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Scientific I/O goals

I/O is commonly used by scientific applications to achieve goals like

storing numerical output from simulations for later analysis

implementing 'out-of-core' techniques for algorithms that process more 
data than can fit in system memory and must page data in from disk

checkpointing to files that save the state of an application in case of 
system failure

Provide a digital archival format portable and self-describing, on the 
assumption that neither the software nor the hardware that wrote the 
data will be available when the data are read

To be supported by an open format specification

Application programming interface available for several programming 
languages (C, C++, Java, Python, R, Fortran, Julia, Ruby, etc.) and on 
different operating systems and hardware architectures.
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Data formats adoption

HDF5

used in several research areas, including earth sciences, computational fluid 
dynamics, astronomy, astrophysics, but also financial services and industry

NetCDF is a set of interfaces for array-oriented data access. Starting with 
version 4, the netCDF library can use HDF5 files as its base format

Used in climatology, meteorology and oceanography applications (e.g., weather 
forecasting, climate change) and GIS applications

FITS is the standard data format used in Astronomy

ESA and NASA developed FITS in the late 1970s, stemming from radio astronomy 
(FITS is always backward compatible)

The Vatican Library has adopted the FITS data format for the long-term digital 
preservation of the books, manuscripts, and other objects in its vast collection

ROOT

Originally designed for particle physics (at CERN), its usage has extended to other 
data-intensive fields like astrophysics and neuroscience
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File formats features

Self-description (i.e. metadata)

Human-readable metadata availability

Open-format, i.e. with a public specification maintained by a standards 
organization

Machine independence

Storage efficiency

Data structures: images, n-dimensional arrays, tables, objects 
sequences, hierarchical structures

Internal data compression (e.g. tile compression)

Data access

read/write a portion of the n-dimensional arrays (hyperslabs) or tables
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FITS format

Even if mainly used in Astronomy, it is useful to start with a quick view of the 
FITS standard, in order to highlight some concepts and data structures

The first FITS (Flexible Image Transport System) standard was published 
in 1981. The most recent version (4.0) has been standardized in 2016

Ref: https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

It is primarily designed to store scientific data sets consisting of 
multidimensional arrays (images) and 2-dimensional tables organized 
into rows and columns of information

In few words a FITS file is composed by two distinct parts, which can be 
repeated several times: 

the first part (header) is formed by easily viewable ASCII text elements providing 
metadata information

in the second part there are the data in binary format (a multi-dimensional array 
or a table)

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
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The FITS HDU

The header and the binary part together are called Header Data Unit 
(HDU)

The binary part (data unit) is always optional

The first HDU is called primary HDU or primary array and its binary part 
can only be an image (n-dimensional array)

Any number of additional HDUs may follow the primary array. These 
additional HDUs are referred to as FITS ‘extensions’

The binary part of a fits extension can contain either an n-dimensional 
array or a table

To be precise, the data unit
can also contain an ASCII
table, so it is not always
binary  
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FITS example from the Euclid mission

M2 mission in the framework of ESA Cosmic Vision Program

Euclid mission objective is to map the geometry and understand the nature 
of the dark Universe (dark energy and dark matter)

Federation of 8 European + 1 US Science Data Centers and a Science 
Operation Center (ESA)

Large amount of data produced by the
mission

Due to reprocessing

Large amount of external data needed 
(ground based observations)

Grand total: 90 PB

Two instruments on board:

VIS: Visible Imager

NISP: Near Infrared Spectro-Photometer
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A NISP instrument simulated image

The NISP focal plane is 
composed of a matrix of 4×4 
2040×2040 18 micron pixel 
detectors

The photometric channel is 
equipped with 3 broad band 
filters (Y, J and H) 

The spectroscopic channel is 
equipped with 4 different low 
resolution near infrared grisms 
(three red and one blue) but no 
slit

The image on the right shows a 
NISP frame composed by its 16 
detectors (photometric channel, 1 
band)
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FITS header example
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Euclid example: NISP detectors in FITS
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Euclid example: NISP detectors in FITS
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Euclid example: NISP detectors in FITS
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FITS binary table

The header of a binary table specifies also each column name, its type and the unit of 
measurement

Cells can also contain fixed or variable length arrays
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FITS metadata and data

FITS keywords are defined by a keyword name, a value (string, logical, int, float, complex) 
and an optional comment

The comment is used to further document the metadata information, e.g. indicating the unit of 
measure and purpose or, for date time values, the epoch used

Keyword names are limited to 8 characters, but a widely used standard extension allows longer 
names 

The FITS standard also fixes a dictionary of keyword names and corresponding value type 
and format for representation of World Coordinate Systems and time coordinates

Additional dictionaries are defined by astronomy organizations such as the European 
Southern Observatory (ESO) and the National Optical Astronomy Observatory (NOAO)
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HDF5 data model

The Heararchical Data Format (HDF5) data model defines 7 classes of 
objects:

A file is a container for HDF5 objects. Default file storage layout:  single, 
contiguous file on local disk

Alternative layouts are designed to suit the needs of a variety of systems

A dataset contains an array of data elements, together with supporting 
metadata

Dataspaces describe the rank and dimensions of a data object array.

Datatypes describe the data elements in a data object array
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HDF5 data model and library

Groups and links are used to organize objects in a file as a directed 
graph with a single designated entry node, called the root group

In other words, groups are hierarchical containers that store datasets and 
other groups

An attribute is a means of attaching content metadata to an object 
(i.e. datasets and groups)

The HDF5 file specification and open source library is maintained by 
the HDF Group

The HDF Group’s primary product is the HDF5 software library, written 
in C, with additional bindings for C++ and Java

The python interfaces, e.g. h5py and PyTables, are designed to use the C 
library

https://hdfgroup.org/

https://hdfgroup.org/
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HDF5 library
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HDF5 and Python

The HDF Group provides a software library in C, C++, Fortran and Java

It also provides a graphical viewer for HDF5 files, named HDFView, and 
some command line tools:

h5ls: lists the metadata content of an HDF5 file

h5dump: prints both metadata and data content of an HDF5 file

One of the Python modules available for read and write HDF5 files is 
h5py. We will use this module in the following examples

The easiest way to install the HDF5 libraries and python module is again 
the Anaconda python distribution, which installs them by default:

https://www.anaconda.com/download

Example project available at:
https://www.ict.inaf.it/gitlab/odmc/hdf5_example

git clone https://www.ict.inaf.it/gitlab/odmc/hdf5_example.git

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/odmc/hdf5_example
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HDF5 datasets

The Datasets are the central feature of HDF5. We can consider them 
as multi-dimensional arrays that live on disk

Every dataset in HDF5 has a name, a type, a shape, and supports 
random access

When using the h5py python module, the datasets API is close to the 
standard python n-dimensional array module, numpy 

import h5py
import numpy as np

f = h5py.File("testdata.hdf5","w")

# Empty dataset creation: dataset name, shape and type
f.create_dataset("test1", (20,15), dtype=np.float32)
# The dataset is filled with zero by default

# We can also pass another fill value
f.create_dataset("test2", (25,), dtype=np.int32, fillvalue=42)

# Or we can pass directly the data array as a numpy array
bigdata = np.ones((100, 1000), dtype=np.float64)
f.create_dataset("test3", data=bigdata, dtype=np.float32)

Casting to a 32 bit 
floating point to save 
space on disk
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Datasets indexing and boolean indexing

Datasets permit slicing operations analogous to numpy arrays

However, for performance reasons, the dataset should be accessed by 
blocks of values instead of single or few values

If you need to access repeatedly few values at a time, it is better to 
retrieve an entire dataset or at least a block, so that it is returned as a 
numpy array in memory, and then access such numpy array

But also avoid explicit loops in python on huge arrays

# random 2d distribution in the range (-1,1)
data = np.random.rand(15, 10)*2 - 1

dset = f.create_dataset('random', data=data)

# print the first 5 even rows and the first two columns
out = dset[0:10:2, :2]
print(out)

# clipping to zero all negative values
dset[data<0] = 0
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Appending new data

Until now, we have created datasets with a fixed shape

However, often we don’t know in advance the size of a dataset and we 
need to append new data to it

First we have to create a resizable dataset, then we have to append 
data in a scalable way

Datasets, by default, store data in row-major order

dset = f.create_dataset('dataset_two', (1,1000), dtype=np.float32, 
                        maxshape=(None, 1000))

a = np.ones((1000,1000))

num_rows = dset.shape[0]
dset.resize((num_rows+a.shape[0], 1000))

dset[num_rows:] = a

First axis is now 
unlimited

We resize the dataset 
before performing the 
bulk insertion
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HDF5 Groups

Groups are the HDF5 container object, analogous to folders in a filesystem

They can hold datasets and other groups, allowing you to build up a 
hierarchical structure with objects neatly organized in groups and 
subgroups

The File object is itself a group. In this case, it also serves as the root 
group, named /, our entry point into the file

Groups work mostly like dictionaries; groups are iterable, and have a subset 
of the normal Python dictionary API

grp = f.create_group('nisp_frame/detectors/det11')
grp['sci_image'] = np.zeros((2040,2040))

print(grp.name)     # the group name property
print(grp.parent)   # the parent group property
print(grp.file)     # the file property
print(grp)          # prints some group information. 

/nisp_frame/detectors/det11
<HDF5 group "/nisp_frame/detectors" (1 members)>
<HDF5 file "testdata.hdf5" (mode r+)>
<HDF5 group "/nisp_frame/detectors/det11" (1 members)>

output
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HDF5 attributes

Attributes are pieces of metadata you can stick on objects in the file. 
They’re a key mechanism for making self-describing files.

You can attach attributes to any kind of object that is linked into the 
HDF5 tree structure: groups, datasets and other objects not mentioned 
in this introduction

Both groups and datasets provide a “.attrs” property in h5py. This is 
a little proxy object that works mostly like a Python dictionary

grp = f['nisp_frame']
grp.attrs['telescope'] = 'Euclid'
grp.attrs['instrument'] = 'NISP'
grp.attrs['pointing'] = np.array([8.48223045516, -20.4610801911, 64.8793517547])
grp.attrs.create('detector_id', '11', dtype="|S2")

print(grp.attrs['pointing'])
print(grp.attrs['detector_id'])

[  8.48223046 -20.46108019  64.87935175]
b'11'output
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HDF5 types

DEPRECATED
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HDF5 special types

HDF5 supports a few types which have no direct NumPy equivalent. 
Among the most useful and widely used are:

Variable length (VL) types: variable length strings, “ragged” arrays

Enumerated types

Before version 2.10 of h5py the API was providing 
h5py.special_dtype(**kwds) function, now deprecated

Now h5py provides dedicated functions

# Variable length strings
dt = h5py.string_dtype(encoding='utf-8')
ds = f.create_dataset('VLDS', (100,100), dtype=dt)
# Ragged arrays of integers
dt = h5py.vlen_dtype(np.dtype('int32'))
dset = f.create_dataset('vlen_int', (100,), dtype=dt)
dset[0] = [1,2,3]
dset[1] = [1,2,3,4,5]
# Enum types
dt = h5py.enum_dtype({"RED": 0, "GREEN": 1, "BLUE": 42}, basetype='i')
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Tables = Datasets and compound types

Table can be stored using datasets and the compound types (see 
below)

NumPy supports this feature through structured arrays. The dtype for 
these arrays contains a series of fields, each of which has a name and 
its own sub-dtype

f = h5py.File("testdata.hdf5",”w”)

dt = np.dtype([('source_id', np.uint32), ('ra', np.float32), ('dec', np.float32), 
               ('magnitude', np.float64)])
grp = f.create_group('source_catalog/det11')
dset = grp.create_dataset('star_catalog', (100,), dtype=dt)

dset['source_id', 0] = 1
print(dset['source_id', 'ra', :20])
print(dset[0])

Compound type
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HDF5 object references

Additional useful features in HDF5 are those that help you to express 
relationships between pieces of your data

For instance, we may want to relate a dataset containing a catalog of 
sources with the image where the catalog was extracted

Or, given a specific astronomical source, we may want to quickly find 
the cutout (region) of the source in the original image

In HDF5, an object reference is basically a pointer to object in the file

A reference to an object, e.g. a group or a dataset, can be obtained 
through its ‘.ref’ property, which in h5py as type h5py.Reference

Since the reference is an “absolute” way of locating an object, you can 
use any group in the file for dereferencing it, not just the root group

Object references can be stored as data, and they’re independent of 
later renaming of the objects involved (almost unbreakable links)
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References and Region References

References are full-fledged types in HDF5; we can use them in both 
attributes and datasets

Region references let you store a reference to part of a dataset, e.g. 
a region of interest (ROI) on images stored in an HDF5 file

Datasets provide a property named ‘.regionref’, to create a region 
reference by applying the standard NumPy slicing syntax to the object

sci_image = f['/nisp_frame/detectors/det11/sci_image']
sci_image.attrs['star_catalog'] = dset.ref
cat_ref = sci_image.attrs['star_catalog']

print(cat_ref)
dset = f[cat_ref]
print(dset[0])

roi = sci_image.regionref[15:20, 36:78]
print(sci_image[roi])
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Chunked storage 1/2

By default, all but the smallest HDF5 datasets use contiguous storage

Applications reading a whole image, or a series of whole images, will 
be efficient at reading the data

But suppose that we have a sequence of images of the same size, e.g. 
100 images of 2048x2048 pixels, and that we have to compute the 
median of each pixel along the sequence of images

We can process small blocks of 64x64 pixels for each image in the 
sequence

For each image in the sequence we could start reading data in a 64×64 
pixel slice in the corner of the first image

and then proceed on the same block for the other images

The fundamental problem here is that the default contiguous storage 
mechanism does not match our access pattern 

dset[0, 0:64, 0:64]
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Chunked storage 2/2

There is a way to preserve the shape of the dataset but tell HDF5 to 
optimize the dataset for access in 64×64 pixel blocks

That’s what chunking does in HDF5. HDF5 splits the data into 
“chunks” of the specified shape, flattens them, and writes them to disk

The chunks are stored in various places in the file and their 
coordinates are indexed by a B-tree
dset = f.create_dataset('chunked', (10,2048,2048), dtype=np.uint16,
                        chunks=(1,64,64))
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Compression filters 1/2

HDF5 has the concept of a filter pipeline, which is just a series of operations 
performed on each chunk when it’s written

Each filter is free to do anything it wants to the data in the chunk: compress it, 
checksum it, add metadata, anything

When the file is read, each filter is run in “reverse” mode to reconstruct the 
original data
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Compression filters 2/2

A number of compression filters are available in HDF5. By far the most 
commonly used is the GZIP filter

You’ll notice that the auto-chunker has selected a chunk shape for us: 
(64, 128)

Data is broken up into chunks of 64*128*(4 bytes) = 32KiB blocks for the 
compressor

dset = f.require_dataset('auto_chunked', (2048,2048), dtype=np.float32, compression="gzip")
print(dset.compression)
print(dset.compression_opts)
print(dset.chunks)

gzip
4
(64, 128)
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Some additional comments on HDF5

Attributes in HDF5 can be considered the analogous of FITS keywords. They 
are considered the element bringing the self-describing feature in HDF5

However, the HDF5 standard does not provide an annotation feature for the 
attributes, i.e. the analogous of keyword comments in FITS

But there is an official XML Schema language to describe HDF5 structures:
https://support.hdfgroup.org/HDF5/XML/

The attribute has only two parts, name and value. The value can be also an 
array or a compound type. This means that attributes cannot be organized in 
hierarchies (they are flat as the FITS keywords)

There is no standard mechanism to specify units of measurement for datasets 
or attributes 

Metadata has to be stored also in a DBMS or XML DB. Consistency has to be 
maintained between the metadata content of the file and the one in the DBMS

Metadata mapping tools are not standard 

https://support.hdfgroup.org/HDF5/XML/


40/405 – Scientific data formatsODM&C

Small exercise with the HDF5 file

You can try now to model the NISP frame and source catalog in a 
single HDF5 file

Some suggestions:

Use a top level group, has shown in the hdf5_example project, to store the 
NISP frame common metadata

Use a subgroup for each detector, in order to store the attributes specific 
for each detector and its three images (science, DQ and RMS)

Define a separate group for the source catalog, using a separate dataset 
for each detector (it will contain the sources detected on the detector 
image)

Create a reference between the detector group or the detector science 
image and the corresponding source catalog

Obviously, you can use dummy or random data to fill the datasets and the 
attributes 
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