
Light-matter interaction  

(see for instance F. Bassani, G. Pastori Plallavicini, Electronic states and optical 

transitions in solids, Pergamon Press, Oxford, 1975, chapter 5)  
 

Let us work in the semi-classical approximation, i.e. let us treat the matter with 

quantum mechanics and the electromagnetic field with the classical electrodynamics, 

without quantizing it.  Let us consider propagating electromagnetic waves far from 

their source. In this case we can take a scalar potential V=0 and ∇∇∇∇⋅A=0, were A is the 

vector potential, because of the arbitrariness in the gauge. 

From the standard classical mechanics we know that the kinetic energy of a system of 

N electrons   
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has to be replaced, in the presence of an electromagnetic field, by the expression 
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where e is the absolute value of the electron charge. The terms in the brackets contain 

terms proportional to A
r

 and terms proportional to A
2
.  Let us consider weak 

electromagnetic fields, i.e. A
r

 → 0. This case corresponds to the normal situations, 

only for very powerful laser beams this approximation does not work. In the limit A
r

 

→ 0 the terms in A
2
 can be neglected with respect to the terms in A

r
. Therefore the 

Hamiltonian of a system without the field 
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can be replaced in the presence of the field by the new Hamiltonian 
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The third term is therefore the interaction Hamiltonian of the electrons in the radiation 

field. Since ∇∇∇∇⋅A=0 the last term, the interaction Hamiltonian HeR, can be written 

HeR= ∑
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The effect of a radiation field on the crystal electronic states can be calculated by 

treating HeR as a time dependent perturbation term on the states of the crystal. Let us 

take a simple plane electromagnetic wave described by 
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It has the form of O(r)
ti

e
ωm

. From elementary quantum mechanics we know that, to 

first order perturbation theory, the probability per unit time that a perturbation of the 

form O(r)
ti

e
ωm

 induces a transition from the initial state |i>  of energy Ei to the final 

state |f>  of energy Ef is 
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* in this formula you should replace ħ to h, I was not able to type ħ. 



The above relation has the interpretation that a perturbation O(r) e
-iωt

 induces 

transitions with the absorption of a quantum ħω, while a perturbation O(r) e
iωt

  gives 

rise to the emission of a quantum ħω. Since the perturbation must be real you have the 

sum of both absorption and emission terms, but the choice of the initial and final 

states select out the terms to be considered. If the initial state is the ground state, the 

emission term makes the expression for  fiP→  to vanish. Thus only the absorption 

term needs to be considered in discussing the optical absorption spectrum of a crystal 

in the ground state. The emission term needs to be considered in discussing the 

radiative emission due to electrons initially in the excited states (luminescence, 

phosphorescence…..).  

 

 

Let us calculate 〉〈 irOf |)(|
r

in the case of crystal states. 
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 are the wave functions of the initial and final states of an electron that 

is excited from the valence band at  ik
r

to the conduction band at fk
r

. We have 
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Let us write ρ
rrr

+= nRr , where nR
r

 is the vector of the Bravais lattice closer to r
r

 and 

ρ
r

 is a vector inside the unit cell. Let us change the integration variable in the integral 

above. This integral, because of the periodicity of the uk,  will become a sum over all 

the Bravais vectors of an integral over the unit cell 
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The last integral is a number that does not depend on nR
r

.  Therefore the matrix 

element vanishes when if kkk
rrr

−+  is different from a vector of the reciprocal lattice 

G. The k of the electrons are of the order of π/a, i.e. of the order of 10
10

 m
-1

, while the 

k of the visible photons are of the order of 10
7
 m

-1
. Therefore k

r
 is negligible with 

respect to fk
r

 and ik
r

. The matrix element is different from zero only when 

Gkk if

rrr
=− . This means that an electromagnetic wave can cause an excitation of one 

electron from one band to another band only if the initial state and the final state have 

the same k (conservation of the crystal momentum in the optical transitions, i.e. 

“vertical” transitions). 

If the photon has a high energy – if it is an x-ray photon- its k is no more negligible 

and the wave vectors of the initial and final electronic states differ by this k.  


