

993SM - Laboratory of Computational Physics

notes on gnuplot

Maria Peressi

A simple useful package to:

- plot your data
- save the plot
- data fitting
- movies...

http://www.gnuplot.info/ to download the package and for details

HERE: few BASIC COMMANDS and FEATURES

Data files:

#prima riga di commento
#seconda riga di commento
0.00000 1.00000
0.0100000 0.904837
0.0200000 0.818731

0.0300000 0.740818 0.0400000 0.670320

0.0500000 0.606531

0.0600000 0.548812

0.0700000 0.496585

...

optional comment lines; every line with "#" at the beginning

data:

even I column is OK

for instance: dati.dat

(the progressive number line is considered as "x")

Running:

host\$ gnuplot

GNUPLOT

... version

• • • • •

Terminal type set to ... gnuplot

gnuplot> plot 'dati.dat'

ALWAYS USEFUL:

gnuplot> help [then RETURN]

OR SPECIFY SOMETHING, LIKE:

gnuplot> help plot using

gnuplot> plot 'dati.dat' u 1:2

columns to be used

gnuplot> set sample 2000

number points to be used (if plotting a function given by an equation)

more on the same plot:

gnuplot> plot 'dati.dat' u 1:2,'dati.dat' u 1:3,'dati.dat' u 1:4

or

gnuplot> plot 'dati.dat' u 1:2, " u 1:3, " u 1:4

data in blocks: separated by 2 empty lines

gnuplot> plot 'dati.dat' index 0 u 1:2, " index 1 u 1:2

Plot options:

```
gnuplot> plot 'dati.dat' u 4:6 w l ← with lines
the defaults is "w p" (with points)

points specifications: pt and ps (point type and size)
line specifications: It and w (line type and size)
```

Plot vectors:

```
from (x,y) to (x+dx,y+dy), giving the columns with x, y, dx, dy:
gnuplot> plot 'file.dat' using 1:2:3:4 with vectors head filled lt 2
```

Plot histograms:

```
from (x,y) to (x+dx,y+dy), giving the columns with x, y, dx, dy:
gnuplot> set style histogram
gnuplot> plot 'dati.dat' u 1:2 with boxes
```

Action on the data:

you may modifying the data before plotting, e.g.:

gnuplot> plot 'dati.dat' u (log(\$1)):(\$2+0.5)

Use macros:

the list of commands can be prepared in a text file (a "macro.gnu") and then you can load the macro:

gnuplot> plot 'macro.gnu'

Fitting data:

```
gnuplot> f(x) = a * exp(-x*b)
```

gnuplot> fit f(x) 'dati.dat' via a,b

Final set of parameters Asymptotic Standard Error

a = 1 +/- 8.276e-08 (8.276e-06%) b = 10 +/- 1.23e-06 (1.23e-05%)

correlation matrix of the fit parameters:

a b a 1.000 b 0.671 1.000

gnuplot> plot f(x), 'dati.dat'

Suggestions:

- I) It could be useful to give an initial guess of the parameters: gnuplot> a=1.0, b=1.0
- 2) it is better to fit with a straight line (reduce the functional form to a linear form)

```
1.00000
2D plots:
                                                                            0.904837
e.g. of z=f(x,y) varying from -1 to 1
                                                                            0.818731
                                                                            0.670320
 data written in the proper way, i.e.:
                                                                            -0.765234
                                                                            -0.097823
 values of z on an ordered (x,y) grid: keep fix y and vary x,
 then change y and vary again x, ...
                                                                            -1.000000
 every change in y, an empty line is needed: —
                                                                            -0.876325
                                                                            0.876324
                                                                            0.876342
gnuplot> set view 0,0
gnuplot> set nosurface
gnuplot> set contour
```

gnuplot> set cntrparam levels auto 5
which makes 5 levels between min and max, or:
gnuplot> set cntrparam levels discrete -1,-0.8,0.4,1

which makes only the curves corresponding to the indicated levels; at the end, do: gnuplot> splot "dati.dat"

For further info, type as usually: gnuplot> help set cntrparam

Plotting on different windows:

```
gnuplot> set term wxt 0 (for instance)
gnuplot> plot ... [plot with the options that you need]
gnuplot> set term wxt 1 ....
```

Saving plots:

gnuplot> set term png (for instance)

gnuplot> set output 'dati.png '

gnuplot> plot ... [plot with the options that you need]

gnuplot> set term x11 to be back plotting on the screen

Doing animations:

prepare the data files divided in blocks (to be used with the index command)

Then, it is possible to save on a gif file and then use ImageMagic or anything else to make an animated gif. Alternative way:

```
gnuplot > set terminal gif animate delay 20
gnuplot > set output 'animation.gif'
gnuplot > stats 'filedat' nooutput
gnuplot > do for [i=1:100] {plot 'filedat' index (i-1)}
```