
1/405 – Scientific data formatsODM&C

Lecture 5 – Scientific data formats

Open Data Management & the Cloud
(Data Science & Scientific Computing / UniTS – DMG)

2/405 – Scientific data formatsODM&C

Scientific data formats

3/405 – Scientific data formatsODM&C

Scientific data formats

4/405 – Scientific data formatsODM&C

Scientific data formats

5/405 – Scientific data formatsODM&C

Scientific data formats

6/405 – Scientific data formatsODM&C

Scientific I/O goals

I/O is commonly used by scientific applications to achieve goals like

storing numerical output from simulations for later analysis

implementing 'out-of-core' techniques for algorithms that process more
data than can fit in system memory and must page data in from disk

checkpointing to files that save the state of an application in case of
system failure

Provide a digital archival format portable and self-describing, on the
assumption that neither the software nor the hardware that wrote the
data will be available when the data are read

To be supported by an open format specification

Application programming interface available for several programming
languages (C, C++, Java, Python, R, Fortran, Julia, Ruby, etc.) and on
different operating systems and hardware architectures.

7/405 – Scientific data formatsODM&C

Data formats adoption

HDF5

used in several research areas, including earth sciences, computational fluid
dynamics, astronomy, astrophysics, but also financial services and industry

NetCDF is a set of interfaces for array-oriented data access. Starting with
version 4, the netCDF library can use HDF5 files as its base format

Used in climatology, meteorology and oceanography applications (e.g., weather
forecasting, climate change) and GIS applications

FITS is the standard data format used in Astronomy

ESA and NASA developed FITS in the late 1970s, stemming from radio astronomy
(FITS is always backward compatible)

The Vatican Library has adopted the FITS data format for the long-term digital
preservation of the books, manuscripts, and other objects in its vast collection

ROOT

Originally designed for particle physics (at CERN), its usage has extended to other
data-intensive fields like astrophysics and neuroscience

8/405 – Scientific data formatsODM&C

File formats features

Self-description (i.e. metadata)

Human-readable metadata availability

Open-format, i.e. with a public specification maintained by a standards
organization

Machine independence

Storage efficiency

Data structures: images, n-dimensional arrays, tables, objects
sequences, hierarchical structures

Internal data compression (e.g. tile compression)

Data access

read/write a portion of the n-dimensional arrays (hyperslabs) or tables

9/405 – Scientific data formatsODM&C

FITS format

Even if mainly used in Astronomy, it is useful to start with a quick view of the
FITS standard, in order to highlight some concepts and data structures

The first FITS (Flexible Image Transport System) standard was published
in 1981. The most recent version (4.0) has been standardized in 2016

Ref: https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

It is primarily designed to store scientific data sets consisting of
multidimensional arrays (images) and 2-dimensional tables organized
into rows and columns of information

In few words a FITS file is composed by two distinct parts, which can be
repeated several times:

the first part (header) is formed by easily viewable ASCII text elements providing
metadata information

in the second part there are the data in binary format (a multi-dimensional array
or a table)

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

10/405 – Scientific data formatsODM&C

The FITS HDU

The header and the binary part together are called Header Data Unit
(HDU)

The binary part (data unit) is always optional

The first HDU is called primary HDU or primary array and its binary part
can only be an image (n-dimensional array)

Any number of additional HDUs may follow the primary array. These
additional HDUs are referred to as FITS ‘extensions’

The binary part of a fits extension can contain either an n-dimensional
array or a table

To be precise, the data unit
can also contain an ASCII
table, so it is not always
binary

11/405 – Scientific data formatsODM&C

FITS example from the Euclid mission

M2 mission in the framework of ESA Cosmic Vision Program

Euclid mission objective is to map the geometry and understand the nature
of the dark Universe (dark energy and dark matter)

Federation of 8 European + 1 US Science Data Centers and a Science
Operation Center (ESA)

Large amount of data produced by the
mission

Due to reprocessing

Large amount of external data needed
(ground based observations)

Grand total: 90 PB

Two instruments on board:

VIS: Visible Imager

NISP: Near Infrared Spectro-Photometer

12/405 – Scientific data formatsODM&C

A NISP instrument simulated image

The NISP focal plane is
composed of a matrix of 4×4
2040×2040 18 micron pixel
detectors

The photometric channel is
equipped with 3 broad band
filters (Y, J and H)

The spectroscopic channel is
equipped with 4 different low
resolution near infrared grisms
(three red and one blue) but no
slit

The image on the right shows a
NISP frame composed by its 16
detectors (photometric channel, 1
band)

13/405 – Scientific data formatsODM&C

FITS header example

14/405 – Scientific data formatsODM&C

Euclid example: NISP detectors in FITS

15/405 – Scientific data formatsODM&C

Euclid example: NISP detectors in FITS

16/405 – Scientific data formatsODM&C

Euclid example: NISP detectors in FITS

17/405 – Scientific data formatsODM&C

FITS binary table

The header of a binary table specifies also each column name, its type and the unit of
measurement

Cells can also contain fixed or variable length arrays

18/405 – Scientific data formatsODM&C

FITS binary table

The header of a binary table specifies also each column name, its type and the unit of
measurement

Cells can also contain fixed or variable length arrays

19/405 – Scientific data formatsODM&C

FITS binary table

The header of a binary table specifies also each column name, its type and the unit of
measurement

Cells can also contain fixed or variable length arrays

20/405 – Scientific data formatsODM&C

FITS metadata and data

FITS keywords are defined by a keyword name, a value (string, logical, int, float, complex)
and an optional comment

The comment is used to further document the metadata information, e.g. indicating the unit of
measure and purpose or, for date time values, the epoch used

Keyword names are limited to 8 characters, but a widely used standard extension allows longer
names

The FITS standard also fixes a dictionary of keyword names and corresponding value type
and format for representation of World Coordinate Systems and time coordinates

Additional dictionaries are defined by astronomy organizations such as the European
Southern Observatory (ESO) and the National Optical Astronomy Observatory (NOAO)

21/405 – Scientific data formatsODM&C

HDF5 data model

The Heararchical Data Format (HDF5) data model defines 7 classes of
objects:

A file is a container for HDF5 objects. Default file storage layout: single,
contiguous file on local disk

Alternative layouts are designed to suit the needs of a variety of systems

A dataset contains an array of data elements, together with supporting
metadata

Dataspaces describe the rank and dimensions of a data object array.

Datatypes describe the data elements in a data object array

22/405 – Scientific data formatsODM&C

HDF5 data model and library

Groups and links are used to organize objects in a file as a directed
graph with a single designated entry node, called the root group

In other words, groups are hierarchical containers that store datasets and
other groups

An attribute is a means of attaching content metadata to an object
(i.e. datasets and groups)

The HDF5 file specification and open source library is maintained by
the HDF Group

The HDF Group’s primary product is the HDF5 software library, written
in C, with additional bindings for C++ and Java

The python interfaces, e.g. h5py and PyTables, are designed to use the C
library

https://hdfgroup.org/

https://hdfgroup.org/

23/405 – Scientific data formatsODM&C

HDF5 library

24/405 – Scientific data formatsODM&C

HDF5 and Python

The HDF Group provides a software library in C, C++, Fortran and Java

It also provides a graphical viewer for HDF5 files, named HDFView, and
some command line tools:

h5ls: lists the metadata content of an HDF5 file

h5dump: prints both metadata and data content of an HDF5 file

One of the Python modules available for read and write HDF5 files is
h5py. We will use this module in the following examples

The easiest way to install the HDF5 libraries and python module is again
the Anaconda python distribution, which installs them by default:

https://www.anaconda.com/download

Example project available at:
https://www.ict.inaf.it/gitlab/odmc/hdf5_example

git clone https://www.ict.inaf.it/gitlab/odmc/hdf5_example.git

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/odmc/hdf5_example

25/405 – Scientific data formatsODM&C

HDF5 datasets

The Datasets are the central feature of HDF5. We can consider them
as multi-dimensional arrays that live on disk

Every dataset in HDF5 has a name, a type, a shape, and supports
random access

When using the h5py python module, the datasets API is close to the
standard python n-dimensional array module, numpy

import h5py
import numpy as np

f = h5py.File("testdata.hdf5","w")

Empty dataset creation: dataset name, shape and type
f.create_dataset("test1", (20,15), dtype=np.float32)
The dataset is filled with zero by default

We can also pass another fill value
f.create_dataset("test2", (25,), dtype=np.int32, fillvalue=42)

Or we can pass directly the data array as a numpy array
bigdata = np.ones((100, 1000), dtype=np.float64)
f.create_dataset("test3", data=bigdata, dtype=np.float32)

Casting to a 32 bit
floating point to save
space on disk

26/405 – Scientific data formatsODM&C

Datasets indexing and boolean indexing

Datasets permit slicing operations analogous to numpy arrays

However, for performance reasons, the dataset should be accessed by
blocks of values instead of single or few values

If you need to access repeatedly few values at a time, it is better to
retrieve an entire dataset or at least a block, so that it is returned as a
numpy array in memory, and then access such numpy array

But also avoid explicit loops in python on huge arrays

random 2d distribution in the range (-1,1)
data = np.random.rand(15, 10)*2 - 1

dset = f.create_dataset('random', data=data)

print the first 5 even rows and the first two columns
out = dset[0:10:2, :2]
print(out)

clipping to zero all negative values
dset[data<0] = 0

27/405 – Scientific data formatsODM&C

Appending new data

Until now, we have created datasets with a fixed shape

However, often we don’t know in advance the size of a dataset and we
need to append new data to it

First we have to create a resizable dataset, then we have to append
data in a scalable way

Datasets, by default, store data in row-major order

dset = f.create_dataset('dataset_two', (1,1000), dtype=np.float32,
 maxshape=(None, 1000))

a = np.ones((1000,1000))

num_rows = dset.shape[0]
dset.resize((num_rows+a.shape[0], 1000))

dset[num_rows:] = a

First axis is now
unlimited

We resize the dataset
before performing the
bulk insertion

28/405 – Scientific data formatsODM&C

HDF5 Groups

Groups are the HDF5 container object, analogous to folders in a filesystem

They can hold datasets and other groups, allowing you to build up a
hierarchical structure with objects neatly organized in groups and
subgroups

The File object is itself a group. In this case, it also serves as the root
group, named /, our entry point into the file

Groups work mostly like dictionaries; groups are iterable, and have a subset
of the normal Python dictionary API

grp = f.create_group('nisp_frame/detectors/det11')
grp['sci_image'] = np.zeros((2040,2040))

print(grp.name) # the group name property
print(grp.parent) # the parent group property
print(grp.file) # the file property
print(grp) # prints some group information.

/nisp_frame/detectors/det11
<HDF5 group "/nisp_frame/detectors" (1 members)>
<HDF5 file "testdata.hdf5" (mode r+)>
<HDF5 group "/nisp_frame/detectors/det11" (1 members)>

output

29/405 – Scientific data formatsODM&C

HDF5 attributes

Attributes are pieces of metadata you can stick on objects in the file.
They’re a key mechanism for making self-describing files.

You can attach attributes to any kind of object that is linked into the
HDF5 tree structure: groups, datasets and other objects not mentioned
in this introduction

Both groups and datasets provide a “.attrs” property in h5py. This is
a little proxy object that works mostly like a Python dictionary

grp = f['nisp_frame']
grp.attrs['telescope'] = 'Euclid'
grp.attrs['instrument'] = 'NISP'
grp.attrs['pointing'] = np.array([8.48223045516, -20.4610801911, 64.8793517547])
grp.attrs.create('detector_id', '11', dtype="|S2")

print(grp.attrs['pointing'])
print(grp.attrs['detector_id'])

[8.48223046 -20.46108019 64.87935175]
b'11'output

30/405 – Scientific data formatsODM&C

HDF5 types

DEPRECATED

31/405 – Scientific data formatsODM&C

HDF5 special types

HDF5 supports a few types which have no direct NumPy equivalent.
Among the most useful and widely used are:

Variable length (VL) types: variable length strings, “ragged” arrays

Enumerated types

Before version 2.10 of h5py the API was providing
h5py.special_dtype(**kwds) function, now deprecated

Now h5py provides dedicated functions

Variable length strings
dt = h5py.string_dtype(encoding='utf-8')
ds = f.create_dataset('VLDS', (100,100), dtype=dt)
Ragged arrays of integers
dt = h5py.vlen_dtype(np.dtype('int32'))
dset = f.create_dataset('vlen_int', (100,), dtype=dt)
dset[0] = [1,2,3]
dset[1] = [1,2,3,4,5]
Enum types
dt = h5py.enum_dtype({"RED": 0, "GREEN": 1, "BLUE": 42}, basetype='i')

32/405 – Scientific data formatsODM&C

Tables = Datasets and compound types

Table can be stored using datasets and the compound types (see
below)

NumPy supports this feature through structured arrays. The dtype for
these arrays contains a series of fields, each of which has a name and
its own sub-dtype

f = h5py.File("testdata.hdf5",”w”)

dt = np.dtype([('source_id', np.uint32), ('ra', np.float32), ('dec', np.float32),
 ('magnitude', np.float64)])
grp = f.create_group('source_catalog/det11')
dset = grp.create_dataset('star_catalog', (100,), dtype=dt)

dset['source_id', 0] = 1
print(dset['source_id', 'ra', :20])
print(dset[0])

Compound type

33/405 – Scientific data formatsODM&C

HDF5 object references

Additional useful features in HDF5 are those that help you to express
relationships between pieces of your data

For instance, we may want to relate a dataset containing a catalog of
sources with the image where the catalog was extracted

Or, given a specific astronomical source, we may want to quickly find
the cutout (region) of the source in the original image

In HDF5, an object reference is basically a pointer to object in the file

A reference to an object, e.g. a group or a dataset, can be obtained
through its ‘.ref’ property, which in h5py as type h5py.Reference

Since the reference is an “absolute” way of locating an object, you can
use any group in the file for dereferencing it, not just the root group

Object references can be stored as data, and they’re independent of
later renaming of the objects involved (almost unbreakable links)

34/405 – Scientific data formatsODM&C

References and Region References

References are full-fledged types in HDF5; we can use them in both
attributes and datasets

Region references let you store a reference to part of a dataset, e.g.
a region of interest (ROI) on images stored in an HDF5 file

Datasets provide a property named ‘.regionref’, to create a region
reference by applying the standard NumPy slicing syntax to the object

sci_image = f['/nisp_frame/detectors/det11/sci_image']
sci_image.attrs['star_catalog'] = dset.ref
cat_ref = sci_image.attrs['star_catalog']

print(cat_ref)
dset = f[cat_ref]
print(dset[0])

roi = sci_image.regionref[15:20, 36:78]
print(sci_image[roi])

35/405 – Scientific data formatsODM&C

Chunked storage 1/2

By default, all but the smallest HDF5 datasets use contiguous storage

Applications reading a whole image, or a series of whole images, will
be efficient at reading the data

But suppose that we have a sequence of images of the same size, e.g.
100 images of 2048x2048 pixels, and that we have to compute the
median of each pixel along the sequence of images

We can process small blocks of 64x64 pixels for each image in the
sequence

For each image in the sequence we could start reading data in a 64×64
pixel slice in the corner of the first image

and then proceed on the same block for the other images

The fundamental problem here is that the default contiguous storage
mechanism does not match our access pattern

dset[0, 0:64, 0:64]

36/405 – Scientific data formatsODM&C

Chunked storage 2/2

There is a way to preserve the shape of the dataset but tell HDF5 to
optimize the dataset for access in 64×64 pixel blocks

That’s what chunking does in HDF5. HDF5 splits the data into
“chunks” of the specified shape, flattens them, and writes them to disk

The chunks are stored in various places in the file and their
coordinates are indexed by a B-tree
dset = f.create_dataset('chunked', (10,2048,2048), dtype=np.uint16,
 chunks=(1,64,64))

37/405 – Scientific data formatsODM&C

Compression filters 1/2

HDF5 has the concept of a filter pipeline, which is just a series of operations
performed on each chunk when it’s written

Each filter is free to do anything it wants to the data in the chunk: compress it,
checksum it, add metadata, anything

When the file is read, each filter is run in “reverse” mode to reconstruct the
original data

38/405 – Scientific data formatsODM&C

Compression filters 2/2

A number of compression filters are available in HDF5. By far the most
commonly used is the GZIP filter

You’ll notice that the auto-chunker has selected a chunk shape for us:
(64, 128)

Data is broken up into chunks of 64*128*(4 bytes) = 32KiB blocks for the
compressor

dset = f.require_dataset('auto_chunked', (2048,2048), dtype=np.float32, compression="gzip")
print(dset.compression)
print(dset.compression_opts)
print(dset.chunks)

gzip
4
(64, 128)

39/405 – Scientific data formatsODM&C

Some additional comments on HDF5

Attributes in HDF5 can be considered the analogous of FITS keywords. They
are considered the element bringing the self-describing feature in HDF5

However, the HDF5 standard does not provide an annotation feature for the
attributes, i.e. the analogous of keyword comments in FITS

But there is an official XML Schema language to describe HDF5 structures:
https://support.hdfgroup.org/HDF5/XML/

The attribute has only two parts, name and value. The value can be also an
array or a compound type. This means that attributes cannot be organized in
hierarchies (they are flat as the FITS keywords)

There is no standard mechanism to specify units of measurement for datasets
or attributes

Metadata has to be stored also in a DBMS or XML DB. Consistency has to be
maintained between the metadata content of the file and the one in the DBMS

Metadata mapping tools are not standard

https://support.hdfgroup.org/HDF5/XML/

40/405 – Scientific data formatsODM&C

Small exercise with the HDF5 file

You can try now to model the NISP frame and source catalog in a
single HDF5 file

Some suggestions:

Use a top level group, has shown in the hdf5_example project, to store the
NISP frame common metadata

Use a subgroup for each detector, in order to store the attributes specific
for each detector and its three images (science, DQ and RMS)

Define a separate group for the source catalog, using a separate dataset
for each detector (it will contain the sources detected on the detector
image)

Create a reference between the detector group or the detector science
image and the corresponding source catalog

Obviously, you can use dummy or random data to fill the datasets and the
attributes

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33

