposed as viable clinical option. On the
other hand, this is a purely virtual analysis and the reliability of results depend on the accuracy of the
geometry extracted from CT and of the flow conditions inserted at the initial and terminal boundaries
of the simulated coronary tree. The rapid advancement of imaging technology led to image-based
alternative to FFR based on measuring properties of blood flow across the stenotic constriction using
sequence of images in coronary CT. Such an approach, usually called quantitative flow reserve
(QFR), has the advantage of being based on in vivo data; it showed good performance in comparison
to invasive FFR and appears a viable alternative for routine clinical application .
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Figure 11.7. Coronary stenosis® and myocardial infarction (credit: Blausen Medical
Communications, Inc., CC BY 3.0, viaWikimedia Commons, adapted).

Early therapy for coronary artery disease is.sone of blood thinners to avoid their progression; when
the degree of the disease exceeds given limits, resolutive intervention have to be planned. The open-
chest surgical approach is that of by-passing the blocked.vessel with the insertion of a new artificial
vessel, a by-pass graft, that connects the vessel upstream the stenosis with the vessel downstream. At
the position of the junctions where the graft connects/withithe original coronary, blood flow can be
disturbed and that region can become at further risk ofsstenésis. Much more common, however, is
now the use of endovascular procedures. The procedure‘is shown schematically in Figure 11.8: the
vessel is reached by a guided catheter from the Aorta. The catheter'is equipped with a balloon that
expands the endovascular prosthesis and a prosthesis (stent) is placed and remains in position after
the catheter is released. The changes in geometry and elasticity aboutithe stent position may sometime
disturb the fluid dynamics and alter the distribution of wall shear stress. However, these are subjects
at risk, where cases of restenosis can be as frequent as than those of new stenosis, and are commonly
kept under periodic control.

Carotid and coronary are the most common sites at risk of stenosis; they take special relevance
because they supply oxygen to life-supporting organs as the brain and the_heart, respectively.
However, stenosis can develop in numerous other sites along the arterial tree. Common.examples are
the side branches on the Aorta, or the iliac bifurcation at its end. Nowadays, most-arterial stenosis
diseases can be treated by endovascular procedures, whose technology is continuously ‘advancing.
Stent are available for about any dimension and shape, and multiple stents can also be combined to
reconstruct bifurcations and multiple branching. Typically, patients who developed a stenosis are
subjects with higher predisposition to atherosclerosis. Therefore, alteration of the fluid dynamics in
such patients must be carefully monitored in those sites where boundary layer separation is likely or
is observed.
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11.3. Aneurism Q

Aneurism is a pathology due to the enlargement of the vessel over a sh@ﬁ The tissue stretched

in such expansion is typically thinner and weaker and the main threat iated to the risk of

rupture. Aneurysms are more frequent in the Aorta, at all levels, and in th rteries. The main
dicate

Figure 11.8. Endovascular coronary surgery artery (credit: I\@mstitutes of Health, Public

issue associated with aneurysms is that in most cases they do not give flow i ent and do not
produce symptoms. Therefore, they can be detected after specific searches in r inheritance
or other risk factors, frequently they are detected simply by chance. Aneurism i t disease:
despite its common absence symptoms, when the aneurysm undergoes to rupture it e fatal.

Schematically, aneurysms are divided into two main geometric types as shown in Figure 11.9. A
fusiform aneurysm is a dilatation of the entire vessel that is characterized by a diameter larger than
normal. Differently, a saccular aneurysm is a side bulging of the vessel tissue, which generates a
balloon-like protrusion. Evidently, the categorization is not always so sharp and numerous
intermediate conditions may also exist.
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Figure 11.9. Type of aneurysms (credit: Withers, K., Carolan-Rees, G. & Dale, M. Pipeline™
Embolization Device forsthe\Treatment of Complex Intracranial Aneurysms. Appl Health Econ
Health Policy 11, 5-13 (2013). DOI:10.1007/s40258-012-0005-x. Creative Commons Attribution
License).

The fluid dynamics inside an aneurysme=depends on the geometrical details of its specific shape.
Fusiform geometries usually present a central_jet due to boundary layer separation at the expansion
and recirculating regions at the enlargement: The jet may or may not be aligned with the distal vessel
and possibly impact on one side wall of the aneurysm. In a saccular geometry, the flow is mainly
stagnating therein with more or less wash=out of the blood. Therefore, the first fluid dynamics
phenomenon in aneurysms is the presence of stagnation areas, that may form thrombi when there is
not enough exchange of blood with the main flow. The;second important phenomenon is the impact
of the jet on the side wall provoking overpressure im'the splash area; an impact occurring at every
heartbeat hammering on a wall that is already thin and weak may increase its risk of rupture.

The birth of aneurysms can be imputable to the local weakening of the tissue. This phenomenon is
sometime related to alteration of the local fluid mechanics that creates overpressure or wearing shear
stress at the wall. More frequently, however, this is imputable to‘an.alteration of the tissue itself for
multiple causes that often follows genetic predisposition. The progression and development of the
aneurysm is primarily due to the continuing presence of the causes.that generated it. Progression,
however, can also be imputable to the specific alteration of the fluid dynamics therein. The major risk
is its rupture that can bring to ictus (brain aneurysm) and internal hemorrhage, which in turn can lead
to sudden death.

A typical site for the development of aneurysm is the Aorta. An excessive:wall deformation in the
proximal part of the ascending Aorta can follow from genetic causes or alsorbe a'consequence of
anomalies in the aortic valve. In the latter case, the valve jet may present high velocity that are
deviated toward the aortic wall, because the orifice area is small and tilted. The impact of the jet on
the wall creates high shear that can wear down the epithelium and also produces.a continuous
hammering due to over-pressure acting on such wall. This type of aneurysm is sometime associated
with the presence of a valvular stenosis or a bi-leaflet aortic valves, discussed later in Chapter 13,
whose opening may provoke a laterally directed jet with high velocity. In the aortic arch, including
part of the ascending and descending Aorta, the aneurysm develops mainly because of genetic
alteration of the wall tissue. The abdominal Aorta above the iliac bifurcation is one of the most
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frequent sites for the formation of aneurysms, which deserved its own acronym AAA standing for
Abdominal Aortic Aneurysm.
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Figure 11.10. Flow in"a saccular aneurysm where the aneurysm is separated from main flow (left)
or when it exchanges bleod and provokes shear inside the aneurysm.

Fluid dynamics plays a role‘for the progression of the aneurysm. Consider a saccular aneurysm first.
The flow may occur mostly along the.vessel, without significant exchange with the side expansion;
for example, when the bulge is very lateral and the opening is small and aligned with the vessel wall
as sketched in the left side of Figure'11410. In this case, blood coagulation can likely develop inside
the aneurysm and remains therein to pessibly protect the bulged wall. This aneurysm is stable, by a
fluid dynamic point of view, because flow.is not expected to induce its growth. On the opposite, when
the main flow partly enters into the side bulge, as shown on the right of sketch of Figure 11.10, it can
provoke additional shear and epithelial damage; it does not allow coagulation of blood, thus keeps
the bulged camera active. In this case, the ‘aneurysm is unstable, by a fluid dynamic perspective,
because it is expected to progress and to present.an increasing risk of rupture. Similar evaluations can
be brought forward about fusiform aneurisms. In thesescases, the complete coagulation is less
common. Examples of flow in active aneurysms areshown,in Figure 11.11, the deviation of the main
flow may induce an increase of pressure on a wall that can/affect the aneurysm progression.

Figure 11.11. Flow in an active saccular aneurysm (left) and in a fusiform aneurysm proximal to
the iliac bifurcation (right) (credit: Tezduyar et al. Int. J. Numer. Meth. Fluids 2008;57:601, with
permission from John Wiley and Sons).
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Fluid dynamics, however, is rarely used clinically to categorize the risk of progression or rupture of
aneurysm. Currently, risk assessment is essentially based on the size of expansion only. However, the
progression of imaging techniques now allow evaluation of intra-aneurysm blood velocity vector field
and novel solutions are under development to improve the categorization and support diagnosis and
therapeutic planning.

aneurysm tissue (removed) aneurysm (left in place)

—— surgical graft

endovascular graft

Figure 11.12. Surgical (left) and endovascular surgical (right) treatment of an abdominal aortic
aneurism (credit, left and right pictures®Wanhainen et al. Eur. J. Vasc. Endovasc. Surg. 2019;57:8,
with permission from Elsevier; middle image: Blausen.com staff (2014). "Medical gallery of
Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-
4436., CC BY 3.0, via Wikimedia Commons)

Once an aneurysm has been detected, there is no specific pharmacological therapeutic treatments
(beside those for associated risk factors, like high blood pressure). The periodic control is crucial to
monitor its progression. Therapies are essentially of 'surgical or endo-surgical type as sketched in
Figure 11.12. Surgery is performed through bandage or, more likely, by removing the aneurysm and
replacing the portion of the vessel with a prosthesis. More recentlyyendovascular surgery, which is
performed by inserting a stent in the vessel is becoming a much mere.common option. It is important
to remark that the prosthesis has to be sutured (for regular“surgery) or anchored (endovascular
surgery) in the vessel upstream and downstream of the region where the aneurysm was present. This
sometimes represents a challenge to surgeons because the tissue was weaker and not intact at the
aneurysm, it is therefore possible that some weakening is present in the'nearby tissue that may not
allow an optimal anchoring. It is important to verify after surgery that there 1s.no leakage across the
prosthesis and that there is not blood motion in the aneurysm region outside the endovascular
prosthesis After the insertion of the endovascular prosthesis the blood should*flows through the
prosthesis while stagnating blood is left to coagulate in the lateral expansions thatsis excluded from
the circulation.

We said above that the causes of aneurysm formation are genetic or due to regional alteration of either
tissue or flow properties. The surgical repair solves the effects but does not remove the causes that
led to aneurism development. Therefore, frequent controls are important after surgical therapy close
to the repaired vessel where tissues can have sub-optimal mechanical properties, as well as in other
sites at risk. Monitoring is mainly performed looking at the vessel geometry; however, it also
important to verify the presence of anomalies in the flowing blood that witnesses abnormal dynamics
and possibly associated risk factors.
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12. Cardiac Mechanics I: Fluid Dynamics in the Cardiac Chambers

12.1. Cardiac electro-mechanical cycle

The complete heart is an organ than contains two biological pumping systems, the right heart and the
left heart. Each individual heart is composed of an atrium that receives low pressure blood and is
connected to‘the respective ventricle that pumps blood at the arterial pressure into the respective
circulation. The left and right sides work synergistically in the whole heart and they present similar
timing of their@ctivity. They are also arranged in series along the circulatory network. The left heart
pumps oxygenated blood in the primary circulation that, after releasing oxygen to all body, terminates
into the right side of the heart. The right heart pumps de-oxygenated blood in the pulmonary
circulation, where=it_entrains new oxygen and terminates in the left heart. Therefore, for blood
incompressibility, each/side pumps the same amount of blood volume in the circulation. The main
difference is that the pumping work is performed at a significantly different arterial pressure; on the
right side, pressure in thespulmonary artery typically ranges between 5 and 20 mmHg whereas on the
left side pressure in Aorta is much higher and varies normally from 80 to 120 mmHg.
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Figure 12.1. Heart anatomy and blood flow paths (credit: Wapcaplet, CC'BY-SA 3.0, via
Wikimedia Commons).

The heart anatomy, with indication of the blood flow pattern, is shown in Figure 12:1. On left side,
the pulmonary veins coming from the lungs bring oxygenated blood in the left atrium.Fhe left atrium
connects to the left ventricle through the mitral valve, a valve with two leaflets (bicuspid valve) that
opens into the left ventricle and avoids backflow. To this aim, and due to the high pressure difference
that can develop between left ventricle and left atrium, leaflets are retained from opening into the
atrium by the chordae tendineae that connect the tips of the valvular leaflets to the inside of the
ventricle wall in a reinforced region called papillary muscles of the myocardium. The myocardium is
a thick muscle that surrounds the left ventricle and permits its contraction to vigorously pump blood
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into the Aorta, the first artery of the primary circulation, and work against the high aortic pressure.
The aortic valve is placed at the base of the ventricle, on the right side of the mitral valve, and
separates the left ventricle from the aortic artery. It is a tricuspid valve (with three leaflets) that avoids
backflow, for the relatively lower pressure difference from Aorta to the left ventricle, by the closure
of the three leaflets with the tips aligned downstream. On the right side, the right atrium receives
poorly oxygenated blood from the inferior and superior venae cavae and connects to the right ventricle
through the“tricuspid valve. The right ventricle is surrounded by thin myocardial layer and pushes
blood through the pulmonary valve, into the pulmonary artery. The right ventricle produces the same
volume rate than the left, but it works against much the lower pressure in the pulmonary arteries, for
this reason thesmyeeardium that surrounds the ventricle on the right side is thinner that on the left
side. Geometrically, ‘therleft ventricle has roughly the shape of a prolate spheroid and the right
ventricle wraps around it on the right side, for about 45 degrees, in a triangular shape. The two
ventricles are separated by.a portion of thick myocardium called the interventricular septum.

The left ventricle (LV) issthe principal mechanical element of the human heart. It has the function of
a volumetric pump that receives/low pressure blood from the venous system through the left atrium
and ejects it with higher pressure through the aortic valve into the primary circulation. The thick
muscular layer, the myocardium, that surrounds the LV chamber operates in a sequence of mostly
passive relaxations, when it receives/thesblood, and active contractions to push it into the circulation.
Given the fundamental mechanical funetion of the heart, the myocardial tissue deformation and the
blood flow inside the LV represent a central issue of clinical evaluations.
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Figure 12.2. The electric cycle. Left: fibers transmitting the electricimpulse, right: typical
electrocardiogram (ECG) signal.

LV function can be described, in global terms, as comprised of interconnected activities; the electric
stimulation of muscular fibers (electric cycle), which gives rise to changes in the ventricular volume
(mechanical cycle) that, in turn, develop in presence of a ventricular pressure and produce mechanical
work. Cardiac electric cycle develops by the propagation of the electric signal that produces the
mechanical contraction of the individual myocardial cells and eventually give rise to the volumetric
reduction of the chambers. For this reason, the cardiac cycle is commonly referred as an electro-
mechanical cycle. The electrocardiogram (ECG) records the polarization and de-polarization of the
muscular fibers, due to electrical voltage difference, which correspond to the beginning of fibers
contraction and relaxation, respectively. One typical ECG trace is reported in Figure 12.2 next to a
sketch of the main electric conduction system. The electrical stimulation starts from the sinoatrial
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node placed about the tip of the atrium (on the right side) and propagates into the myocardium
surrounding the two atria. It produces polarization and consequent shortening of the muscular fibers:
the atrial contraction; which pushed some blood into the ventricle; this weak polarization is
noticeable in the ECG by a small peak that is called the P-wave. The electrical conduction converges
into the atrioventricular node, placed between the ventricles and the atria where it slows-down before
propagating rapidly into the ventricles” branches. The QRS complex in the ECG indicates the
polarization of the ventricular myocardial fibers, after which the ventricular contraction develops.
The ventricular contraction, or systole, pushes blood in the circulation. When contraction is completed
the muscular/fibers depolarize, as revealed by the T-wave in the ECG, and relax allowing the blood
to fill the ventricle-during diastole. Diastole is then completed by the following atrial contraction.

Atrial filling

i diastasis
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Figure 12.3. The electro-mechanical cycle.

The electric cycle has a parallel mechanical cycle of ventricular filling and ejection to form the
electric-mechanical cycle. We will keep the focus on the LV, unless otherwise specified, that is the
most energetic element of the human heart; however, the right ventricle follows in_parallel an
analogous process. With reference to Figure 12.3, we can correlate the electrictcycle with the
mechanical events. During systole, the LV contracts, the mitral valve is closed, its volume decreases
and flow is ejected (S-wave) at systolic pressure through the Aorta; during deceleration of the S-wave
pressure in the LV decreases and falls below that of the Aorta until the aortic valve closes. Then the
myocardium relaxes, and changes its shape for the rapid de-activation of the muscular fibers, during
this short period with both valves closed (called iso-volumic relaxation) pressure rapidly decreases
until it falls below that in the left atrium, mitral valve opens and blood flows into the LV. This is the
early filling phase of diastole, the E-wave, that corresponds to the main increase of LV volume. This
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phase terminates when the atrial and ventricular pressure become comparable and flow is very small
reaching a condition of diastolic stasis, called diastasis. Afterwards, the atrial contraction completes
the LV filling (A-wave) and the diastolic phase. The mitral valve closes and, after a short iso-volumic
contraction phase, the Aorta opens and systole restarts.

The volumetric function of the LV is primarily described through parameters as those of a volumetric
pump. The volume at end-diastole, Vgp, is the maximum size of the LV chamber that then contracts
to reach<@ minimum value at end-systole, Vgs. Therefore, the stroke volume SV = Vgp — Vgs is the
volume of bload'ejected by the LV into the circulation, as well as the volume entering during diastole.
The SV is also.the'volume that passes through any cross-section of the circulatory network during one
heartbeat.

The SV is commonly normalized with the Vgp to provide a dimensionless measure of the entity of the
contraction relative ta the available volume. This measure is defined ejection fraction

Vep — Vgs SV

VED Vep
which represents the most common elinical parameter to assess the LV systolic function. Evaluation
of EF requires the evaluation of £V volumes, which can be performed with numerous methods based
on imaging, from echocardiography t0 MRI, for example. In normal hearts the EF is usually about
65%, or above and it is considered abnormal when it falls below 55% (although exact figures depend
on the measurement method). A reduction_of the EF reveals the presence of a cardiac dysfunction,
although there are also pathologies that developiin presence of a preserved EF.

EF = (12.1)

A deeper understanding of LV mechanical function, must include the role of pressure to identify the
effective mechanical work associated to the'electro-mechanical cycle. Pressure inside the left
ventricle reaches its maximum value during the systaolic eontraction, when it has to overcome the
systolic pressure inside the aortic artery (normally abeut 120 mmHg) and reduces during the
contraction to values comparable to the diastolic pressuredn the Aorta (about 80 mmHg). After the
closure of the aortic valve, and opening of the mitral valve, the pressure inside the ventricle during
diastole falls to the low value that are found in the left atrium, reaghing a minimum of a few mmHg.
The interplay between pressure and volume led to an interpretation in terms of isothermal
thermodynamic process that can represents by a pressure-volumedoopas sketched in Figure 12.4 for
a normal subject. The loop is bounded above and below by the end-systolic pressure-volume
relationship (ESPVR) that contains the end-systolic point, and itssend-diastolic counterparts
(EDPVR). These are related to the concept of elastance that is beyond the scope of this book, more
details can be found in classic books on cardiac physiology.

The pressure-volume loop must be run in the counter-clockwise direction. The upper curve represents
the systolic contraction when volume reduces from end-diastole to end-systole with pressure reaching
its maximum about half the way. The lower curve corresponds to the diastolic l«V expansion. The
approximately vertical lines connecting the two curves represents the iso-volumic phases
corresponding to the quick transition between the closure of one valve and the opening of the other
when volume is approximately constant and pressure rapidly changes.

The pressure-volume loop is relevant for the evaluation of the mechanical work of the ventricle. The
instantaneous power associated to a volume of fluid, that represents the time derivative of the
mechanical work, is defined as the scalar product between acting force and velocity. In the case of a
volume of fluid V (t) with no volumetric forces, the only force is the pressure that acts normally to
its bounding surface S(t), and the total power is
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P(t) =f pv-nds. (12.2)
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Figure 12.4. Pressure-volume loop in a normal left ventricle.

Pressure can be confidently assumed as approximately constant inrthe chamber with a value p(t); in
this case it can be taken out of the integral and the integral is identically zero in an incompressible
fluid for mass conservation (4.3). This result is informative when-one considers that the wall is given
by the tissue boundary and the open parts where fluid flows S = S, +5,,.,. Equation (12.2) can be
rewritten as
?)
S

and including the boundary of the open part

vb-ndS+f vf-ndS=O;

b Sopen

pf vb-ndSz—pf (v —vp)-nds.
s s

open

The first integral represents the volumetric rate and equation (12.2) becomes

av
P = —pf vy -ndS ; (12.3)
dt s r

open
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where v = vy — v, is the fluid velocity relative to the (possibly moving) volume boundary.

Equation (12.3) shows that the instantaneous power required by the myocardium to change the
volume against the pressure is equal to the power of the fluid leaving the LV cavity against the same
pressure. It further tells the total mechanical work performed by the LV during one heartbeat, which
is the time integral of the either terms in (12.3), is the area of the pressure-volume loop

T av
w = fo p(t) Edt = 3€p(t)dv. (12.4)

Looking at Figure 12.4 it is evident that most of the mechanical work is performed during systole,
and can be estimated as

VED
Wiys = j pdV = Py SV; (12.5)

VEs

where p;, is the averagevalue of aortic pressure during systole.

The properties described sofarprovide information about the overall mechanical performance of the
LV associated to exchange of a volume of fluid. However, these are only global evaluations that do
not account to the details of fluid dynamics that develop inside the left ventricle and that influence
the efficiency of its mechanical functions

12.2. Fluid dynamics inside the left ventricle with a mention to the other chambers

Heart function is about creating and sustaining‘motion of blood. The previously discussed electro-
mechanical cycle has therefore its ultimate effect.in the dynamics of blood flowing through the LV
from mitral to aortic valve.

Despite this apparent simplicity of the heart cycle,sthesfluid dynamics inside the left ventricle is a
very intense dynamical phenomenon and represents a fundamental element in cardiac function. The
incoming jet that enters the LV develops impulsively; withinsa few hundreds of second, it reaches
speeds above the meter per second to enter a few centimeters long.eavity. Then, just as rapidly, flow
must reverse the direction of motion of 180° and redirects toward the Aorta where it will exit at a
similar high speed. The diastolic jet develops boundary layer separation from the tips of the mitral
valve and immediately gives rise to a swirling motion within the cavity,as exemplified in Figure 12.5
(left picture). The mitral orifice is slightly offset with respect to the‘idealsventricular axis for which
the jet redirects towards the lateral wall and gives rise to an asymmetrical, swirling structure. The
underlying phenomenon is that of the formation of an irregularly shaped.vortex ring, both during the
E-wave and during the A-wave, which then dissipates and stretches toward the outflow tract at the
beginning of systole as shown in Figure 12.5 (right picture).

The flow pattern in a normal LV was extensively described in literature. It can be‘qualitatively
understood in more depth in terms of three-dimensional vortex dynamics. In brief, and with reference
to Figure 12.6, the inflow jet during the diastolic E-wave enters through the mitral valve and develops
a ring-like vortex structure below the valve, which represents the jet head. This vortex ring is slight
displaced with respect to the chamber because the mitral valve is not central, and it slows down on
the side closer to the boundary (the posterior-lateral wall, behind the shorter mitral valve leaflet) for
irrotational image effect. The ring thus tilts with one side remaining more upstream while the other
reaches the center of the chamber; shortly after, the vortex induces boundary layer separation on the
same side and dissipation is enhanced therein. Eventually, the vorticity remains stronger about the
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center of the chamber where a rotatory motion develops. The same phenomenon develops, in weaker
form, during the A-wave, which feeds the previously developed dynamics. Sometime, in healthy
subjects and during exercise, this process is intense, the Reynolds number is high enough, that it can
be accompanied by vortex instabilities giving rise to weakly turbulent flow. Typically, at the end of
diastole, the blood presents a weak rotation with velocity directed upward toward the LV outflow
tract. This facilitates the blood ejection into the Aorta during the following contraction and avoid
sharp dissipation during early systolic ejection.

Figure 12.5. Blood motion inside the left ventricle, sketch/superimposed on the streamlines on the
central longitudinal plane reconstructed from echocardiography..lmage during during diastolic
filling (left) and systolic ejection (right).

The length of the jet, the phenomena associated with its impact onsthe endocardial tissue, as well as
the development and dynamics of the vortex structure inside the cardiac chamber, depend on various
physiological and pathophysiological factors. A fundamental roleis given by the size and the
geometry of the chamber and its synergistic contraction and elastic relaxation,as well as the geometry
of the mitral valve orifice. All these concurring elements can alter the picture discussed above, making
the vortex a stable structure maintaining kinetic energy or an unstable structure that creates
turbulence. It must also be considered that blood is an incompressible medium, All myocardial
regions must work in harmonic synergy to push blood toward the aortic exit and receive blood evenly;
an incorrect timing of contraction or relaxation in one region of the wall has the“resaltiof pushing
blood toward the other region, thus creating intraventricular pressure gradients that stress the facing
tissue rather than creating blood motion.

Following the description of the featuring phenomena of LV fluid dynamics we can briefly mention
what is known about the other chambers. Blood motion in the left atrium is driven by the pulmonary
veins that enter the atrium transversally. Very much dependent from the angle of attach of these veins,
the resulting flow can take a rotary motion or be more irregular and weakly turbulent; when the mitral
valve opens this possibly rotary motion flows down into the left ventricle in a funnel-like patters.
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These considerations are extracted from few visualizations and not much more is known. Similarly,
little is known about the right atrium that receives blood from the inferior and superior cavae veins,
they are supposed to produce a rotary motion and can give rise to turbulence depending on the
orientation of the two jets.
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Figure 12.6. Three-dimensional vortex structure inside the left ventricle during late diastolic filling
computed from numerical simulations. The ring-shaped«vortex created during early filling is inside
the ventricle and a newly generated ring is forming during atrial contraction.

The right ventricle (RV) presents a peculiar shape that is elusive to visualization methods and limits
the possibility to assess its mechanical function. It is characterizedsby a streamlined geometry, with
a relatively wider region below the tricuspid valve that narrows as the chamber extends around the
LV and converges toward the pulmonary valve. However, the significanee«of this geometry on RV
fluid dynamics and function is largely unknown. Currently there are only few works performed with
respect to characterization of RV fluid dynamics, although RV function has beenishown to be a major
determinant of clinical outcome in numerous cardiac dysfunctions includings congenital heart
diseases. Additionally, it is worth to mention that RV function is not marginal as the volume of blood
ejected from the RV must be equal to that ejected by the LV because the circulation system is a closed
one. For the same reason, a reduction in the function of one ventricle immediately. reflects on the
other.

The flow field in the RV presents some qualitative differences with respect to the LV due to its
specific geometry. The diastolic filling presents some analogy to that in the LV with the development
of a ring-like vortex structure behind the tricuspid valve during the inflow; this forming vortex
interacts with the close boundaries of this slimmer chamber, particularly on the septal side. The
vorticity remains mainly in the region from below the valve to the apex and does not spread much in
the region toward the outflow. During systolic contraction, the remaining vorticity extends along the
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converging outflow tract adding a slightly helical pattern to the otherwise largely irrotational velocity
field.

12.3. Evaluation of LV Fluid Dynamics

The role of fluid dynamics inside the LV (as well as in the other chambers) can be categorized in two
fundamentalsaspects. The first is a kinematic aspect, about the efficiency of the flow transit; the
second is.a dynamic aspect, about the exchange of forces between flowing blood and surrounding
tissues.

(i) Kinematicaspects: Flow transit

The quality of flow transit corresponds to mapping the time of residence of blood inside the chamber
and the formation of regions with reduced exchange of blood. The reduction of the wash-out of blood
in the LV, as may ocCcur.in presence of stagnation regions, represents a risk factor for thrombus
formation; especially when'the higher residence time is accompanied by a high shear stress that can
trigger platelet activation andaggregation mechanisms.

Major advancements about this aspect were achieved by processing 3D phase-contrast MRI
acquisitions, usually called 4D Flow MRI, that provides the 3D velocity vector field in the entire LV
(with the limitation of moderate time and space resolution, and of reconstructing the phase-averaged
flow field from numerous heartbeats)«There, flow transit was analyzed through the subdivision of
the LV end-diastolic volume of bleods Vg, into 4 sub-volumes depending on whether the
corresponding blood resides more or lesssthan.one heartbeat in the LV chamber. The division is as
follows. The direct flow, Vgirect, 1S the volume of blood that entered during diastole and transits
directly to the aortic outlet during the following 8ystole, thus residing less than one heartbeat in the
LV. The retained volume, Vi.qtained, 1S the part'that entered during diastole that is not ejected during
the following systole. The delayed volume, Vgeiayeq, Was already present in the LV at the beginning
of diastole and is then ejected during the following systole. Finally, the residual volume, Vicsiqual:
was present in the LV before the filling starts and is yet not ejected in the next systole. In a formula,
the Vgp is divided as

VED = Vdirect + Vdelayed + Vretained + Vresidual i (12-6)

The first two terms on the right hand side are the volumes that-are the ejected during systole, the
stroke volume, SV = Vyjrect + Vielayed, and by difference with (12.6), using (12.1), the other two
terms are those remaining in the LV at the end of the systolic ejection,. Vgs = Victained + Vresidual- At
the same time, when the valves are well healthy and ensure absence ©f any“backflow, the stroke
volume also corresponds to the terms that enter during diastole SV = Vyireet +Vsetained,» Meaning that
Vretained = Vdelayed: UP t0 measurement errors. These linear relationships ‘among the four sub-
volumes in Eqg. (12.6) allows to recover three of them from the knowledge of asingle one (typically
Vyirect OF Viesidual, that are the most representative of blood transit). For example; theimeasurement
of Vgirect Provide information of the percentage of blood that transits across the LV witheut residing
more than 1 heartbeat; it is then immediate to obtain the Vi.egiquar = Vis — SV + Vqireer that stagnates
at least two beats inside the chamber, and so on with the others. It was shown that the direct flow
component was reduced in dilated dysfunctional LVs with respect to normal hearts while the residual
component increase, testifying a detrimental flow transit and higher risk of thrombus formation.

The analysis of flow transit and residence time is relevant for recognizing the efficiency of blood
motion and helps stratifying the risk of thrombus formation. This evaluation is commonly performed
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by releasing a large number N of virtual particle identified by their coordinates X;(t),i = 1...N, and
letting them to move with the local velocity
dX;

= = vt (12.7)

where the velocity vector field v(x,t) is made available by imaging methods or by numerical
solution. The particles can be initially distributed evenly in the LV cavity at end-diastole, each one
representing a small volume of blood. They are then tracked forward in time during the LV
contraction tg'evaluate those that exit during systole; they are also tracked backward in time during
the previous ‘diastole to obtain those that entered during the previous diastole. Such an approach
corresponds to a'Lagrangian representation where individual particles are followed in time. Another
systematic approach«to ‘analyze flow transit can be based on the Eulerian equivalent of equation
(12.7). It can be restated as a transport equation for the concentration of a passive scalar, which
corresponds to individual bleod particles “marked” at a certain instant during the cardiac cycle. It is
common to integrate the*transport equation with a diffusive term that mimics the diffusion of fluid
particle as it occurs to regular fluid elements. Call C(x, t) the concentration of particles, the transport-
diffusion equation is

aC
SV VC = DV3C; (12.8)

with the diffusive coefficient D can be placed.equal to the kinematic viscosity of blood, or to zero to
reproduce a pure transport with no diffusion. Equation (12.8) can be solved with relative ease,
numerically, once the velocity field v(x, t){is’known. This can be solved, for example, starting from
end-systole with the condition that C (x, 0) ="1 everywhere in the LV volume. The concentration will
decrease after every heartbeat of a percentage that depends on the quality of blood wash-out. The
space-average value of concentration C(t)

- 1
C(t) = m J C(x, t)dV
V()

is a curve that is C(0) = 1 initially and decreases after every heartbeat (typically exponentially) while
the original blood washes-out. It is immediate to see that the congentration after one heartbeat, at the
following systole, corresponds to the ratio C(T) = Vyesiqual/Ves. Lherefore, the sub-volumes of
equation (12.6) can be recovered by the first term of the wash-out curve. The time profile of the
concentration curve provides a comprehensive information of the®wash-out process. In dilated
ventricles, the curve decays more slowly than in normal hearts and in presence of stagnation regions
the tail of the curve is sustained for long time because the region with blogad'stasis is more difficult
to wash-out. This approach can also provide spatial maps of concentration to identify regions with
reduced or accelerated wash-out.

An approach based on equations like (12.7) or (12.8) can be extended to more compléx,properties,
like residence time or its combination with shear stress, to weight the measure of stagnation with the
potential degree of biological activation for developing thrombus. Clinical studies along this line are
still at an early stages; however they represent a promising technique for providing quantitative
measures of the risk of thrombus formation and eventually modulate the anticoagulation therapy in
subjects at risk.
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(if) Dynamic aspects: Hemodynamic forces

The dynamical actions exchanged between blood and tissue are represented by wall shear stress and
pressure. Wall shear stresses are expected to be relevant when the behavior of blood motion is sensed
from receptors on the tissue that trigger possible LV adaptations through complex processes of
mechano-transduction that are still marginally understood. Pressure has a more direct mechanical role
on ventricular,function, which was previously described by the pressure-volume diagram (Figure
12.4) andsequation (12.4). However, that description refers to the averaged value of pressure in the
ventricular,.chamber and does not account for its spatial distribution. It should be reminded that heart
function is that of creating blood flow. And we have seen multiple times in previous chapter that fluid
motion develops n“virtue of the presence of a gradient of pressure, Vp, whose value during time
represents the dynamicicoupling between myocardial activity and blood flow generation.
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Figure 12.7. Relationship between pressure gradient andflow acceleration in phases of the cardiac
cycle.

Pressure gradients drive blood motion during both ventricular gjection and ventricular filling as
shown in Figure 12.7. They represent the ultimate result of L\/ deformation and play a central role in
cardiac function that ultimately drives blood flow. Moreover, flow-mediated forces influence and
participate to cardiac adaptation in presence of pathologies. Intraventricular pressure gradients are
known from literature (with measures made by catheter in animals)o have a fundamental influence
for LV function. Despite their potential relevance, intraventricular pressure'gradients have never been
utilized in clinical cardiology due to the complexity of their acquisition that required invasive
procedure.

The usage of pressure gradients has been recently renewed with the introduction of novel imaging
techniques able to estimate the intraventricular blood velocities non-invasivelys“Indeed, once the
intraventricular velocity field v(x, t) is known, the Vp field can be obtained afterdrearrangement of
the Navier-Stokes equation as

v

Vp=—p (E +v- Vv) + uviv. (12.9)

In alternative to (12.9), the relative pressure field, up to a constant value (e.g. the average pressure)
that can change in time, can be obtained by solving the Poisson’s equation

Bio Fluid Dynamics (Lecture Notes for Students)



Cardiac Mechanics I: Fluid Dynamics in the Cardiac Chambers Page 150

av; 6vk
200 — _pVU . . - l .
Vip = —pV- (v-Vv) 3%, Ox,

(12.10)

obtained by taking the divergence of the Navier-Stokes equation; last equality -that assumes
summations over repeated indices- being valid in incompressible flow having V-v = 0. When
solving (12.10), however, care must be taken in imposing appropriate boundary conditions because
this is a second order equation on pressure. Therefore, the average pressure gradient (tri-linear terms
in pressure), which is often the property of main interest, is solution of the homogeneous Laplace
operator, V¢p.==Q, and follows from the boundary conditions only.

Equations (12:9) and (12.10) are differential equation that are valid at every position inside the
ventricular blood pool..However, clinical evaluations are principally interested to descriptors of the
overall function and«to global values, like the pressure gradient integrated over the LV volume. An
integral dynamic property, known as hemodynamic force, is defined by the volume integral of
momentum

F(t) =p j (?3_1; +v- Vv) dv = Vp(t) V(t); (12.11)
40

that corresponds to the entire force gxchanged between blood and surrounding tissue, including the
viscous stresses. These are largely negligible and the hemodynamic force can be practically equated
to the volume-average pressure gradient-¥p (#) multiplied by the LV volume. At this stage, it is useful
to recall the formulation (5.3) for the expression of momentum in integral form, which tells that the
hemodynamic force vector (12.11) can be evaluated by an integral

F(O) = p f x(z—'t’-n)w(v-n) as ; (12.12)
s(t)

on the surface S bounding the fluid volume. Thereforeythe _hemodynamic force can be obtained on
the basis of the boundary dynamics without the need to know the velocity field inside the chamber.
The bounding surface contains both the closed part, where fluid(velocity coincides with that of the
endocardium, and the open (valvular) boundary where velocity is‘that effectively of blood. The
approach based on (12.12) has the advantage of not requiring the  measurement of blood velocity
inside the volume and can be used with most standard imaging technologies that are dedicated to
visualization of tissues only. Interest on hemodynamic forces followsfrom the fact that this represents
an indicator based on fluid dynamics; as such, it may be able to detect the presence of a sub-optimal
cardiac function even before the tissues have developed measurable modificatiens.

In addition to the more established analysis of flow transit and dynamical interaction, there are further
aspects of intraventricular flow that may be employed when describing the efficiency of LV function.
Some authors proposed to evaluate the kinetic energy

1
KE = Epjlvlz dv ; (12.13)
v

to describe the energetic level of LV flow; other authors suggested other the properties (size, position,
strength) related to the vortex formation process. On the energetic perspective, a possibly relevant
property is the amount of dissipation of kinetic energy, given by the time integration of the rate of
kinetic energy dissipation given in equation Errore. L'origine riferimento non é stata trovata., thatr
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eflects the energetic efficiency of blood flow pattern. The amount of energy dissipated by viscous
friction inside the LV is certainly negligible with respect to that lost along the entire systemic
circulation loop. Nevertheless, high levels of dissipation are commonly imputable to the lack of
efficiency, sometimes including turbulence-induced fluctuations of pressure and wall shear stress,
that may represent uncomfortable condition for the cardiac function. These disturbing phenomena
can trigger physiological feedback and eventually stimulate cardiac adaptation although no clinical
demonstration is available, yet.

12.4. Fluid dynamics in cardiac pathology

Pathologies of the left ventricle can be roughly classified, by a mechanical viewpoint, in different
classes. One important class of disease is that due to a weakened contraction imputable to defects of
myocardial perfusion_oer ischemia. As discussed earlier in section 11.2, this is a vascular pathology
pertaining to the coronary arteries; however, it affects directly the LV function and will be discussed
below in this respect. A«wide class of cardiac pathologies can be described as general mechanical
dysfunction associated to the ‘inability to ensure a proper rhythm to cardiac function. A mechanical
disfunction can involve either systolic contraction or diastolic relaxation or both, and it can
progressively lead to heart failure..The syndrome of heart failure is a general cardiac impairment that
can develop as a primary disease or.t can follow as secondary effect after most other cardiac
disfunctions. A further class of pathelogies,is related to the presence of electrical dysfunctions. Some
of these are purely neurological defects,imputable to abnormalities of the electrical conduction system
like arrythmias and atrial fibrillation; their‘analysis is out of the scope of this book and they will be
only mentioned in conjunction to other diseases. Other electrical dysfunctions give rise to improper
contraction or relaxation, particularly to a*lacky of mechanical synchrony during the cardiac
mechanical activity; they are broadly included'in the general class of mechanical dysfunction in the
discussion below as they often pave the road toward heart\failure. A further class of dysfunctions is
that whose primary cause is imputable to pathologies'of.eardiac valves; there are discussed with more
details in the next chapter. It should altogether be kept in'mind that all such pathologies are inter-
related and the classification reported above is driven by the‘present mechanistic viewpoint of cardiac
function, especially of fluid dynamics, and may not reflect a classification associated to clinical
scenarios.

(i) Defects of myocardial perfusion (ischemia)

The most known pathology of the left ventricle is ischemia, whose extreme consequence is the
myocardial infarction: a regional loss of myocardial contraction that is.a«€onsequence of the reduction
of myocardial perfusion from oxygenated blood due to coronary stenosis. This defect is a byproduct
of vascular disease; because the reduction of myocardial perfusion follows_ froem the reduced blood
flow through a coronary artery due to its partial or total stenosis. The myocardial territory served by
that vessel receives less oxygen allowance and becomes less able to perform contraction especially
under high demand as during exercise.

The ischemic disease is commonly considered a systolic dysfunction because thesmyaocardium is
unable to properly contract during systole. However, by first principles, this is a vascular disease that
should be treated at the vascular level as we have discussed earlier in section 11.2. Nevertheless, its
symptoms are noticed in terms of the inability of the myocardium to contract properly and it is
commonly diagnosed by cardiac evaluation. Ischemic diseases present themselves with a reduction
of the EF; this reduction is mostly due to regional contractile defect localized in the poorly perfused
myocardial region, which can be recognized by cardiac imaging methods allowing visualization and
guantification of myocardial motion. When this defect is small, it can be difficult to recognize under
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normal conditions and may become appreciable only under stress condition, thus requiring cardiac
evaluation performed under exercise of pharmacologic stress. In alternative, perfusion defects can be
evaluated by perfusion imaging techniques, available in nuclear imaging, MRI and, sometime,
echocardiography. When suspected, the presence and relevance of a coronary stenosis is eventually
evaluated by coronary angiography as discussed in section 11.2.

Intraventricular fluid dynamics is also affected by myocardial ischemia. Blood near a segment
characterized by a reduced motility is often more stagnant, especially when this is in the apical region.
This implies afreduction of wash-out and increased risk of thrombi. It also alters the distribution of
wall shear stressiabout the ischemic region, and it creates an imbalance in the intraventricular forces
with the development of transversal pressure gradients that can give an excess of stress in some
regions, that can belocated even distant from the infarcted zone. Anomalous walls shear stresses and
alteration of hemodynamic forces can progressively induce a feedback and ventricular adaptation that
may modify the LV geometry with potential further pathological implications.

Ischemia is typically solvedsoy~coronary endovascular surgery. However, when the solution is not
complete, for example when ‘there are multiple stenoses, some ischemia may remain and give
ventricular imbalances. Similarly, when the ischemia has lasted for too long time, some regions of
the myocardium may not be able to fully recover its contractile ability. The persistence of such
imbalances may induce ventricular adaptation and mechanical dysfunction up to heart failure as
discussed below.

(ii) General mechanical dysfunction (heartfailure)

Heart failure (HF) is the principal social threatening cardiac progressive dysfunction. It presents either
as a primary pathology or as a consequenceof numerous (almost all) primary diseases. It can be a
consequence of partly recovered ischemia; it can follow electrical dysfunctions that do not allow a
synchronous contraction; it can simply due to varied'stiffness/thickness in the myocardium (for
example due to hypertension or to fibrosis) that does net.allow a uniform relaxation, to cite a few
examples. On the other hand, it can develop as a primary disease following poor medical conditions.
In any case, heart failure is the terminal stage of a progressive disease associated with impaired
cardiac function.

The clinical syndrome of heart failure is associated with the development of ventricular remodeling:
a modification of ventricular geometry that progressively alters its functional parameters whose final
stage is the LV dilatation, known as dilated cardiomyopathy (DEM). Remodeling represents a
physiologic adaptation feedback that often does not lead to a stable _configuration rather to a
progressively worsening of the cardiac function and eventually to failure. Despite modern treatments,
hospitalization and death rate remains high; in the recent past, nearly 50% ofpeople diagnosed with
heart failure dying within 5 years.

The physiological causes leading to LV remodeling are mainly ascribed to an increase, of stress on
the myocardial fibers (around an ischemic area, or because of hypertension etc:), which stimulates
the growth and multiplication of cells giving rise to an increase of muscular thickness (hypertrophy)
or extension (local dilatation). However, this picture is unable to differentiate patients exhibiting
differences in LV structure and function, it is not consistently predictive of the future risk of cardiac
remodeling and does not clarify how a regional disease rapidly remodels the LV as whole. The
availability of predictive models that can forecast progression or reversal of LV remodeling following
initiation of therapeutic interventions would be invaluable for overall risk stratification, improvement
of preventive healthcare, and reduction of the perspective social burden.
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Figure 12.8. Types of remodeling and heart failure (credit: adapted from Messerli et al. JACC Heart
Fail. 2017;5:543, with permission from Elsevier).

The different stages of HF are-depicted in Figure 12.8. Heart failure is most commonly associated to
ventricular dilatation (dilated cardiemyopathy, DCM). In this case, the myocardium is stretched and
becomes thinner. The heart muscle contracts very little and is able to eject a sufficient SV with small
contraction because of the large volume=The EF is significantly reduced, and we talk about HF with
reduced ejection fraction (HFrEF), also referred to as systolic heart failure. Primary ventricular
dilatation can develop as a result of volume overload (for example due to regurgitation across the
aortic valve during diastole, as discuses in\the next chapter) causing an eccentric effort in the
myocardium, or it can due to a general ‘weakening of the myocardial tissue. In HFrEF, the
intraventricular fluid dynamics is very weak; the SV is a small percentage of the chamber volume.
Typically, blood flow takes either a continuous weak rotary motion, when the inflow is aligned to
feed the central vortex, or it presents a weak turbulence. In both cases, flow transit is featured by
stasis and high thrombotic risk. Intraventricular hemodynamic forces are reduced in entity and present
an incoherent patter with varying direction.

Another type of HF is associated with thickening and/or stiffening©fthe myocardium. The ventricular
volume is about normal and the pumping parameters are also normalbut the ventricle does not relax
properly during ventricular filling because of its stiffness. The EFis.thus preserved, usually because
the ventricle is hypertrophic (hypertrophic cardiomyopathy, HCM) and the inward thickening helps
supporting systolic ejection. This pathology, that is more difficult to.recognize, is sometimes called
HF with preserved ejection fraction (HFpEF), also referred to as diastolie”heart failure. Either
myocardial hypertrophy or stiffening can develop as a result of pressuresoverload (for example due
to hypertension, or to a stenosis in the aortic valve) causing a concentric effart'in the myocardium; or
it can occur for multiple causes including fibrosis in the myocardium that can be_assaciated to genetic
predisposition. Sometime hypertrophy/stiffening represents a preliminary dysfunctienal stage that
evolves to HFrEF at its later stage. Intraventricular blood flow in HFpEF subjects isgimilar to normal;
however, dynamical differences reflecting the altered flow pattern are expected including reduction
of the entity of hemodynamic forces; although, definitive results are not available, yet.

Despite the general considerations reported above, the causes leading to LV remodeling are still
largely incomplete. During the progression, there are changes in the pumping function. These can be
noticed by a reduction of systolic trust, as well as by changes in the relative intensity between diastolic
E-wave and A-wave, with an extra-burst by atrial contraction when early filling is insufficient, or
alteration of timing of acceleration and decays of individual phases. Clinicians use the combination
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of numerous indicators trying to figure out the specific pathological scenario; however, a
comprehensive mechanical picture is still missing.

It has been recently shown that alteration in the intraventricular fluid dynamics are observable well
before the tissue has undergone to noticeable often-irreversible changes. Given the incompressible
nature of blood, in a cardiac chamber that is filled with blood, every segment is somehow in touch
with the others through the column of fluid between them, as a result, the blood inertia associated
with the{rapid acceleration-deceleration about one region can instantaneously influence distant
regions. The ralewof flow on cardiac remodeling has been considered in the past only through global
indicators like velumetric changes, the inflow velocity of E- and A-wave, or combinations thereof.
The absence of more specific fluid dynamics indicators is mainly due to the lack of technologies able
to evaluate intraventrieular fluid dynamics with sufficient ease and reliability.

a Healthy b Impaired flow c Stiffening d Dilatation

N
1
N

1
1
I
1
i)

Progressive
adaptation

Normal function Normal funct’i Quasi-normal function Reduced function
Elongated vortex Incoherent broken ncoherent broken vortex Circular vortex/vortices
Longitudinal thrusts Longitudinal and Transversal thrusts Transversal thrusts
Low turbulence transversal thrusts Turbulence Low turbulence
Stable Turbulence nstable Meta-stable
Unstable

Figure 12.9. Flow-mediated path toward heart failure,(credit: Pedrizzetti et al. Nature Reviews
Cardiology 2014. DOI:10.1038/nrcardio.2014.75).

Blood flow responds immediately to any small change in the surrounding conditions. Therefore, for
its nature, it is expected to be one of the first dynamical phenomena that display alterations during
the initial stage of a dysfunction, whereas changes in the tissue reguire some time to develop at a
sufficiently extended degree to be noticeable. Normal intraventricularfluid.dynamics is known to be
associated with a physiologically stable cardiac function that does not lead to'remodeling. Vice versa,
a progressive disease corresponds to a physiologically unstable state that is®€Xpected to depart and
lead away from normality. As shown schematically in Figure 12.9, an alteration of intraventricular
fluid dynamics induces alteration of forces and shear stress on the tissue, these.€an trigger adaptation
feedbacks and bring to progressive dysfunction. In an initial phase, the alteration of flow-mediated
stresses may lead to stiffening of the myocardial tissue that is sometimes associated t0 the increase
of myocardial thickness (hypertrophy). This can be a condition going to HFpEF, oriit'can be just a
passage toward progressive tissue dilatation with further reduction of LV function and eventually
going to the more common HFrEF.

Therapies for heart failure are complicated as they should go to the cause leading to remodeling.
Moreover, HF often involves dysfunction in physiologically related organs and, therefore, precise
guidelines and therapies are varied.
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Heart failure can also follow in consequence to the presence of a mechanical dyssynchrony in the
myocardial activation. It can be a lack of proper timing between the cardiac chambers, or can be a
dyssynchrony between the different region inside the ventricle. The causes leading to dyssynchrony
can originate directly from alteration in the electrical conduction system, or they can follow for
different levels of impairment in the tissue that varies its response in entity and timing. It is not
uncommon that dilated ventricles present a mechanical dyssynchrony. Multipoint pace makers are
able to improve the LV function by restoring its synchrony during contraction and relaxation. They
were shown to_be one successful option in many cases, especially when HF is associated with a
disturbed electrical activity (either as a cause or a consequence of HF). This approach, called cardiac
resynchronization.therapy (CRT), requires the definition of stimulation intervals in the pace-maker
to ensure optimal therapeutic outcome. Typically, they can be chosen by electric conduction
optimization or though synchronization of myocardial tissue motion. However, this approach is prone
to substantial improvements that include on one side the identification of optimal stimulation points,
on the other the definitionsof, optimal stimulation timings for the different places. Fluid dynamics
offers a global perspective todefine the proper contraction pattern, by ensuring that the hemodynamic
forces are maximized and‘properly aligned along the base-apex direction. However, studies are
currently in progress to verify effective clinical relationships.

This concept can, however, be generalized to evaluate the normality of cardiac function after the acute
cause that may, or may not, lead to heart, failure. These include endovascular prosthesis, valvular
repair or transplant, and so on. Intraventrieular.fluid dynamics appears as the first mechanical factor
modified after alteration of cardiac function, even when they are minor and unnoticeable. As such, it
appears a promising central element for the, prediction of progressive disease or of therapeutic
outcomes.
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13. Cardiac Mechanics I1: Heart Valves

13.1. Cardiac valves

The heart contains four valves, as sketched in Figure 13.1. Two of them are atrioventricular valves,
the mitral valve on the left side and the tricuspid on the right side; the other two valves are for the
communication from the ventricle to the circulation, the aortic valve and the pulmonary valve for the
left ventricle (LV) and right ventricle (RV), respectively. The main function of the cardiac valves is
to allow flown ene direction and prevent backflow.

Posterior

Bicuspid (mitral)
valve

Tricuspid valve

Left
side of
heart

Right

A)
Y

Aortic valve Pulmonary valve

Anterior

Figure 13.1. Valvular plane containing the 4 cardiac valves, as'seen from top of ventricles. (credit:
OpenStax College, CC BY 3.0, via Wikimedia Commons)

During systole, the ventricles contract and eject blood through the aortic andpulmonary valves, for
the LV and RV, respectively, while the atrioventricular valves are closedsVentricular contraction is
made of an inward motion of the ventricular endocardial surface, combined with a shortening of the
base-apex length that, given that the apex is relatively fixed, is obtained by thesmotion of the entire
valvular plane downward. Vice versa, during diastolic ventricular expansion, theentricles expand
and the valvular plane moves upwards. This upward-downward motion creates a relative velocity at
the valve that supports ventricular filling-emptying and helps anticipating valvular'opening and
closure. It must otherwise be reminded that the blood velocity measured just above and below the
valves can be non-zero even when the valves are closed because the motion of the valvular plane
transports blood with it.

Despite their overall common function, cardiac valves present important differences, due to the actual
anatomical position and to the fluid dynamics operating conditions. The therapeutic solutions can
also be very different. We discuss here the two main valves sited on the left heart, as the valves on
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the right side are much less studied and their consideration are still mostly borrowed from the left
ones.

13.2. Aortic valve

Aortic valve is situated between the end of the left ventricular outflow tract and the origin of the
Aorta. It consists of three leaflets of approximately triangular shape sometimes referred to as cusps.
One sidetof each triangular leaflets is attached to the fibrous annulus embedded inside the muscular
walls of the LW and represents the hinge for the leaflet motion. The aortic valve is crossed by flow
ejected fromthe'LV into Aorta during systole and it remains closed during diastole when its function
is that of preventing backwards flow into the LV. Once it is closed, the cusps present a coaptation in
their tip portions that.remain aligned downstream and resist to backward displacement.

Figure 13.2. Sketch of the aortic valve and aortic root made froms@ mathematical model. Three
dimensional view (left picture), isolated valve in open position (lower picture in the central panel)
and cross-section of at the level of the Valsalva sinuses (upper picture)..Streamlines at peak systole
shows the recirculation in the sinuses.

The anatomy and function of the aortic valve have inspired studies for the past’®600 years beginning
with Leonardo da Vinci who studied aortic valve and the role of the sinuses of Valsalva. The Valsalva
sinuses are dilatations in the aortic wall, just behind the valve, in correspondencesof each of the
semilunar cusps. Generally, there are three aortic sinuses, the left, the right and the, posterior, each
one in correspondence of a leaflet. The left aortic sinus gives rise to the left coronary.artery, and the
right aortic sinus gives rise to the right coronary artery, while no vessel originates from the posterior
aortic sinus, which is known as the non-coronary sinus. A sketch of the geometry of the aortic valve
and the aortic root is shown in Figure 13.2.

Blood flows across the valve is influenced by its geometric properties. Given the enlargement at the
Valsalva sinuses, and the close-to-triangular shape of the open valve orifice, the systolic flow gives
rise to a boundary layer separation from the nearly straight edge given by each of the open leaflet and
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detaches downstream as a free shear layer that rolls-up forming a vortex structure that develops
recirculatory motion in the Valsalva sinuses (see Figure 13.2, right panel). The role of vortex
formation in the sinuses is not completely understood, yet. This backflow was initially considered to
help the leaflet closure at the end of systole; it is also expected to facilitate the flow into the coronaries.
More likely, the coronary flow is principally driven by the backflow that develops near the boundary
during diastolic deceleration, when the bulk flow, at the center of Aorta still moves downstream, and
by the reflected pressure wave. Surely, the presence of the Valsalva sinuses prevents the leaflet to
touch the'aortic wall and to close of the coronary entrance.

The aortic jetpresents itself as a turbulent jet with a Reynolds number that can reach about 10,000 in
normal condition (velocity near 2 m/s crossing an orifice with mean diameter about 2 cm). It is
probably the only=fully turbulent flow in the circulatory system. The Strouhal number is about 1072,
thus the jet is welltabove 10 diameters long. The complexity of blood flow at the aortic root is
perceived by the high=resolution numerical results shown in Figure 13.3

Figure 13.3. Turbulent flow across a bi-leaflet prosthetic valve reconstructed from high-resolution
numerical simulations (credit: Prof. Marco Donato de Tullio, Politeehico di Bari, Italy, own
scientific work).

The aortic jet exists from an orifice into the center of the Aorta thus, despite its strength, in normal
conditions the high speed blood does not impact directly onto the aortic walls.<The jet exists straight
in the aortic root and develops helical streamlines when going through the aorti€¢ arch as shown in
Figure 13.4 (left side).

Normal aortic valve is tricuspid; however, a significant percentage of the population (about 2%) is
born with a bicuspid aortic valve (BAV) where two leaflets are not fully separated or they are totally
fused as one. One possible effect of BAV is the reduced orifice size when the valve is open, giving
rise to even stronger jet and possibly higher resistance to the ejection requiring an extra effort to the
LV with consequences similarly to what happens in valvular stenosis (discussed below). Another
important possible phenomenon related to a BAV is the asymmetric opening of the unequal leaflets,
which may deviate the jet towards the aortic wall. This increases the risk of damaging the wall that
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may weaken and facilitate the development of aneurisms in the aortic root. An example of flow
recorded in presence of a BAV that deviated the jet direction is shown in Figure 13.4 (right side).
BAV subjects can have a normal life; however, given the additional risk factors, they must be
monitored to ensure absence of progressive diseases development.

Figure 13.4. Aortic jet recorded from MRI, jet with a normal alignment (left) and deviated jet in
presence of a bi-leaflet aortic valvex(right). (credit: Bissell, et al. Circ. Cardiovasc. Imaging
2013;6:499, with permission from Wolters Kluwer Health Inc.)

13.3. Pathologies of the aortic valve

Major valvular pathologies can be roughly grouped, from a mechanical standpoint, as those due to
valvular stenosis or to valvular insufficiency.

Valvular stenosis is a reduction of the valvular orifice duestoycalcification of the valve leaflets that
makes them less elastic and more difficult to open. Valvular stenosis thus reduces the effective orifice
area and provokes a stronger jet at the entrance of the Aorta,with velocities that can reach several
meters per second, which means higher turbulence and risk of‘damage to the arterial wall when such
jet is deviated.

The major consequence imputable to valvular stenosis is the higherienergetic resistance to ejection:
a higher pressure drop across the aortic valve that, at peak systole, is propartional to the square of
velocity, see equation (6.12). This additional pressure loss can be signifieant.(if velocity is in m/s,
pressure loss in mmHg is given by 4v?2) and represents an extra effort totally in/charge of the LV as
it occurs immediately at its exit. This means that the ventricle requires to build.upa higher pressure
(pressure overload) to get the same output in the Aorta, and LV myocardium is required to develop
more force. Such a condition can likely give rise to LV hypertrophy, tissue stiffening.setting up a
possible path toward heart failure as discussed in the previous chapter.
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Figure 13.5. PISA methad to,estimate the regurgitating flow from color Doppler echocardiographic
image proximal to the insufficient.erifice. This procedure, shown here for mitral regurgitation,
applies equally to the aortic valve where the proximal area is inside the Aorta and the jet into the
left ventricle.

The other major pathology of aortic valve'issinsufficiency. In valvular insufficiency, the leaflets are
looser or the valve is dilated, and leaflets coaptation is insufficient; as a result, the leaflets are unable
to properly close the valve during diastole giving rise to valvular regurgitation. This means that,
during LV filling, when the LV pressure decreases and blood flows in through the Mitral valve, some
flow also enters into the LV back from Aorta. Therefore, part of the net LV pumping effort is wasted
because a percentage of the ejected blood returns into_ the LV itself.

Measuring the entity of the regurgitated volume is the pringipal mean to assess the severity of aortic
insufficiency. It can be performed by phase-contrast MRIs“recording the velocity during diastole
across a plane just above or below the valve; this is the most accurate option, although relatively time-
consuming procedure, that is performed on patients requiring an accurate evaluation. A simpler, less
accurate, approach used for a preliminary screening is feasible by color Doppler echocardiography
that permits to look at the color map of the vertical component.of blood velocity. The image is
commonly recorded at peak diastole, the regurgitating jet downstream the valve is not measurable
because velocities are too high and disturbed; instead the color Doppler.image “proximally” to the
regurgitating orifice typically presents a regular pattern corresponding ta.a smoothly converging flow
and it can somehow be analyzed. The most common method, called Proximallsosurface Velocity
Area (PISA), hypothesizes that -far enough upstream the orifice- the flow converges across a series
of concentric half-spheres; therefore the value of the Doppler (vertical) veloCity, vpoppier, at an
upstream distance R on the axis can be assumed to be equal to the radial velocity over.ahemispherical
shell as shown in Figure 13.5. In such a pattern, the regurgitating discharge is obtained, by continuity,
as that crossing the shell

Qpeak = 2nszDoppler ) (13.1)

This gives the regurgitating flow rate at peak diastole. The regurgitated volume, V... gy,¢, is estimated
by assuming a proportionality between regurgitant flow across the aortic valve and regular inflow
across the mitral valve. The time profile of the latter can be recorded (by pulsed-wave Doppler) its
peak value (vpeax) and velocity time integral (VTI) are then evaluated, an operation that can be
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performed in most echographs. The proportionality then allows to estimate V.o gyrg = VTI X Qpear/
Vpeak- | N€ entire PISA approach is very approximate, some further improvement has been introduced
by most vendors of ultrasound equipment by using 3D color Doppler data and corrections for irregular
orifices. It has the merit to be a quick procedure feasible routinely; nevertheless, it should be repeated
to improve reliability of results and used as a preliminary information only and not as a rigorous
measurement,

The entity of regurgitation is not the only matter associated with the clinical severity of the
insufficiencys# /Aortic regurgitating jet can conflict with the mitral inflow as shown in Figure 13.6,
giving rise tosturbulence and disturbed LV filling that may further affect the LV function. Some
studies suggested that the severity of aortic regurgitations could be measured by evaluating the degree
of irregularity of thedntraventricular flow during diastole; however, this was only a suggestion and
clinical results are stillFinconclusive.

Because of aortic insufficiency, the LV tends to dilate for the extra volumetric load coming from the
regurgitated blood (volume overload). At the same time, the reduction of net flow downstream in the
Aorta induces metabolic feedback to stimulate the LV pumping to allow the necessary blood in the
circulation. This requirement of ansabnormal an extra effort, demanded to a LV that was already
increasing its volume, sets again‘the pathitoward heart failure.

Figure 13.6. Flow in the LV in presence of Aortic valve regurgitation (credit: adapted from
Pedrizzetti and Sengupta. Eur Heart J, Cardiovasc Imag 2015;16:719, with permission from Oxford
University Press).

The therapeutic solutions to aortic stenosis as well to aortic regurgitation are those of surgical valvular
repair or, most commonly, valvular replacement. Surgical aortic valve replacement contemplates the
substitution of the diseased valve with a prosthetic one that is directly sutured in its place. This type
of surgery may also include the substitution of the aortic root with a prosthetic vessel.
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Figure 13.7. Mechanical prosthetic/valves: bi-leaflet valves from major vendors (left) and a tri-
leaflet prototype, with a sketch of fluid‘direction (bottom) (credit: adapted from Kheradvar et al.
Ann Biomed Eng 2015;43:844 and fromsRobinson et al. Animal Models for Cardiac Research 2015
DOI: 10.1007/978-3-319-19464-6_27, with permission from Springer Nature).

Several types of prosthetic mechanical valves were introduced in the past and are still designed; a few
examples are shown in Figure 13.7. Currently the mast.common is the bi-leaflet mechanical valve,
which ensures life-long duration, although the leaflet geometry differs substantially from those in a
natural valve and may alter the flow pattern downstream..Further designs are still under development
with the objective of mimicking the natural geometry. However, due to the hardness of the material,
mechanical valves produce a phenomenon known as hemolysis: red blood cell are subjected to rupture
during the interaction with hard mechanical element inducing ¢oagulation phenomena and higher risk
of thrombus formation. For this reason, they also require ‘life-long anticoagulant medication.
Mechanical valves also largely alter the fluid dynamics downstream the valve. The aortic jet presents
multiple shear layers with altered vortex formation process and higherturbulence. The relationship
between the three leaflets and three Valsalva sinuses is broken thus other egontraindications may
accompany such an implant. Occasionally, mechanical valve can also give rise to formation of gas
bubbles and cavitation. In the circulatory system cavitation is not frequent, butiithas been sometimes
observed in mechanical heart valves. This phenomenon presents when pressure s fow and the sharp
local changes due to the mechanical element can create small regions where thesabselute pressure
approaches zero (reaches the tension vapor in the liquid). In this case, low pressure bubbles of gas
form and they can implode as soon as they move to place with higher pressure and likely damage the
surrounding tissues; bubbles can also coalesce and produce emboli. Bubble formation downstream
valves is usually monitored by imaging methods and the risk of cavitation must be adequately
considered in the design of mechanical prosthesis
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Figure 13.8. Bio-prosthetic valves: schematic design (top) commercial valves with different
scaffolds and prosthetic annulus’(bottom). (credit, top images: created by sjpiper145 licensed under
CC Public Domain Dedication /license; bottom images: adapted from Piazza et al. JACC
Cardiovascular Intervention 2011;4: 721y with permission from Elsevier).

A more natural alternative is that of biologicak valves that do not require anticoagulant and better
mimic the original natural geometry to reproduce a more natural fluid dynamics behind the valve.
Biological valves, shown in Figure 13.8, on the ather side, are not guaranteed for life-long duration
although technological improvements give confidence for their reliability.

With the advent of trans-catheter approach to valvular replacement, that rapidly grew from the early
2000, the surgical procedure of valvular replacement has become less frequent. Since then, the most
widely used solution that avoids open surgery is the Trans-catheter Aortic Valve Implant (TAVI), or
equivalently called Trans-catheter Aortic Valve Replacement (TAVR). In TAVI the valve is placed
inside an endovascular prosthesis that can be positioned by catheter avoiding surgery. In this
procedure, the natural diseased valve is initially squashed atithe wall; and then the new valve is
expanded and placed over the previous one, as shown in Figure 13/9 (top sequence). Initially TAVI
was used for patient at risk of open-chest surgery only. Later on, adyantages have been so numerous
that it is recommended in most cases. The number of TAVI prostheses-available is continuously
increasing, a few examples are shown in Figure 13.9 (bottom panel).

The resulting fluid dynamics after TAVI is very similar to that of a biolagical valve and does no
exhibit drastic changes from that of a natural aortic valve. A critical effect can’be,the presence of
para-valvular blood leakage when the new valve does not adhere perfectly to the side tissues and
allows some blood passing in the small gaps between the tissue and the implanted valve. This may
give rise to a para-valvular regurgitation. After years of experience with usage' of TAVI, it is
occasionally required to intervene over a previously installed failing trans-catheter valve by a novel
TAVI to be placed on top of the previous one. This procedure, called valve-in-valve, presents similar
criticalities in fluid dynamics terms, however experience is still at an early stage.
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Figure 13.9. Trans-catheter aortic valve implant procedure (top panel), a few example showing
different typologies (bottom panel). (credit, top images: Auricchio et al. Computer Methods in
Biomechanics and Biomedical Engineering 2014;17:1347,'with permission from Taylor & Francis;
bottom left image: image courtesy of Edwards Lifesciences Corporation; bottom center image:
from Kheradvar et al. Ann Biomed Eng 2015;43:844, with permission from Springer Nature;
bottom right image: courtesy of Prof. Arash Kheradvar,"University of California Irvine).

13.4. Mitral valve

Mitral valve is the bi-leaflet valve that connects the left atrial chamber to the left ventricle. The valve
consists of two leaflets of unequal size, with a coaptation between the two that takes a D-shape, as
artistically shown in Figure 13.10. The anterior leaflet is the largest, positiened on the antero-septal
side, the right side of the mitral orifice next to the left ventricular outflow tract, while the smaller
posterior leaflet is placed on the left side, close to the posterior-lateral wall.

The leaflets edges are connected to the papillary muscles via cord-like tendonsy, called chordae
tendineae, that prevent valvular opening toward the atrium. The chordae tendineae are required to
hold the leaflets during systole in presence of a high pressure difference between the,LV, which
develops a high systolic pressure, and the low left atrial pressure. While the aortic valve'is inside a
tubular shape vessel, the Mitral valve is contained in the atrioventricular plane; here, the Mitral valve
is surrounded by a fibrous annulus, that approximates a hyperbolic paraboloid similar to a riding
saddle, which modulates its shape during the heartbeat.
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Figure 13.10. Mitral valve; clesed (left) and open (right) showing the chordae tendineae attaching
the leaflets to the papillary ‘muscles inside the ventricle (credit: curtesy of Dr. David H. Adams,
Department of Cardiovascular Surgery, the Icahn School of Medicine at Mount Sinai, New York;
illustrations with permissiongfrom Carpentier A, Adams DH, Filsoufi F. “Carpentier’s
Reconstructive Valve Surgery ~ From Valve Analysis to Valve Reconstruction”, 2010,
SAUNDERS, Elsevier).

The transmitral flow is characterized by.two impulses, the early filling wave (E) and the atrial
contraction (A). Before the early filling, atsthe end of systole, the ejected flow decelerates and LV
pressure is lower at the apex than at the LVAbase=At the passage between systole and diastole, the
myocardial contractile elements are deactivated and release the stored elastic energy, this results in
further pressure drop inside the LV whose response issthe opening of mitral valve. Both these two
mechanisms about the transition between systole and<diastole are associated with a lower pressure at
the apex than at the LV base and both actively contribute to early ventricular filling impulse.
Afterwards, before the end of diastole, the electric stimulatien-starts with the atrial systole and the A-
wave completes the LV filling. The relative entity of E and A-waves is an indicator of LV function.
The E and A peaks of mitral velocity are usually assessed by Doppler.echocardiography of the mitral
inflow; typically, E-wave velocity is some greater than the A-wave; this ratio is reversed when early
filling is insufficient and additional effort is given by atrial eontraction, suggesting diastolic
dysfunction. This ratio is also reversed in normal fetal hearts beforecardiac maturation.

The anatomic asymmetry of the Mitral valve has a fundamental influence onithe development of LV
fluid dynamics. The vortex formation process is made of a distorted vorteX ring that is stronger on
the anterior side and weaker on the posterior; that deviates the ring towards the posterior side (because
the anterior side has a higher self-induced velocity, while the posterior sideis_slowed down by the
image vorticity at the wall). As a result, the larger leaflet on the anterior side helps to-redirect the
blood flow along the lateral-posterior wall. The anterior vortex eventually occupies' most of the LV
cavity and ensures the development of a proper circulation inside the LV. Normal transmitral flow is
usually laminar and relatively low in velocity (usually less than 1 m/s); nevertheless, the vortex
formation creates vortical structures that are complex although not strictly turbulent.

13.5. Pathologies of the mitral valve

Like for the aortic valve, Mitral stenosis, which is normally imputable to leaflets calcification, gives
rise to a reduction of the orifice size. The mitral jet presents higher velocities and can be deviated
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inside the LV. This can create disturbed, even turbulent flow with higher energy dissipation and
abnormal shear and pressure increase on regions of the wall. The narrower valve is also associated
with the increase of transmitral pressure drop, with consequent impairment of LV filling, and higher
atrial pressure. The increased atrial pressure can influence back pulmonary circulation, produce
pulmonary congestion and higher RV pressure. These effects can set the path towards diastolic heart
failure and RV, dilatation.

Normal valve Prolapse Prolapse
(one leaflet) (billowing valve)

Figure 13.11. Mitral valve prolapse and regurgitation (credit: curtesy of Dr. David H. Adams,
Department of Cardiovascular Surgery, the Icahn School of Medicine at Mount Sinai, New York;
illustrations with permission from Carpentier A, Adams DH, Filsoufi F. “Carpentier’s
Reconstructive Valve Surgery - From. Valve Analysis to Valve Reconstruction”, 2010,
SAUNDERS, Elsevier).

Mitral insufficiency represents the other main pathology*that occurs when the valve is unable to
prevent backflow during LV contraction giving risestesmitral regurgitation. It can appear as a
secondary effect to LV dilatation; in this case the entire’LV increases its volume and the mitral
annulus also enlarges such that the leaflets are unable to.cover the entire mitral area and close the
orifice. Mitral insufficiency, however, frequently develops as a primary valvular disease in presence
of Mitral valve prolapse. Mitral prolapse is due to the growth of one leaflet that becomes wider, longer
and looser. The leaflet of the mitral valve bulges back into the left atrium pushed by the high LV
pressure during systolic contraction, sometimes this phenomenon oceurs to both leaflets (Barlow
disease) that enter into the atrium like a parachute held by the chordag tendineae at the edges. Finally,
mitral regurgitation can also be a consequence of chordae elongation‘and semetime to their rupture
that fail in the work of withholding. Prolapse is a frequent phenomenon giving no specific symptoms
at its early stage. However, it must be monitored because, as shown in Figure 13.11, eventually the
loose leaflets may not properly close the valve and allow blood flowing backwarddnto the left atrium
producing mitral valve regurgitation.

The severity of mitral regurgitation can be evaluated by measuring the regurgitated volume with the
same imaging methods (MRI or echography) previously described for aortic valve regurgitation.

Mitral regurgitation reduces the effectiveness of LV pumping because part of the stroke volume is
not ejected into the Aorta and flows backwards into the left atrium. This induces metabolic feedbacks
to increase LV pumping and stressing the LV, especially under exercise or stress. The most evident
pathologic consequence of severe regurgitation is the dilatation of the left atrium, which must comply
with the additional blood volume and is subjected to systolic LV pressure. When the atrial dilatation
becomes important, mitral prolapse requires treatment.
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Pharmacologic treatments to mitral valve diseases can rarely heal the defect. A surgical solution to
mitral valve stenosis or, sometime, prolapse is the replacement of the diseased valve with a prosthetic
valve. As discussed for the aortic valve, prosthesis can be either biological or mechanical. A
prosthetic valve can significantly alter the intraventricular fluid dynamics with different flow patterns
depending on the type, orientation, and position of the valve. It was shown, see Figure 13.12, that the
symmetry of aimechanical bi-leaflet, in contrast with natural asymmetry of the Mitral valve, increases
turbulencesand may even reverse the vortical circulation inside the LV. However, as these
observations are difficult to perform clinically, there are no indications on the consequences of such
LV flow alterations.

NaturalMitral valve Mechanical Mitral valve

Figure 13.12. Flow redirection with bi-leaflet mechanical valve in mitral position (credit:
Pedrizzetti et al. Ann Biomed Eng 2010;38:769, with permission from Springer Nature).

The most common surgical option is mitral valve repair (MVR),which*has evolved during the years
and can be performed under different procedures. MVR is the primary.ehoice for prolapse, although
surgery is performed in presence of stenosis as well. As shown in Figure 13.13, MVR aims to recreate
the natural valvular geometry removing the exceeding tissue and suturing theoriginal tissue into a
proper geometry. Often, MVR is performed including a new prosthetic mitral ring, replacing the older
one that can be dilated, to enforce the appropriate dimension of the reconstructed valve.

The fluid dynamics after MVR can vary a lot depending the details of the surgicalprocedure. The
primary end-point is represented by the reduction of regurgitation and the influence of repair to the
intraventricular flow is rarely monitored. Nevertheless, the long terms outcome canvary'substantially
after similar MVR procedures and it is sometimes suggested that it is likely influenced by the flow
pattern that develops after repair. However, systematic evidences in this sense are not yet available.

Trans-catheter mitral valve repairs (TMVR) are less common than they are for the aortic valve,
because they present the complexity to anchor the prosthesis in the mitral plane, without a
surrounding vessel as was available for the aortic valve to place the stent. This solution started to be
available in the late 2010s, clinical experience is lower than for TAVI and it has to face additional
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technical challenges. Nevertheless, the applications of TMVR are rapidly growing and novel
technological solutions are in continuous progress.

Figure 13.13. Mitral valve repair with triangular resection of a prolapsed anterior leaflet and
annuloplasty (credit: curtesy of Dr. David H. Adams, Department of Cardiovascular Surgery, the
Icahn School of Medicine at Mount Sinai, New York; illustrations with permission from Carpentier
A, Adams DH, Filsoufi F. “Carpentier’s Reconstructive Valve Surgery - From Valve Analysis to
Valve Reconstruction”, 2010, SAUNDERS, Elsevier).
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Figure 13.14. Fluid dynamics before (left) and after (right) Mitral valve edge-to-edge repair with
Mitral clip trans-catheter repair (credit: Caballero et al. Frontiers in Physiology 2020;11:432, CC
BY).

One endovascular solution for reducing regurgitation in Mitral valve prolapse has been recently
introduced. It consists of a “clip” (similar to a paper clip) inserted trans-catheter that sticks together
the two leaflets thus transforming the wide prolapsed orifice in two small orifices, as shown in Figure
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13.14, that do not allow regurgitation when closed. This method is a trans-catheter version of a
previous surgical solution called edge-to-edge repair. After Mitral clip, regurgitations is normally
reduced or eliminated; however, this treatment dramatically alters the intraventricular fluid dynamics,
as demonstrated since the introduction of edge-to-edge repair. As shown in Figure 13.14, the mitral
jet transforms into two distinct jets diverging from the valve and impacting on the opposite walls,
developing higher turbulence, varied shear stress and intraventricular pressure gradients. The long-
term clinical consequences of this alteration are still not verified. This solution is advised for critical
Mitral regurgitations conditions and for patients that cannot undergo to other treatment options.

13.6. A mention te"cengenital cardiac disease

A number of diseasesqare imputable to congenital malformations of the heart, most of them related to
pathological alterations’of cardiac valves since the early phases of heart development. The topic of
con genital heart diseases‘is wide and complex, and it is out of the scope this basic text. However, for
the sake of completenessyit is worth mentioning the most common (frequency about of 1 every 2000
children) severe congenital heart defects that is found in new born children: Tetralogy of Fallot, and
Hypoplastic Left Heart Syndrome (HLHS).

The Tetralogy of Fallot (TOF) s a/combination of four defects, interrelated and concurring, that
directly influence the blood circulation in the heart. Each defect one can present with different degree
of severity and in different combinations. The common result is low blood oxygenation, which can
give rise to cyanosis; for this reason, this'defect is also called the “blue baby syndrome”.

TOF is characterized by the followings malformations as graphically described in Figure 13.15.

1. A defect in the interventricular septum that'is not complete and allows passage of blood between
RV and LV; this mean that part of the non-oxygenated RV blood can enter the LV and be
delivered into the primary circulation.

2. The pulmonary valve, at the RV outlet, is narrower thus reducing the amount of blood delivered
toward the pulmonary circulation for oxygenation.

3. The Aortais displaced towards the right side, becausethe basal part of the interventricular septum
is absent; therefore, Aorta can receive either the oxygenated blood from the LV and part of the
non-oxygenated blood ejected by the RV.

4. The communication between LV and RV and the narrower“pulmonary valve provoke the
increases of the RV pressure and hypertrophy of the RV wall that becomes thicker.

TOF typically requires open-heart surgery in the first years of life. The procedure involves increasing
the size of the pulmonary valve and pulmonary arteries and repairing thesventricular septal defect.
The exact timing of surgery depends on the symptoms and size. Normally, surgery is delayed as much
as possible in order to act on more grown hearts. When surgery is made early;further surgery may be
required to adapt the therapeutic repairs along with the increasing size of the heart.

The big challenge in TOF therapy is therefore to be able to anticipate the evolution of the disease, in
order to better plan the timing of the various therapeutic activities. The dynamic analysis of intra-
cardiac fluid dynamics was recognized to have a role in cardiac morphogenesis as well in cardiac
development. Therefore, research is in progress to evaluate fluid dynamics in TOF patients, especially
by 3D Phase-contrast MRI (4D flow MRI), with more centers under creation in numerous sites. The
aim is of providing evaluations of the actual status of the cardiac circulation and, possibly, indications
of the probable evolutions that can be precious for optimization of surgical choices and timing of
therapy.
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Figure 13.15. Tetralogy of Fallot (credit: Centers for Disease Control and Prevention, National
Center on Birth Defects and Developmental Disabilities, Public domain).

The Hypoplastic Left Heart Syndrome (HLHS), i§ aibirth defect that occurs when the left side of the
heart is underdeveloped; in this pathology, the L\ is not formed or it is very small, and the ascending
portion of the Aorta is typically underdeveloped as well.(Figure 13.16). These babies must undergo
surgery immediately at birth because blood is not pampedtin the primarily circulation.

A baby with hypoplastic left heart syndrome has to undergoto.multiple surgeries in a particular order
to increase blood flow to the body and bypass the poorly functioning left side of the heart. These
surgeries do not cure hypoplastic left heart syndrome, but helpirestoring heart function aiming to
transform the right ventricle in the main pumping chamber to the entire body. Soon after birth, babies
undergo the first surgery (Norwood Procedure). This creates a new Aorta connected to the right
ventricle, such that the right ventricle is used to pump blood both tothe pulmonary and the systemic
circulation. After a few months an additional surgery is commonly“required (Bi-directional Glenn
Shunt) that creates a direct connection between the pulmonary artery and the stuperior vena cava. This
reduces the work of the RV for the pulmonary circulation and increase it for the'systemic circulation.

A final procedure (Fontan Procedure) is usually performed when the baby has about 3 years of age.
In this final configuration the inferior and superior venae cavae are connected directly to the
pulmonary artery (total cavo-pulmonary connection, TCPC) and the RV is completely bypassed and
not used to pump blood into the lung. Pulmonary circulation is thus assumed to ©ccur naturally,
without the thrust from the RV, supported by the pressure available in the caval veins. The RV is then
connected directly to the Aorta and it is used for the systemic circulation. This final circulation, where
the RV is transformed in the systemic ventricle, is commonly called one with single right ventricle
(SRV). It is evident that the solution is normally with a reduced cardiac function, the outcome
depending on details of flow circulation in the new configuration. For this reason, it should be
recommended that the fluid dynamics of these patient is monitored.
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