Open Data Management & the Cloud
(Data Science & Scientific Computing / UniTS — DMG)

Scientific data formats

&« c & @® nersc.gov - @ 1y Ihnaoe =

Login
Site Map | My NERSC | «§ Share

search...

Powering

NERSC RECOGNIZED BY NASA FOR
CONTRIEUTIONS TO PLANCK MISSION
NERSC staff was honored with a NASA Group
Achievement Award for their HPC support of the
Planck Space Mission, which pushed the limits
of HPC and cosmaology.

» Read More

ERCAP Office Hours this Friday and Next Monday

COMPUTING AT NERSC ANNOUNCEMENTS
LI“E Multi-Factor Authentication Required for Allocation

DOCUMENTATION
SYSTEMS FOR USERS J STATUS

Nuw EDMPUTING » More Announcements
SCIENCE NEWS

A small sample of massively parallel scientific computing jobs running right now at NERSC.

P Simulations Run at NERSC Confirm

NERSC HOURS Thermal and Electrical Properties of
Superionic Crystals
PROJECT MACHINE NODES USED el o
Study of laser-plasma interactions relevant to direct-drive Cori 625
_ L LA R 1.142,829.6 T Berkelev Lah. Oak Ridoe. NVIDIA

ODM&C 5 — Scientific data formats

2/40

1 1/o Libraries

(€)> e @

HOME ABOUT SCIENCE AT NERSC

FOR USERS

Live Status

User Announcements
My NERSC
docs.nersc.gov(beta)
Getting Started
Connecting to NERSC
Accounts & Allocations
Computational Systems
Storage & File Systems
Application Performance
Data, Analytics & Services

s and Machine

/O Libraries
HDF5

@ www.nersc.gov/users/data-analytics/data-management/i-o-librarie 130% e @ | ¥ | Q search i O &

search. ..

Powering Scientific Discovery Since 1974

SYSTEMS WLLIMait9 NEWS &PUBLICATIONS R&GD EVENTS LIVESTATUS TIMELINE

Site Map | My NERSC | «¢ Share

»

Home » For Users » Data, Analytics & Services » Data Management and I/O optimization » I/O Libraries

|/0 LIBRARIES

HDF5 »

Hierarchical Data Format version 5 (HDF5) is a set of file formats, libraries, and tools for storing and managing large scientific
datasets. Read More »

NetCDF »

NetCDF (network Common Data Form) is a set of libraries and machine-independent data formats for creation, access, and
sharing of array-oriented scientific data. Includes the NCO, NCCMPF, and CDO tools. Read More »

ROOT »

The ROOT system provides a self-describing, column-based binary file format that allows serialization of a large collection of
C++ objects and efficient subsequent analysis. Read More »

Scientific Data - MATLAB & Simulink - Mozilla Firefox

4\ scientific Data-MATLAF X [

l{:(—/]l—) [CIE] @ @ hteps://www.mathworks.com/help/mat 120% e v ¥ | Q search n O &

4\ MathWorks: =

Docu mentation All More ~ Search R2018b Documentation
= CONTENTS Close
« Documentation Home Scientific Data R2018b
« MATLAB NetCDF, HDF, FITS, and CDF formats
« Data Import and Analysis
NetCDF Files
« Data Import and Export Network Common Data Form
4 Standard File Formats
HDF5 Files
Text Files Hierarchical Data Format, Version 5
Spreadsheets HDF4 Files
Hierarchical Data Format, Version 4
Images
Scientific Data FITS Files
Flexible Image Transport System
NetCDF Files
] Band-Interleaved Files
HDFS Files Band-interleaved data
HDF4 Files
Common Data Format
FITS Files CDF files

Band-Interleaved Files
Common Data Format
Audio and Video

XML Documents

Scientific Data - MATLAB & Simulink - Mozilla Firefox
H
4\ Scientific Data- MATLAE X s

N
(&)= & @& @ @ hteps://www.mathworks.com/help/mat 120% see w7 ¥ | Q search n 0 & =
>/
Home | Contacts | CINECA
‘ MathWorks- CINECA H PC High Performance Computing — a
Documen
E CONTENTS (Resources Home > Resources > Software
« :
Documentation Home @ Soft
« MATLAB Application Version: 1.12.0 (M100) 1.10.7 (G100} 1.12.2 (MARCONI)
Softwar
« Data Import and Analysis Pruduc::un HDF5 is a general purpose library and file format for storing scientific data.
« Data Import and Export A ——
« Standard File Formats HDF5 is a data model, library, and file format for storing and managing data. It supports an unlimited variety of datatypes, and is
How to use designed for flexible and efficient 1O and for high volume and complex data. HDF5 is portable and is extensible, allowing
) resources applications to evolve in their use of HDF5. The HDF5 Technology suite includes tools and applications for managing,
Text Files P : .
manipulating, viewing, and analyzing data in the HDF5 format.
Spreadsheets
Images Home s Resources > Software
Scientific Data ROOT
NetCDF Files
HDF5 Files Version: 6.08.06
HDF4 Files A modular scientific software framework
FITS Files
Home » Resources » Software
Band-Interleaved Files
Common Data Format NEtC DF
Audio and Video Version: 4.9.0 (MARCONI) 4.7.3 (M100) 4.7.4 (G100)
XML Documents "NetCDF (network Common Data Form) is a set of interfaces for array-oriented data access and a freely distributed collection of data

access libraries for C, Fortran, C++, Java, and other languages. The netCDF libraries support a machine-independent format for
representing scientific data. Together, the interfaces, libraries, and format support the creation, access, and sharing of scientific data.

Home » Resources » Software
Cfitsio
Version: 3.420 (MARCONI) 3.490 (M100) 4.0.0 (G100)

CFITSIO is a library of C and Fortran subroutines for reading and writing data files in FITS (Flexible Image Transport System) data
format. CFITSIO provides simple high-level routines for reading and writing FITS files that insulate the programmer from the
internal complexities of the FITS format. CFITSIO also provides many advanced features for manipulating and filtering the
information in FITS files.

Scientific 1/O goals

@ |/O is commonly used by scientific applications to achieve goals like
@ storing numerical output from simulations for later analysis

@ implementing 'out-of-core' techniques for algorithms that process more
data than can fit in system memory and must page data in from disk

@ checkpointing to files that save the state of an application in case of
system failure

@ Provide a digital archival format portable and self-describing, on the
assumption that neither the software nor the hardware that wrote the
data will be available when the data are read

@ To be supported by an open format specification

@ Application programming interface available for several programming
languages (C, C++, Java, Python, R, Fortran, Julia, Ruby, etc.) and on
different operating systems and hardware architectures.

ODM&C 5 — Scientific data formats 6/40

ewmlve%

Data formats adoption

@ HDF5

@ used in several research areas, including earth sciences, computational fluid
dynamics, astronomy, astrophysics, but also financial services and industry

@ NetCDF is a set of interfaces for array-oriented data access. Starting with
version 4, the netCDF library can use HDF5 files as its base format

@ Used in climatology, meteorology and oceanography applications (e.g., weather
forecasting, climate change) and GIS applications

@ FITS is the standard data format used in Astronomy

® ESA and NASA developed FITS in the late 1970s, stemming from radio astronomy
(FITS is always backward compatible)

@ The Vatican Library has adopted the FITS data format for the long-term digital
preservation of the books, manuscripts, and other objects in its vast collection

@ ROOT

@ Originally designed for particle physics (at CERN), its usage has extended to other
data-intensive fields like astrophysics and neuroscience

ODM&C 5 — Scientific data formats 7140

File formats features

@ Self-description (i.e. metadata)

@ Human-readable metadata availability

@ Open-format, i.e. with a public specification maintained by a standards
organization

® Machine independence
@ Storage efficiency

@ Data structures: images, n-dimensional arrays, tables, objects
sequences, hierarchical structures

@ Internal data compression (e.g. tile compression)

@ Data access

@ read/write a portion of the n-dimensional arrays (hyperslabs) or tables

ODM&C 5 — Scientific data formats 8/40

FITS format

@ Even if mainly used in Astronomy, it is useful to start with a quick view of the
FITS standard, in order to highlight some concepts and data structures

@ The first FITS (Flexible Image Transport System) standard was published
In 1981. The most recent version (4.0) has been standardized in 2016
® Ref: https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
@ |[tis primarily designed to store scientific data sets consisting of

multidimensional arrays (images) and 2-dimensional tables organized
into rows and columns of information

@ |n few words a FITS file is composed by two distinct parts, which can be
repeated several times:

@ the first part (header) is formed by easily viewable ASCII text elements providing
metadata information

@ in the second part there are the data in binary format (a multi-dimensional array
or a table)

ODM&C 5 — Scientific data formats 9/40

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

@ The header and the binary part together are called Header Data Unit
(HDU)

The binary part (data unit) is always optional

The first HDU is called primary HDU or primary array and its binary part

can only be an image (n-dimensional array)

Any number of additional HDUs may follow the primary array. These
additional HDUs are referred to as FITS ‘extensions’

The binary part of a fits extension can contain either an n-dimensional

Primary Extension Extension
HDU HDU 1 HDU n

array or a table

@ To be precise, the data unit
can also contain an ASCII
table, so it is not always
binary

-

-

Primary
Header Unit
(Text)

P

| Unit (Binary)

-,

Primary Data

=

Extension
Header Unit

(Text)

=

-

Extension
Data Unit

(Binary)

=y

-

Extension
Header Unit

(Text)

-,

-
Extension

Data Unit
(Binary)

=

FITS example from the Euclid mission

@ M2 mission in the framework of ESA Cosmic Vision Program

@ Euclid mission objective is to map the geometry and understand the nature
of the dark Universe (dark energy and dark matter)

@ Federation of 8 European + 1 US Science Data Centers and a Science
Operation Center (ESA)

@ Large amount of data produced by the
mission
@ Due to reprocessing

@ |arge amount of external data needed
(ground based observations)

@ Grand total: 90 PB

@ Two instruments on board:
® VIS: Visible Imager

@ NISP: Near Infrared Spectro-Photometer

ODM&C 5 — Scientific data formats 11/40

A NISP instrument simulated image

The NISP focal plane is
composed of a matrix of 4x4
2040x%2040 18 micron pixel
detectors

The photometric channel is
equipped with 3 broad band
filters (Y, J and H)

The spectroscopic channel is
equipped with 4 different low
resolution near infrared grisms
(three red and one blue) but no
slit

The image on the right shows a
NISP frame composed by its 16
detectors (photometric channel, 1
band)

ODM&C 5 — Scientific data formats 12/40

FITS header example

fv: Header of EUC_NIR_W-CALIB_H-22691-1 20181026T145347.7Z_00.00. wllal (X
File Edit Toolz Help
Search for: ﬂ Find ||:aSE zensitive? Mo
SIHFLE = T ¢ file doez conform to FITS standard /|
BITFIX = 2 / number of bits per data pixel
MAXIS = 0/ number of data axes
EXTEND = T / FITS dataset may contain extenzions
COMMENT ~ FITS (Flexible Image Transport Sustem) format is defined in 'Astronomg
COMMENT and Astrophysics', wolume 376, page 359: biboode: 2001A%A, , 376, . 3559H
TELESCOP= ‘EUCLID
INSTRUME= 'WISP '
MERSIOW = 'SC4RE-MIP-Cra_T2'
DIATE = '2018-10-17T15:18: 42, 4562
ORIGIM = '0U-5IH
FROCVER = ‘3,0 '
DATE-OBS= ' 2025-0B-28T17 47 +16, 0002
DATE-UTC= ' 2025-06-28T17:47 116, 000001+00 300"
HID-0BS = 9310, 74193500207
EXPTIHE = EE.
FA = 10, 8434101026019
TEC = -18,5875042774849
LEDID = 0
LEDLYL = 0,
P = ER, 2070574970651
EQUIMOY = 2000,
RADECSYS= 'FkS '
OBsSID = 22691
DITHORS = 1
FTGID = 22691
EXPHUH = 5
TOTEXP = 4
FILTER = 'H '
GRISH = 'OFEM '
IMG_CAT = 'SCIEMCE
IMG_TL = 'OBJECT
IMG_TZ = 'SkY '
OBSHODE = 'WIDE '
OBSTYPE = 'IMAGE
REATMODE= 'lpTheRanp
1{[B = g
M = 16 |
HI = 4
FRETIHE = 1.41
FLTCORR = 'True ' /£ True =» flat field Corrected, Falze =* no
COMTIMUE "terflat_H,=ml' / calibration file used
FPHRELEY = 1, / relative photometric offset for expozure
PHRELEXE= 0,101118742080783 / error in PHRELEX determination

[l

|

ODM&C 5 — Scientific data formats 13/40

Euclid example: NISP detectors in FITS

fv: Summary of EUC NIR W-CALIB H-22691-1 20181026T145347.7Z 00.00. W Gk 1
File Edit Tools Help

Tndesx Extenzion Type Dimension Wiew

Ho Primary Image] Header I
|l DET11,5C1 Image 2040 ¥ 2040 Header - Table

m: DET11,RHS Image 2040 ¥ 2040 Headar — Table

m: DET11,00 Image 2040 ¥ 2040 Header - Table

| DET21,5C1 Image 2040 K 2040 Header T Table

|5 DETZ21,RHS Image 2040 ¥ 2040 Header T Table -
|5 DET21,00 Image 2040 ¥ 2040 Header - Table

m; DETZ1,5C1 Image 2040 K 2040 Header e Table

m: DETZ1,RHS Image 2040 ¥ 2040 Header - Table

3 DET=1,00 Image 2040 ¥ 2040 Header icge Table

Wi DET41,5C1 Image 2040 ¥ 2040 Headar — Table

Wi DET41,RHS Image 2040 ¥ 2040 Header - Table

miz DET41,00 Image 2040 K 2040 Header T Table

Wiz DET12,5C1 Image 2040 ¥ 2040 Headar - Table

Wi DET12,RHS Image 2040 ¥ 2040 Header - Table

- S . rsn s o . ; . i

ODM&C 5 — Scientific data formats 14/40

Euclid example: NISP detectors in Fl

fv: Header of EUC_NIR_W-CALIB_H-22691-1 20181026T145347.7Z_00.0(

fv: Sum
File Edit Tools Help
File Edit
Tndes Search for: ﬂ Find |Caze szensitive? HNo
KTEWSION= 'IMAGE / IMAGE extenzion
WO BITPIX = 32 ¢ number of bits per data pixel
HAXIS = 2/ number of data axes
1 HAKISL = 2040 ¢ length of data axiz 1
HAXISZ = 2040 ¢ length of data axis 2
n: FCOUNT = 0 ¢ required keyword: must = 0
GCOUWT = 1/ required keyword: must = 1
H: CRWALL = 10,84344053665 4 World coordinate on thiz axiz
CRWALZ = -18,587E057E08 4 World coordinate on thiz axis
T CRPIX1 = 4084, 41997372 / Reference pixel on thiz axi=
CRPIXZ = 42348, 292551394 ¢ Beference pixel on thiz axis
COELTL = -8,303487464735E-05 ¢ degrees per wx-pixel-step
L3 CIELTZ = 8.3034874B473RE-0% /¢ degress per y-pixel-step
CROTAL = 294, 7923420029 ¢ x-axis rotation in degrees
|3 CROTRZ = 294, 7329425023 / y-axiz rotation in degrees
CTYPEL = 'RA—TP%" £ NCS projection type for thisz axisz
H; CTYPEZ = 'DEC——TP%' £ NCS projection type for this axis
RA = 10,8424101028 / center of field of wiew right ascenszion
m: DEC = -18,.58750427748 / center of field of wiew declination
IATALUKIT= 'electrons’ d pixel data unit
IMA_DETI= 0 ¢ imagem internal detector index
L E IMA_DETA= 0 ¢ detector orientation angle in degrees
IMA_DEXT= "HZRG_1_1' £ imagem detector mapz extension
Wi IMA_SPAC= 18 / imagem image spacing in micrometers
IET_ID = ‘11 1
il GAIN = 1.
RIMOISE = B, 43816744112795
i BIASLEY = 0,
SATURATE= BRL3G
EXTMAME = 'DET11,5CT° £ extenzion name
i3 FLTCORR = 'True ' / True = Flat field Corrected, False =» no
COMTIMUE ‘terflat_H,xml' £ calibration file used
mi4 EQUIMOY = 2000, ¢ Mean equinox
RADESYS = 'ICRS ' £ Aztrometric system
[
DET_ID = 'i1 '
ODM&C 5 — Scientific data formats

15/40

Euclid example: NISP detectors in FITS

POW (Build 1.514) vl () (%

fv: Summ File Edit Colors Tools Zoom Replot Help |

. . EUC_MIR_W-CA,.,0,fitz 10
File Edit To -

Graph coordinates:

Index | [
—————————————————— |FPhyzical pixel:
| v} L, HD

Image pixel:

il

Pixel walue:
L

H:

|

- EUC NTR W-CALTB H-22691-1 20181026T145347.7Z 00.00.fits 1
DEC [(deqg)
2000

|

|
HE

7
1500

m:

|
1000

Wi
mi1

BOD
Wiz

Wiz

| e
500 1000 1500 2000

- RA (deqg) L

l

ODM&C 5 — Scientific data formats 16/40

~ fv: Summary of EUC_NIR_W-CAT_53877-¥_20170706T161044.1Z_00.00.fits in /home, (v (~) (x]

File Edit Tools Help

Indes Extenzion Type Dlimension Wigmw
mo Primary Image ¢ Header Image Table
Hi LIAC_OBJECTS Binary 19 cols X 35793 rows Header Hist | Plot a1l Salect

@ The header of a binary table specifies also each column name, its type and the unit of
measurement

@ Cells can also contain fixed or variable length arrays

fv: Header of EUC_NIR_W-CAT 53877 _20170706T16. (v (~) I@I

File Edit Tools Help B
(S . TH Summanry e/ [~ I~ (]
File Edit Tools Search for: | ﬂ Find |Caze zenzitiwve? MNo |
HTEMSIOM= 'BIMTAELE' /£ binary table extenzion £ |
Index Ext BITPIY = 8/ array data type
MAXIS = 2 ¢ number of array dimenzions
mo A heisy = 92 / length of dimension 1 ble
MAKIS2 = ah793 4 length of dimenzion 2
L LIAL PCOUNT = 0/ nunber of group parameters Salect
GCOUNT = 1 ¢ rnumber of groups
TFIELDS = 19 # number of table fields =
EXTHAME = 'LDAC_OBJECTS' / TABELE NAME
TTHYPEL = 'ID '
TFORML = '1J '
TOISF1L = 'I10 '
TTYPEZ = 'FLUX '
TFORMz = "1E '
TUMITZ = 'count
TOISPZ? = 'G12,7 '
TTYPEZ = 'FLUX_ERR'
TFORMZ = "1E '
TUNITZE = 'count
TOISPE = 'Gl12.7 '
TTYPE4 = "HAG '
TFORM4 = "1E '
TUNIT4 = 'mag '
TOISP4 = 'FB.4 '
|=|°f

@ The header of a binary table specifies also each column name, its type and the unit of
measurement

@ Cells can also contain fixed or variable length arrays

FITS binary table

File Edit

Indes

o

i

File Edit T
Tools Search for:
HWTEMSION= "BIM
Bxt [pITPIN =
MEKIS =
Fohewisy =
MEHISE =
LIAL PCOUNT =
GCOUKT =
TFIELDS =
EXTHAME = 'LDA
TTYPEL = 'ID
TFORML = '17
TOISFL = 'I10
TTYPEZ = 'FLU
TFORMZ = "1E
TUMITZ = 'cou
TOISFZ = 'G12
TTYPEZ = 'FLU
TFORMZ = "1E
TUWITE = 'cou
TOISFE = 'G12
TTYPE4 = 'MAG
TFORM4 = "1E
TUMIT4 = ‘mag
TOISP4 = 'F&,

File Edit Tools Help
WD BFLLUX M FLLU:_ERR BMAG EHAG_ERR B EACK M THRESH WFRA M TEC
Select 11 1E 1E 1E 1E 1E 1E 1D 1D
A1l count count mnag mnag count count deg deg
Invert Hodify Madify Modify Modify Modify Modify Modify Hodify Madify
1 1 11,69573 0,1420423 | -2,6701 0,0132 | 0,001102223 0, 06333448 5.1424336 | -20,6283613
2 2 18,00747 0,1821358 | -3,1386 0,0110 | -0,001335426 0, 06383446 8.1725360 | -20,6833635
3 3 0,260571 0,07E07091 1,4585 0,3166 | -0,000340563 0, 06383448 8,1098910 | -20,5632723
4 4 5. 235464 0,1269523 | -1,9152 00236 | -0,000207055! 0, 06333446 8.1085662 | -20,5606107
5 5 9,518242 0,1366311 | -2,4464 0,0156 | -0,000171503) 0, 06383448 8,1062838 | -20, 5560360
& B 5950716 0,1272663 | -1,9364 0,0232 | 0,0002670927 0, 06333446 8.1043464 | -20,0533362
7 7 -0,1438573 0,1038833 | 99,0000 33,0000 | 0,0007215235 0, 06383446 8.0946488 | -20,5326374
8 8 9,83812 0,1374396 | -2,4823 0,0152 1 -0,000812578! 0, 0B38344E 8,1830446 | -20,7109220
3 g -0,121013 007487323 | 99,0000 33,0000 0, 00102549 0, 06383445 8.1436117 | -20,6308033
10 10 -0, 14E6045 0,1098823 | 93,0000 33,0000 | -0, 000441661 0, 06383448 8,1108857 | -20,5650752
11 11 2.355804 0,1170746 | -0,9304 0,0540 | -0,000230236; 0, 06333446 8.0840936 | -20,5112273
12 12 2,035547 0,116123 | -0,7717 0,0620 | 0,0006347366 0, 06383446 8,0775353 | -20,4980280
13 13 7270743 0,1308228 | -2.1547 0,0195 | -0,000354508! 0, 06333448 8.1957047 | -20, 7351041
14 14 0,09325328 0,07530339 2.5758 0,8770 | 0.001662182 0, 06383446 8.0742038 | -20,4911304
15 15 30,89781 0,182971 | -3,7248 0,0084 | 0,0001034065 0, 06383448 8,0690023 | -20, 480BE7E
16 16 0,1325508 0,1103003 2,1940 0,9037 | -0,002272837 0, 06333446 8.150E320 | -20,6449937
17 17 0, 2952708 0,1183382 1,3244 0,4352 | 0, 0005257545 0, 06383448 8,1181612 | -20,5797313
18 18 | -0.04279745 0,1093823 | 93,0000 93,0000 | -0,00048135 0, 06333446 8.0920217 | -20,5272076
13 13 0,3412708 0,1109544 1,1673 0,3531 | -0,000231435: 0, 06383446 8,1092543 | -20, 5614065
20 20 16,7306 0,1538423 | -3,0551 0,0100 1 -0,000741485. 0, 06333448 8.0B10683 | -20, 4645070
21 21 0,2447223 0, 1106526 1,5283 0,4310 | 0,002216646 0, 06383446 8.1622957 | -20,6652035
22 22 0, Z7E0EET 0,1110707 1,0546 0,3186 | -0,000331250! 0, 06383448 8,0545153 | -20,4511212
Go tao: Edit cell:

@ The header of a binary table specifies also each column
measurement

@ Cells can also contain fixed or variable length arrays

ODM&C

5 — Scientific data formats

name, its type and the unit of

19/40

FITS metadata and data

@ FITS keywords are defined by a keyword name, a value (string, logical, int, float, complex)
and an optional comment

@ The comment is used to further document the metadata information, e.g. indicating the unit of
measure and purpose or, for date time values, the epoch used

@ Keyword names are limited to 8 characters, but a widely used standard extension allows longer
names

@ The FITS standard also fixes a dictionary of keyword names and corresponding value type
and format for representation of World Coordinate Systems and time coordinates

@ Additional dictionaries are defined by astronomy organizations such as the European
Southern Observatory (ESO) and the National Optical Astronomy Observatory (NOAO)

FITS Keyword Dictionaries

The following data dictionaries contain compilations of the FITS header keywords that have been defined and used within
various contexts.

o Keywords defined in the FITS Standard
Other commonly used keywords
UCO/Lick keyword dictionary

L]

5T5cl keyword dictionary

NOAO keyword dictionary

ESO keyword dictionary

ODM&C 5 — Scientific data formats 20/40

HDF5 data model

@ The Heararchical Data Format (HDF5) data model defines 7 classes of
objects:

@ A file is a container for HDF5 objects. Default file storage layout: single,
contiguous file on local disk

@ Alternative layouts are designed to suit the needs of a variety of systems

@ A dataset contains an array of data elements, together with supporting
metadata

@ Dataspaces describe the rank and dimensions of a data object array.

@ Datatypes describe the data elements in a data object array

Object
JAN
File Group Dataset ‘ Link ‘ Datatype ‘Dataspace‘ Attribute
Rool Non-root ‘ Hard Link ‘ Soft Link
Group Group

ODM&C 5 — Scientific data formats 21/40

HDF5 data model and library

@ Groups and links are used to organize objects in a file as a directed
graph with a single designated entry node, called the root group

@ |n other words, groups are hierarchical containers that store datasets and
other groups

@ An attribute is a means of attaching content metadata to an object
(i.e. datasets and groups)

® The HDFS5 file specification and open source library is maintained by
the HDF Group

@ The HDF Group’s primary product is the HDF5 software library, written
In C, with additional bindings for C++ and Java

@ The python interfaces, e.g. h5py and PyTables, are designed to use the C
library

® https://hdfgroup.org/

ODM&C 5 — Scientific data formats 22/40

https://hdfgroup.org/

HDFS5 library

User code

Middleware: h5py, PyTables, IDL, MATLAB ...

CAPI

Public abstractions: groups, datasets, attributes

Internal data structures: B-trees to index groups,
“chunk” dataset storage, etc.

1-D file “address space”

Low-level drivers

Bytes on disk

ODM&C 5 — Scientific data formats 23/40

HDF5 and Python

@ The HDF Group provides a software library in C, C++, Fortran and Java

@ |t also provides a graphical viewer for HDF5 files, named HDFView, and
some command line tools:

@ hbls: lists the metadata content of an HDF5 file

@ h5dump: prints both metadata and data content of an HDF5 file

@ One of the Python modules available for read and write HDF5 files is
h5py. We will use this module in the following examples

@ The easiest way to install the HDF5 libraries and python module is again
the Anaconda python distribution, which installs them by default:

https://www.anaconda.com/download

@ Example project available at:
https://www.ict.inaf.it/gitlab/odmc/hdf5 _example

git clone https://www.ict.inaf.it/gitlab/odmc/hdf5 example.git

ODM&C 5 — Scientific data formats 24/40

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/odmc/hdf5_example

HDF5 datasets

@ The Datasets are the central feature of HDF5. We can consider them
as multi-dimensional arrays that live on disk

@ Every dataset in HDF5 has a name, a type, a shape, and supports
random access

@ When using the h5py python module, the datasets APl is close to the
standard python n-dimensional array module, numpy

import h5py
import numpy as np

f = h5py.File("testdata.hdf5","w")

Empty dataset creation: dataset name, shape and type
f.create_dataset("test1l", (20,15), dtype=np.float32)
The dataset is filled with zero by default

Casting to a 32 bit
floating point to save
space on disk

We can also pass another fill value
f.create_dataset("test2", (25,), dtype=np.int32, fillvalue=42)

Or we can pass directly the data array as a numpy array
bigdata = np.ones((100, 1000), dtype=np.float64)
f.create_dataset("test3", data=bigdata, dtype=np.float32)

ODM&C 5 — Scientific data formats 25/40

Datasets indexing and boolean indexing

@ Datasets permit slicing operations analogous to numpy arrays

@ However, for performance reasons, the dataset should be accessed by
blocks of values instead of single or few values

@ If you need to access repeatedly few values at a time, it is better to
retrieve an entire dataset or at least a block, so that it is returned as a
numpy array in memory, and then access such numpy array

random 2d distribution in the range (-1,1)

data = np.random.rand(15, 10)"2 1

dset = f.create_dataset('random', data=data)

print the first 5 even rows and the first two columns
out = dset[0:10:2, :2]

print(out)

clipping to zero all negative values
dset[data<0| = 0

@ But also avoid explicit loops in python on huge arrays

ODM&C 5 — Scientific data formats 26/40

Appending new data

@ Until now, we have created datasets with a fixed shape

@ However, often we don’t know in advance the size of a dataset and we
need to append new data to it

@ First we have to create a resizable dataset, then we have to append
data in a scalable way

@ Datasets, by default, store data in row-major order

dset = f.create_dataset('dataset_two', (1,1000), dtype=np.float32,
maxshape=(None, 1000))

a = np.ones((1000,1000)) First axis is now

unlimited
num_rows = dset.shape[0]
1000))

dset.resize((num_rows+a.shape[0]

dset[num_rows: | = a We resize the dataset
before performing the
bulk insertion

ODM&C 5 — Scientific data formats 27/40

HDF5 Groups

@ Groups are the HDF5 container object, analogous to folders in a filesystem

@ They can hold datasets and other groups, allowing you to build up a
hierarchical structure with objects neatly organized in groups and
subgroups

@ The File object is itself a group. In this case, it also serves as the root
group, named /, our entry point into the file

@ Groups work mostly like dictionaries; groups are iterable, and have a subset
of the normal Python dictionary API

grp = f.create_group('nisp_frame/detectors/det1l')
grp['sci_image']| = np.zeros((2040,2040))

print(grp.name) # the group name property
print(grp.parent) # the parent group property
print(grp.file) # the file property

print(grp) # prints some group information.

/nisp_frame/detectors/det1l

<HDF5 group "/nisp_frame/detectors" (1 members)>

<HDF5 file "testdata.hdf5" (mode r+)>

<HDF5 group "/nisp_frame/detectors/detl11" (1 members)>

output

ODM&C 5 — Scientific data formats 28/40

HDF5 attributes

@ Attributes are pieces of metadata you can stick on objects in the file.
They're a key mechanism for making self-describing files.

@ You can attach attributes to any kind of object that is linked into the

HDF5 tree structure: groups, datasets and other objects not mentioned
In this introduction

@ Both groups and datasets provide a “.attrs” property in h5py. This is
a little proxy object that works mostly like a Python dictionary

grp = f['nisp_frame']

grp.attrs|'telescope'] = 'Euclid'

grp.attrs|'instrument'] = 'NISP'

grp.attrs['pointing'] = np.array([8.48223045516, -20.4610801911, 64.8793517547])
grp.attrs.create('detector_id', '11', dtype="|S2")

print(grp.attrs|'pointing'])
print(grp.attrs|'detector_id'])

[8.48223046 -20.46108019 64.87935175]

ODM&C 5 — Scientific data formats 29/40

Integer| dtype("1i")
Float dtype ("f")
Strings (fixed width) dtype("s10") /DEPFQE CATED
f’gdh:%s (variable h5py.special_dtype(vlen=bytes) A A
Compound dtype([("fielda": "i"), ("field2": "f") 1)
Enum hspy.special_dtype(enum=("1i", {"RED":0,
"GREEN" :1, "BLUE":2}))
Array dtype("(2,2)f")
Opaque dtype("vie")
Reference hsSpy.special_dtype(ref=h5py.Reference)

HDF5 special types

@ HDF5 supports a few types which have no direct NumPy equivalent.
Among the most useful and widely used are:

@ Variable length (VL) types: variable length strings, “ragged” arrays

® Enumerated types

@ Before version 2.10 of h5py the API was providing
h5py.special_dtype(**kwds) function, now deprecated

@ Now h5py provides dedicated functions

Variable length strings

dt = h5py.string_dtype(encoding="utf-8")

ds = f.create_dataset('VLDS', (100,100), dtype=dt)

Ragged arrays of integers

dt = h5py.vlen_dtype(np.dtype('int32'))

dset = f.create_dataset('vlen_int', (100,), dtype=dt)

dset[0] [1,2,3]

dset[1] = [1,2,3,4,5]

Enum types

dt = h5py.enum_dtype({"RED": 0, "GREEN": 1, "BLUE": 42}, basetype='1i'")

ODM&C 5 — Scientific data formats 31/40

Tables = Datasets and compound types

@ Table can be stored using datasets and the compound types (see
below)

@ NumPy supports this feature through structured arrays. The dtype for
these arrays contains a series of fields, each of which has a name and
Its own sub-dtype

f = h5py.File("testdata.hdf5","w")

dt = np.dtype([('source_id', np.uint32), ('ra', np.float32), ('dec', np.float32),
('magnitude', np.float64)])

grp = f.create_group('source_catalog/detll"')

dset = grp.create_dataset('star_catalog',6 (100,), dtype=dt)

dset| 'source_id', 0] =1
print(dset| 'source_id', 'ra', :20])
print(dset[0])

Compound type

ODM&C 5 — Scientific data formats 32/40

HDF5 object references

@ Additional useful features in HDF5 are those that help you to express
relationships between pieces of your data

@ For instance, we may want to relate a dataset containing a catalog of
sources with the image where the catalog was extracted

@ Or, given a specific astronomical source, we may want to quickly find
the cutout (region) of the source in the original image

@ In HDF5, an object reference is basically a pointer to object in the file

@ A reference to an object, e.g. a group or a dataset, can be obtained
through its ‘. ref’ property, which in h5py as type h5py.Reference

@ Since the reference is an “absolute” way of locating an object, you can
use any group in the file for dereferencing it, not just the root group

@ Object references can be stored as data, and they're independent of
later renaming of the objects involved (almost unbreakable links)

ODM&C 5 — Scientific data formats 33/40

References and Region References

@ References are full-fledged types in HDF5; we can use them in both
attributes and datasets

sci_image = f['/nisp_frame/detectors/detll/sci_image']
sci_image.attrs|'star_catalog'| = dset.ref
cat_ref = sci_image.attrs|'star_catalog']

print(cat_ref)

dset = f[cat_ref]
print(dset[0])

@ Region references let you store a reference to part of a dataset, e.g.
a region of interest (ROI) on images stored in an HDF5 file

@ Datasets provide a property named ‘. regionref’, to create a region
reference by applying the standard NumPYy slicing syntax to the object

roi = sci_image.regionref[15:20, 36:78]
print(sci_image|[roi])

ODM&C 5 — Scientific data formats 34/40

Chunked storage 1/2

@ By default, all but the smallest HDF5 datasets use contiguous storage

@ Applications reading a whole image, or a series of whole images, will
be efficient at reading the data

@ But suppose that we have a sequence of images of the same size, e.g.
100 images of 2048x2048 pixels, and that we have to compute the
median of each pixel along the sequence of images

@ We can process small blocks of 64x64 pixels for each image in the
sequence

@ [For each image in the sequence we could start reading data in a 64x64
pixel slice in the corner of the first image

dset[0, 0:64, 0:64]

and then proceed on the same block for the other images

@ The fundamental problem here is that the default contiguous storage
mechanism does not match our access pattern

ODM&C 5 — Scientific data formats 35/40

Chunked storage 2/2

@ There is a way to preserve the shape of the dataset but tell HDF5 to
optimize the dataset for access in 64x64 pixel blocks

@ That's what chunking does in HDF5. HDF5 splits the data into
“chunks” of the specified shape, flattens them, and writes them to disk

@ The chunks are stored in various places in the file and their
coordinates are indexed by a B-tree

dset = f.create_dataset('chunked', (10,2048,2048), dtype=np.uintil6,
chunks=(1,64,64))

64x64 chunk at [0, 0, 0]

64x64 chunk at [0, 0, 64]

HDF5 L :
Chunk Tree

Slice request
dset[0, 0:64, 0:64]

=T

" M 64x64 chunk at [99, 448, 512]

64x64 chunk at [99, 448, 576]

ODM&C 5 — Scientific data formats 36/40

Compression filters 1/2

@ HDF5 has the concept of a filter pipeline, which is just a series of operations
performed on each chunk when it's written

@ Each filter is free to do anything it wants to the data in the chunk: compress it,
checksum it, add metadata, anything

@ When the file is read, each filter is run in “reverse” mode to reconstruct the
original data

NumPy
array

Dataset slice
dset[0, 0:64, 0:64] Writing

l T Shuffle F—{ GZIP compress Disk

HDF5 chunk 64x64
tree chunk

Unshuffle [&—— GZIP decompress

Reading

ODM&C 5 — Scientific data formats 37/40

Compression filters 2/2

@ A number of compression filters are available in HDF5. By far the most
commonly used is the GZIP filter

dset = f.require_dataset('auto_chunked', (2048,2048), dtype=np.float32, compression="gzip")

print(dset.compression)
print(dset.compression_opts)
print(dset.chunks)

gzip
4
(64, 128)

@ You'll notice that the auto-chunker has selected a chunk shape for us:
(64, 128)

@ Data is broken up into chunks of 64*128*(4 bytes) = 32KiB blocks for the
compressor

ODM&C 5 — Scientific data formats 38/40

Some additional comments on HDF5

@ Attributes in HDF5 can be considered the analogous of FITS keywords. They
are considered the element bringing the self-describing feature in HDF5

@ However, the HDF5 standard does not provide an annotation feature for the
attributes, i.e. the analogous of keyword comments in FITS

@ But there is an official XML Schema language to describe HDF5 structures:
https://support.hdfgroup.org/HDF5/XML/

@ The attribute has only two parts, name and value. The value can be also an
array or a compound type. This means that attributes cannot be organized in
hierarchies (they are flat as the FITS keywords)

@ There is no standard mechanism to specify units of measurement for datasets
or attributes

@ Metadata has to be stored also in a DBMS or XML DB. Consistency has to be
maintained between the metadata content of the file and the one in the DBMS

@ Metadata mapping tools are not standard

ODM&C 5 — Scientific data formats 39/40

https://support.hdfgroup.org/HDF5/XML/

Small exercise with the HDF5 file

@ You can try now to model the NISP frame and source catalog in a
single HDF5 file

@ Some suggestions:

Use a top level group, has shown in the hdf5 example project, to store the
NISP frame common metadata

Use a subgroup for each detector, in order to store the attributes specific
for each detector and its three images (science, DQ and RMS)

Define a separate group for the source catalog, using a separate dataset
for each detector (it will contain the sources detected on the detector
image)

Create a reference between the detector group or the detector science
image and the corresponding source catalog

Obviously, you can use dummy or random data to fill the datasets and the
attributes

ODM&C 5 — Scientific data formats 40/40

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33

