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In this chapter we are interested in the quantum mechanical motion
of electrons in the crystal if the periodic lattice potential is perturbed.
This can occur as a result of the presence of lattice defects, impurities,
or doping atoms. It can also arise due to the incorporation of interfaces
between different layers of materials. Other reasons could be the pres-
ence of external electric or magnetic fields, or internal fields arising from
time-dependent lattice distortions or vibrations such as those caused
by phonons or surface acoustic waves. In this chapter, we will restrict
ourselves to static perturbations small enough to be treated in lowest
order perturbation theory, and of a spatial range much larger than the
lattice constant of the underlying material. We will see that this restric-
tion leads to considerable simplifications leading us to an effective mass
Schrödinger equation for electrons in conduction bands with parabolic
dispersion.

4.1 Quantum mechanical motion in a
parabolic band

Weak and long-range perturbations of perfect crystal symmetry can be
caused, for example, by an external electric field, or by the presence of
a charged doping atom. Figure 4.1 shows schematically the perturbed
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Fig. 4.1 Continuum and discrete en-
ergy levels in the vicinity of a dop-
ing atom in a semiconductor. E1

is the energy of a discrete level be-
low the conduction band edge; E2 is
the energy of a state in the contin-
uum. (Reprinted with permission from
Slater, 1949. Copyright 1949 by the
American Physical Society.)
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lattice potential in the presence of a positively charged doping atom.
There are a number of different ways of solving this quantum mechan-

ical problem for the electronic motion. The methods differ essentially
in the set of basis functions used as a starting point for a perturbation
treatment. People have used Bloch-states (Enderlein and Schenk, 1992),
band edge states from k ·p-theory (Luttinger and Kohn, 1955), and the
so-called Wannier states (Wannier, 1937; Zinman, 1972; Kittel, 1970).
In order to give some insight into the derivation of the equation of mo-
tion, we will work in the Bloch-state basis and restrict the discussion to
a perturbation of a parabolic conduction band with minimum at Γ as it
is found, for example, in GaAs.

The problem on the basis of Bloch-states. Assume that we have
solved Schrödinger’s equation for the unperturbed crystal. The corre-
sponding dispersion relations En(k) and the Bloch-functions ψnk(r) =
eikrunk(r) are known. Now we seek the solution of the perturbed Schrö-
dinger equation

[H0+ U(r)] Ψ(r) = EΨ(r), (4.1)

where H0 is the hamiltonian of the unperturbed lattice and U(r) is the
perturbing potential. We expand the wave function Ψ(r) on the basis of
Bloch-states:

Ψ(r) =
∑

n,k

Fn(k)ψnk(r).

Inserting this expansion into Schrödinger’s equation gives
∑

nk

ψnk(r) [En(k) − E + U(r)]Fn(k) = 0.

Multiplying by ψ⋆
n′k′(r) and integrating over r leads to

∑

n,k

[(En(k) − E) δnk,n′k′ + Un′k′,nk]Fn(k) = 0, (4.2)

where we have used the orthogonality of Bloch-states and introduced
the matrix elements of the perturbing potential

Un′k′,nk =
∫

d3r ψ⋆
n′k′(r)U(r)ψnk(r).

The matrix elements of the perturbation. We will now further
simplify the matrix elements of the perturbation. To this end we intro-
duce the Fourier transform of U(r) (see Appendix A.2) and obtain

Un′k′,nk =
∫

d3q U(q)
∫

d3r ei(k−k′+q)ru⋆
n′k′(r)unk(r).

In this expression we can expand the lattice periodic function
u⋆

n′k′(r)unk(r) into a Fourier series and obtain for the matrix element

Un′k′,nk =
∫

d3q U(q)
∑

K

Cn′k′

nk (K)
∫

d3r ei(k−k′+q+K)r
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with the so-called Bloch integral

Cn′k′

nk (K) =
1
V0

∫

EZ
d3r e−iKru⋆

n′k′(r)unk(r).

The spatial integral in the expression for the matrix element Un′k′,nk

contributes only if the exponent vanishes, i.e., if q = k′ − k − K. As a
matter of fact, the integral is a representation of Dirac’s delta function.
Therefore the matrix element simplifies to

Un′k′,nk = (2π)3
∑

K

U(k′ − k − K)Cn′k′

nk (K). (4.3)

So far we have used the periodicity of the crystal lattice without using
any approximation.

Simplifying approximations. For further simplifications to the prob-
lem we make the following assumptions about the perturbation:

(1) We assume that the perturbing potential changes slowly on the
scale of the lattice constant, i.e., U(q) is significant only for q ≪
π/a.

(2) We assume that the perturbation is small compared to typical
energy separations of bands in the crystal.

(3) We assume that the coefficients Fn(k) have significant values only
for small values of k.

According to the third assumption, we consider only states near the
nondegenerate Γ-minimum. As a consequence of this and the first as-
sumption, in the sum over K only K = 0 is retained and the matrix
element simplifies to

Un′k′,nk ≈(2π)3U(k′ − k)Cn′k′

nk (0).

Now we would like to simplify the Bloch integral Cn′k′

nk (0). Based on
the third assumption, we employ the expansion of the Bloch-functions
near the conduction band minimum, eq. (3.19). We obtain

Cn′k′

nk (0) =
1
V0

∫

EZ
d3r u⋆

n′k′(r)unk(r) ≈ 1
(2π)3

δnn′ + O(k2),

and therefore
Un′k′,nk ≈U(k′ − k)δnn′ .

This means that, given our assumptions, the perturbation does not mix
states of neighboring bands, but only states of different k near the Γ-
minimum. With the above result for the matrix element, the equation
of motion (4.2) simplifies to

∑

k

[(En(k) − E) δk,k′ + U(k′ − k)]Fn(k) = 0.
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Simplification of the wave function. The wave function in real space
now reads

Ψ(r) =
∑

k

Fn(k)eikrunk(r).

Only small wave vectors k are important here, due to the long-range
nature of U(r). We therefore approximate unk(r) ≈un0(r) and obtain
for the wave function

Ψ(r) = un0(r)
∑

k

Fn(k)eikr = un0(r)Fn(r).

In the last step we have interpreted the sum over k as the Fourier series
of a real space function Fn(r). This function is of long range compared
to the lattice period and is called the envelope function of the wave
function.

Approximating the dispersion. We now approximate the dispersion
relation En(k) accordingly by using an approximation for small k. Near
the Γ-minimum we have [cf. eq. (3.22)]

Ec(k) = Ec +
!2k2

2m⋆
,

where m⋆ is the effective mass of electrons in the conduction band. With
these simplifications the equation of motion for electrons reads

!2

2m⋆
k2Fc(k) +

∑

k′

U(k − k′)Fc(k′) = (E − Ec)Fc(k).

Equation of motion in real space. This equation determines the
Fourier components of the envelope function Fc(r). Transformation
from Fourier space into real space is straightforward. The first term
on the left-hand side corresponds to the second derivative of the enve-
lope function in real space. The second term is a convolution integral
which transforms into the product of the two corresponding functions
in real space. We therefore obtain the following differential equation
determining the envelope function Fc(r):

[
− !2

2m⋆
∆ + Ec + U(r)︸ ︷︷ ︸

:=Ec(r)

]
Fc(r) = EFc(r). (4.4)

This is exactly Schrödinger’s equation (4.1) where the periodic lattice
potential hidden in H0has disappeared, but the free electron mass in H0

has been replaced by the effective mass of the conduction band electrons.
Introducing the local band edge energy Ec(r), this function acts as the
effective potential in which the conduction band electrons move.

The envelope function Fc(r) brings about very convenient simplifica-
tions. For example, matrix elements of a quantum mechanical quantity,
which have to be calculated using the complete electronic wave function,
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can usually be expressed as integrals over the envelope function alone.
As an example, we consider the electron density. Assume that the en-
velope functions Fi(r) are solutions of eq. (4.4) with energies Ei. The
electron density of the system is then given by

n(r) =
∑

i

|ψi(r)|2f(Ei) = |uc0(r)|2
∑

i

|Fi(r)|2f(Ei),

where f(E) is the Fermi distribution function. The envelope function
and the lattice periodic function uc0(r) vary on different length scales.
Within a primitive cell at position R of the lattice Fi(r) ≈ Fi(R) is
essentially constant. If we are interested only in the mean density in the
primitive cell at R, it is given by

n(R) =
1

VEZ

∫

EZ
dV |uc0(r)|2

︸ ︷︷ ︸
=1

∑

i

|Fi(R)|2f(Ei) =
∑

i

|Fi(R)|2f(Ei).

On a length scale that is large compared to the lattice constant, the
electron density is given by the envelope function alone and we can
neglect the lattice periodic function un0(r).

Hydrogen-like impurities. A simple application of the concept of the
envelope function is the determination of the energy levels of a hydrogen-
like impurity in a semiconductor. It has indeed been shown that modern
fabrication techniques have the potential to allow a precise incorpora-
tion of single doping atoms at predefined locations. Figure 4.2 shows
scanning tunneling microscope images of a hydrogen passivated Si(001)
surface. Using the tip of the scanning tunneling microscope, hydrogen
atoms can be locally desorbed. Such a spot of about 1 nm size is shown in
Fig. 4.2(a). If the surface is then exposed to PH3, the molecules are pref-
erentially adsorbed at those positions, where the hydrogen passivation
has been removed. A thermal annealing step lets the P atom diffuse into
the top layer of the Si substrate where it forms a substitutional doping
site as shown in Fig. 4.2(b).

Fig. 4.2 STM images of atomically
controlled single phosphor atom in-
corporation into Si(001). (a) Hydro-
gen terminated Si(001) surface with a
hydrogen desorption point. (b) The
same area after PH3 dosing and an-
nealing showing a single P atom incor-
porated at the location defined by the
H-desporption point. (Reprinted with
permission from Schofield, 2003. Copy-
right 2003 by the American Physical
Society.)

As an example for the use of the effective mass equation, we consider
a silicon atom sitting on the Ga site in a GaAs lattice. The silicon atom
can satisfy all bonds with neighboring arsenic atoms using only three of
its four valence electrons. As a consequence, one excess electron and an
excess positive elementary charge in the silicon nucleus remain. Such
a silicon atom is called a donor, because it can give away the excess
electron. However, the positively charged donor ion will bind the excess
electron, and the Coulomb interaction between them will appear in the
equation for the envelope function:

[
− !2

2m⋆
∆ − e2

4πεε0r

]
Fc(r) = (E − Ec)Fc(r).

The important point is that the relative dielectric constant of the host
crystal, in our case GaAs, enters in the Coulomb potential. It accounts
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for the polarization of the lattice by the charged donor, which effectively
reduces the interaction strength. The solution of this quantum problem
is that of the hydrogen problem, in which the Rydberg energy ERy =
13.6 eV is replaced by an effective Rydberg energy E⋆

Ry and Bohr’s radius
aB = 0.53 Å by an effective radius a⋆

B:

E⋆
Ry =

e4m⋆

2(4πεε0)2!2
= ERy

m⋆

me

1
ε2

a⋆
B =

4πεε0!2

m⋆e2
= aB

me

m⋆
ε.

For GaAs, with ε = 12.53 and m⋆ = 0.067me, we find E⋆
Ry = 5.7 meV

and a⋆
B = 100 Å. The energy levels of the hydrogen-like impurity are

then
En = Ec −

E⋆
Ry

n2
.

These states are discrete and lie below the conduction band edge of
the unperturbed crystal as schematically shown in Fig. 4.3. As in the
hydrogen atom, the excitation energy E⋆

Ry from the ground state to the
lower edge of the conduction band (continuum) is called the binding
energy. Measured binding energies of donors in GaAs are 5.789 meV for
SeAs, 5.839 meV for SiGa, 5.870 meV for SAs, 5.882 meV for GeGa, and
5.913 meV for CGa. These values agree quite well with the theoretical
prediction for E⋆

Ry.

Fig. 4.3 Energy levels of a hydrogen-
like impurity in GaAs (Yu and Car-
dona, 2001).

Figure 4.4 shows the total wave function of the ground state includ-
ing the Bloch part emphasizing that the envelope function determines
the shape of the probability density distribution on length scales large
compared to the lattice constant.

Equation of motion at the Γ-minimum of the conduction band
in the presence of a magnetic field. The equation of motion of
an electron at the conduction band minimum under the influence of a

Fig. 4.4 Total wave function of the
hydrogen-like impurity in GaAs includ-
ing the Bloch contribution (Yu and
Cardona, 2001).
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magnetic field has been derived by Luttinger (1951), and by Luttinger
and Kohn (1955) using similar methods. It was also found that, in this
case, the equation for the envelope function is identical to the effective
mass Schrödinger equation for a free particle in a magnetic field. Under
the simultaneous influence of a vector potential A(r) and an electrostatic
potential U(r) the equation of motion for electrons at the Γ-minimum
of the conduction band (see, e.g., Winkler 2003) reads

[
1

2m⋆

(
!
i
∇ + |e|A(r)

)2

+ U(r) +
1
2
g⋆µBσB

]
Fc(r) = (E − Ec)Fc(r).

(4.5)
Here, the elementary charge |e| = 1.6×10−19C is taken to be a positive
number. In the following chapters of the book we will frequently call
the envelope function Fc(r) simply the wave function of the electron,
because its equation of motion is identical with that of an electron with
mass m⋆ in vacuum. We will further use the convention that all energies
are measured from the conduction band edge of the unperturbed crystal,
such that Ec = 0 in the above equation. The effective mass m⋆ and the
effective g⋆-factor entering in the above equation can be calculated from
the knowledge of the band edge parameters given in Table 3.6 using eqs.
(3.30) and (3.31).

Equation (4.5) is of great importance for semiconductor nanostruc-
tures. Methods of structuring and patterning materials allow the fab-
rication of tailored potential landscapes U(r). Magnetic fields can be
created in the laboratory that influence the electronic motion as they do
in the free electron case. Solving the equations of motion is greatly facil-
itated by the existence of many analytical solutions and approximative
schemes from quantum mechanics textbooks.

The considerations leading to eq. (4.5) for conduction band electrons
near Γ can be extended to semiconductors with conduction band minima
at other points in the first Brillouin zone (e.g., silicon or germanium). In
this case, the wave function is expanded at the corresponding conduction
band minima rather than at Γ. More complicated equations of motion
result due to the valley degeneracy and the anisotropic effective masses.
The theory for valence band holes is also much more demanding, because
there are degenerate states at Γ.

4.2 Semiclassical equations of motion,
electrons and holes

Conduction band electrons. With the validity of the effective mass
Schrödinger equation (4.5) for the crystal electron, the semiclassical limit
of quantum mechanics (i.e., the motion of wave packets) must have its
range of application in semiconductor physics. Wave packets can be
constructed from the envelope functions Fc(r) and the dynamics of its
center of mass can be investigated. The result is Newton’s equation of
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motion
m⋆r̈ = −|e|(E − ṙ ×B), (4.6)

where E is the electric field and B is the magnetic field at the location of
the electron. As a consequence, there is a variety of possibilities in the
physics of semiconductor nanostructures to investigate the borderlines
between classical and quantum physics. Examples are investigations of
the relation between classical and quantum chaos, or the transition from
quantum to classical mechanics in the presence of decoherence.

Valence band holes. We will now briefly discuss the dynamics of holes,
i.e., missing electrons near a maximum of the valence band, in the classi-
cal limit. The convex curvature of the valence band could be interpreted
using a negative effective mass. Newton’s equation of motion reads in
this case

−m⋆r̈ = −|e|(E − ṙ ×B).

However, a negative effective mass is physically not very intuitive. We
can reinterpret this equation of motion by multiplying it by −1:

m⋆r̈ = +|e|(E − ṙ ×B)

This can be interpreted as the equation of motion for particles with posi-
tive mass m⋆, but with positive charge +|e|. The occurrence of a positive
charge at the top of the valence band is also intuitive from another point
of view. In the electrically neutral, uncharged semiconductor crystal the
valence band is completely filled. Removing an electron from the top
of the valence band, an initially localized positive charge remains. Such
a missing electron is called a hole. According to the above equation of
motion, the effective mass m⋆ and the charge +e are properties of this
hole which appears to move through the crystal like a classical particle.

Further reading

• Papers: Slater 1949; Luttinger 1951; Luttinger and
Kohn 1955.

• Effective mass from k ·p-theory: Davies 1998; Kit-
tel 1970; Yu and Cardona 2001.

• Effective mass from quasi-classical considerations
with group velocity and Newton’s equation of mo-

tion: Kittel 2005; Kittel 1970; Singleton 2001;
Ashcroft and Mermin 1987.

• Effective mass from the hydrogen problem in semi-
conductors, doping: Davies 1998.

• Band structure of semiconductors: Winkler 2003.
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Exercises

(4.1) Consider the differential equation for the enve-
lope function, eq. (4.5), with a magnetic field
B = (0, 0, B) and the Coulomb potential U(r) =
e2/4πϵϵ0r.

(a) Give reasons why the solution of the problem
can be separated in that of the orbital motion
and that of the spin dynamics.

(b) Discuss qualitatively the effects of the mag-
netic field on the spin dynamics.

(c) Discuss qualitatively how the magnetic field
affects the orbital energy levels and wave
functions.

(4.2) In silicon, the hamiltonian for the conduction band
envelope function in the effective mass equation is
given by

H =
!2

2mL

∂2

∂x2
+

!2

2mT

∂2

∂y2
+

∂2

∂z2
+ Vc(r),

where Vc = e2/4πϵϵ0r is the Coulomb potential,
and mL and mT are the longitudinal and trans-
verse effective masses, respectively. Consider the
case mL = mT + ∆m, where ∆m/mT ≪ 1. Calcu-
late the effect of the presence of ∆m on the energies
of the 1s-, 2s-, and 2p-states of a hydrogen-like im-
purity using perturbation theory.


