
One dimensional conductors 

 
Let us work in the single electron approximation, neglecting the electron correlation 
effects not included in a mean filed approximation. Let us take a conductor, a wire, 

with a square section of side d comparable to the Fermi wavelength 2π/kF, where kF is 
the Fermi momentum, and with a length l much longer than d, but shorter of the mean 

free path λ of an electron. This means that, if we take a normal metal, d is comparable 
to the atomic dimensions and l is up to hundreds of ångstrom. Let us take the x axis 
along the axis of the wire, and y and z in the square section. Let us approximate the 
potential felt by one electron in the yz plane as a square potential well with walls of 
infinite height. This system is periodic along x, but not along y and z. The energy 
contribution of the confined motion of the electron in y and z will be 

En,m=ħ2π2(n2+m2)/d2 
with n and m integer numbers. The free motion of the electron along the axis of the 
wire will give rise to an additional energy term E’n,m(kx) with a dependence on the 
crystal momentum in the x direction kx similar to that of an energy band in the three-
dimensional metal. These unidimensional (1D) energy band will have energy widths 
Wn,m. There will be a unidimensional band for each couple of n and m values. Let us 
assume that d is so small that energy differences between the values of En,m is larger 
than W values, and therefore the unidimensional bands do not overlap. The Fermi 
level will cross one of these bands. This will be the only band contributing to the 
electrical conduction. 
Let us connect the wire to two macroscopic conductors A and B, and let us apply 
potential difference V between A and B. The Fermi level of the negative conductor –
let us say A- will be eV higher than that of the positive conductor, B. Therefore, 
electrons will be injected in the wire by the negative conductor A and they will flow 
in the states of the wire with an energy between EFA and EFB, EFA = EFB+eV, until 
they reach B.  
The current is 

I= '
'2

2
dE

dE

dk
v

e
x

eVE

E

k

FB

FB

x∫
+

π
 

where vkx is the electron velocity, vkx =1/ ħ dE’(kx)/dkx, and the factor 2 is there 
because there is spin degeneracy (for each kx two states with opposite spin have the 
same energy) if the wire is paramagnetic. Therefore  
I=2e2V/ h 
and the resistance and the conductivity are 

R= 1/(2e2/ h)    σ=2e2/ h   (1/(2e2/ h) ≈ 13 kΩ) 
independently from the material and the length of the wire.  
If some unidimensional bands overlap the current is the sum of the current carried by 
each band. Therefore if the Fermi level crosses n bands, the current is ne2V/ h and the 
conductivity is 

σ=n2e2/ h 
 
If the wire is ferromagnetic the spin degeneracy is removed and in this case  

σ=ne2/ h 
 

The conductivity of a nanowire, if l is shorter of the mean free path λ of the electrons, 
is a multiple of the universal quantum of conductance G0=2e2/ ħ. Since there is no 
scattering in the wire, and therefore no loss of energy, the potential drops are at the 



contacts between the macroscopic conductors and the wire, and not in the wire. If the 

length l is more than λ some electron scatter in the nanowire, but the only possible 
scattering is to go back. Therefore the conductivity decreases. 
An electron that moves from the metal A to the nanowire feels a change in section of 
the conductor and/or a change in the potential. These may cause a reflection of the 
wavefunction back into the metal A. If only a fraction of the wavefunctions of the 
electron is transmitted into the wire the conductivity is 

σ=∑n
Tne

2/ ħ     

with Tn ≤ 1.  If the change in cross section going from the macroscopic conductor to 
the wire is smooth, the values of T are very close to 1. 
 
 
La figura mostra a destra in alto come 
varia la conducibilita’ di 5 nanofili d’oro 
mentre vengono allungati, e in basso 
l’istogramma dei valori della 
conducibilita’ di migliaia di nanofili. I 
valori piu’ frequenti di conducibilita’ 
sono circa 1 G0, 2 G0, 3 G0… Si nota che 
i picchi sono a un po’ meno di 2 G0, 

3G0... Questo e’ dovuto alla parziale 
riflessione della funzione d’onda degli 
elettroni provenienti dai metalli 
macroscopici nelle giunzioni con i 
nanofili. Le misure sono fatte a 
temperatura ambiente in aria o in 
soluzione. (da Venkataraman et al., 
Nano Letters 6, 458 (2006))  
 
 
 
Effects of finite temperature 

What is written above works if kBT is much less than the energy separation between 
the 1D bands in the nanowire. If this is not the case, electrons and holes are excited 
also in bands different from those cut by the Fermi level. The effect of this is a 
rounding of the steps in the conductance vs elongation plots and a broadening of the 
peaks in the histograms counts vs conductance. 
 
What happens if a molecule is trapped between two pieces of nanowires when the 

nanowire breaks? 

 
Let us assume a simple model for the molecule, that is a one-dimensional periodic 
arrangement of two types of atoms A and B, arranged in an alternating sequence 
ABABABAB . . . . (see J. K. Tomfohr et al. Phys. Rev. B65, 245105 (2002). The unit 
cell consists of an A and a B atom and the spacing between cells is a (the distance 
between A and B is a/2). The wave function in unit cell m is expressed as a linear 

combination of orthonormal orbitals φA and φB on each atom in that cell: 

Ψ(m)=CA
( m)φA+CB

( m)φB . 



The motion of the electrons from one atom to the next is described in the Hamiltonian 
matrix by a coupling -t between orbitals on nearest-neighbor atoms only and the 
onsite energies are EA and EB , with EA<EB . 
Assuming the Bloch form for the eigenstates, C(m)=e

ikma
C

(0), the energy eigenvalues 
are found to be 

E±(k)=Σ± )cos1(2 22
kat ++∆  

where 

Σ=(EA+EB)/2  and ∆=(EA-EB)/2. 
 
If the molecule has infinite length the physical solutions have a real k, like in a 
infinite solids (otherwise the wavefunctions diverge for m-> ∞  or - ∞ ). If the 
molecule is semi-infinite or finite (it has at least one end) complex k values are 
possible. Therefore let us plot the eigenvalues of the electron in this model of a 
molecule as a function of a complex k.  The figure below, taken from the paper by 
Tomfohr cited above, shows the usual band structure (real k) at the right, while the 
left part shows the dependence of the energy on the imaginary k. In this calculation t 

is set equal to ∆.  
 
The band gap in the model is 

2|∆|. Besides the “normal” bands 
for real k that would exist in an 
infinite system also, there are 
physical solutions for complex k 
in gap and above and below the 

“normal bands”. The two bands 
E+(k) and E-(k) are connected in 

the complex k plane at E=Σ.  
If you have a molecule (or a 
nanowire) with at least one end, 
an electron can exist with an 
energy in the gap, but its wave 
function decays exponentially 
from the end into the molecule 
(or the nanowire). 

You can apply a similar model to a solid with al least a surface, and you will find that 
because of this surface you can have states with energy in the gap of the infinite 
system, but the wavefunctions of these states decay exponentially if you move from 
the surface into the crystal (these state are called surface states).     
The imaginary k region of the band structure determines how an electron with a given 

energy will tunnel through a finite region of the crystal. In the gap region, between Σ-

∆ and Σ+∆  (~see Fig. above) |k| gives the rate of decay of the wave function from one 
cell to the next. As the energy approaches the band edge from the gap, |k| decreases so 
an electron with an energy in the gap will tunnel more effectively as its energy 
approaches the band edge. The band edges each act as the top of an effective potential 
barrier; like the top of the simple square barrier, they mark the crossover point from 
decaying states to propagating ones. 
If a molecule has a finite length and an electron is injected in the middle of the gap 
from one end, its probability of reaching the other end is minimum. It will be much 
higher if the electron is injected with an energy close to that of the bands in the 



molecule. The tunnelling probability of an electron through a molecule depends on its 
energy. The closer it is to that of a band, the higher the probability.  If I have a 
molecule between two metals, and I apply a small potential difference between the 
two metals, electrons near the Fermi level will be injected from one metal to the other 
through the molecule. If the molecular levels are far from the Fermi level this 
molecule act like a potential barrier. There is tunnelling through it, and the decay of 
the electron wave functions, calculated in the way described above,  depends on the 
energy distance between the Fermi level and the molecular state closer to it (the 
highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular 
orbital (LUMO)). 


