
Lecture short titleCourse title

Lecture Six/Seven

Cloud Storage and data cloud

Lecture short titleCourse title

Overview

 Traditional Storage architectures

 Cloud storage theory and implementations

 Cloud storage and storage in the Cloud.

 Cloud storage and Cloud Distributed storage.

 Object storage: swift example

 Data cloud

Lecture short titleCourse title

Introduction

Cloud storage is a service model in which data is maintained, managed
and backed up remotely and made available to users over a network
(typically the Internet).

Data explosion and Mobile device growth

● improve scalability (up+out) and security
● improve performance
● simplify storage management
● on demand access
● unstructured data

Lecture short titleCourse title

Traditional Storage architecture for a DC

● Block storage
○ Volumes
○ Blocks (read and Write)
○ Fibre Channel or iSCSI protocol
○ Local
○ Low Latency, high IOPs, low size (<1PB)
○ Complex to expand and expensive

● File Storage
○ Files and directories
○ Network Shared (LAN)
○ SMB, NFS, OCFS etc
○ High throughput, large size (PBs)
○ Scale out capabilities
○ Multi-tiered architecture
○ Expensive

Lecture short titleCourse title

Distributed Filesystems: introduction

 File system that is shared by many distributed clients
 The resources (file+dir) on a particular machine are local to itself.

Resources on other machines are remote
 Basic layer for many distributed systems (clients) and applications

A DFS provides a service for clients. The server interface is the normal
set of file operations: create, read, etc. on files.

Servers allow clients to perform operations on resources that resides on
servers.

Lecture short titleCourse title

DFS challenges

Transparency:

 Location: a client cannot tell where a file is located
 Migration: a file can transparently move to another server
 Replication: multiple copies of a file may exist
 Concurrency: multiple clients access the same file

Flexibility

 Servers may be added or replaced
 Support for multiple file system types

Lecture short titleCourse title

DFS challenges

Dependability

 Consistency: conflicts with replication & concurrency
 Security: users may have different access rights on clients sharing

files & network transmission
 Fault tolerance: server crash, availability of files

Performance

 Requests may be distributed across servers
 Multiple servers allow higher storage capacity

Lecture short titleCourse title

DFS challenges

Caching

 Reduce network traffic by retaining recently accessed disk blocks
in a cache, so that repeated accesses to the same information
can be handled locally.

 If required data is not already cached, a copy of data is brought
from the server to the user.

 Perform accesses on the cached copy.
 Files are identified with one master copy residing at the server

machine,
 Copies of (parts of) the file are scattered in different caches.

Cache Consistency Problem -- Keeping the cached copies consistent with
the master file

Lecture short titleCourse title

DFS: client view

Ideally, the client would perceive remote files like local ones.

Clients, servers, and storage are dispersed across machines.

Configuration and implementation may vary:

 Servers may run on dedicated machines, OR
 Servers and clients can be on the same machines.

Lecture short titleCourse title

DFS: network file system

Lecture short titleCourse title

Limitation of traditional Storage approach

Handle increasing number of files and users

Growth over geographic and administrative
areas

Growth of storage space

No central naming service

No centralised locking

No central file store

Applications must be aware of volumes/data location

Data is structured and isolated in Filesystems and volumes

distributed: attenzione perche’ non ho metadati…. no data annotuation,
self descriptive data

Lecture short titleCourse title

DFS in the cloud: Google File system

Motivation

 One single distributed file system
 Store big data reliably
 Allow parallel processing of big data

Assumptions

 Inexpensive components that often fail
 Large files (million of files 100+MB)
 Large streaming reads and small random reads (500Mb/s read/write

load)
 Large sequential writes
 Multiple users append to the same file
 High bandwidth is more important than low latency.

Lecture short titleCourse title

GFS interface

No common standard like POSIX.

Provides familiar file system interface:

Create, Delete, Open, Close, Read, Write

Snapshot: low cost copy of a whole file with copy-on-write operation

Record append: Atomic append operation

Lecture short titleCourse title

GFS Design Overview

 Files split in fixed size chunks of 64 MByte

 Chunks stored on chunk servers

 Chunks replicated on multiple chunk servers

 GFS master manages name space

 Clients interact with master to get chunk handles

 Clients interact with chunk servers for reads and writes

 No explicit caching

Lecture short titleCourse title

GFS Design

Master server: Single master - Keep metadata - accept requests on
metadata - Most management activities

Chunk servers: Multiple - Keep chunks of data- Accept requests on
chunk data

Lecture short titleCourse title

GFS usage

GFS is designed for Google apps and workloads

Google apps are designed for GFS

reading operations

Lecture short titleCourse title

GFS writing operations

Lecture short titleCourse title

Object storage

Based on Objects (no files/directory)

Self descriptive

Linear scale (no hierarchy)

Globally accessible

Extensible

Highly parallel

Lecture short titleCourse title

Example of Object storage

● Public cloud services
○ Amazon S3
○ Google Storage (not Google Drive!!!)
○ HP Cloud Object Storage
○ etc…

● Object Storage Systems
○ OpenStack Object Storage System (swift)

Lecture short titleCourse title

Swift

Lecture short titleCourse title

What is an Object?

An object is a logical unit of storage

● ID (Identification)
● Application data
● Metadata which includes block allocation and length
● Attributes that is accessible by users

Objects have file-like methods

● open, close, read, write

Object = File + Metadata

Lecture short titleCourse title

What is metadata?

Describes the object
 ‒ Helps you to find the right one
 ‒ Tells you what it is
 ‒ The specifications
 ‒ Used where and when
 ‒ Access permissions

Any and all objects
 ‒ Different attributes per object
 ‒ Add attributes later

Lecture short titleCourse title

Astronomical Data Analysis

Use Case

Cost effective On-line archiving enriched with metadata.

Challenge

Astronomical FITS files are self descriptive

Content needs to be available for image reduction

Content must be content of a permanent archival record securely
 stored

Lecture short titleCourse title

FITS files

FITS. Flexible Image Transport System (FITS) is an open standard defining a
digital file format useful for storage, transmission and processing of data:
formatted as N-dimensional arrays (for example a 2D image), or tables. FITS is
the most commonly used digital file format in astronomy.

Data Reduction in python example

https://github.com/gtaffoni/Learn-Python/blob/master/Lectures/PythonLecture05-A
stronomy_Data_Reduction.ipynb

https://github.com/gtaffoni/Learn-Python/blob/master/Lectures/PythonLecture05-Astronomy_Data_Reduction.ipynb
https://github.com/gtaffoni/Learn-Python/blob/master/Lectures/PythonLecture05-Astronomy_Data_Reduction.ipynb

Lecture short titleCourse title

Objects and Metadata

File class = image

Filename = image.FITS
Created = Oct 3, 2018 13:29:59
Last modified: Oct 10, 2018 11:00:00

OBJECT = 'SZ_Lyn '
OBSERVER= 'Iafrate '
TELESCOP= 'SVAS '
OBJCTRA = '08 09 36'
OBJCTDEC= '+44 28 18'
OBJCTALT= ' 84.7258'
OBJCTAZ = '100.7240'
OBJCTHA = ' -0.4844'

Lecture short titleCourse title

Mining Metadata

Metadata:

● stored with the object in extend attributes
● can be changed, removed or added (later)
● can be indexed

Identify sets of related objects based on system and custom metadata

Understand the object store – gather object or content metrics on sets of
objects based on metadata

 ‒ Content discovery
 ‒ Return all files owned by "Bob Smith" created after "3/15/2011" with unexpired retention
 ‒ Return objects with a specific retention class defined
 ‒ Return objects under retention hold, for mitigation purposes

Metrics gathering
 ‒ What is the size distribution of files in the system?
 ‒ What percentage of my files are Word documents?
 ‒ Which owners have generated the most content?

Lecture short titleCourse title

Access an object

Objects have a 64 bit unique ID

Objects live on a flat namespace

Request for storage are made with HTTP using RESTfull APIs (or SWIFT
client)

Three primary components of the request:

1. HTTP Verb (PUT, GET, DELETE, etc.)
2. Authentication Information
3. SURL
4. Metadata (Optional)

Lecture short titleCourse title

HTTP API and SWIFT Architecture

PUT http://XXX.XXX.XXX.XXX/v1/AUTH_application1/pic/image.fits

Lecture short titleCourse title

Manage Objects with HTTP

Lecture short titleCourse title

Object Storage Use cases

Video streaming and
processing

Map-Reduce

Astronomical data
analysis

Lecture short titleCourse title

SWIFT examples

> curl http://X.X.X.X/v1/AUTH_test/cont/obj -X POST -H
"X-Delete-After: 5" -H “X-Object-Meta-Some: value”

> swift post -H “X-Delete-After: 5” -m “Some: value”
(-H "X-Delete-At: 1517210485")

> curl http://X.X.X.X/v1/AUTH_test/cont/obj -X GET -H
"X-Auth-Token: AUTH_tk5917..." -H "Range: bytes=0-5"

(-H "Range: bytes=0-5,16-")

Lecture short titleCourse title

Swift examples

[root@cloud SWIFT(keystone_taffoni)]# swift auth

export OS_STORAGE_URL=http://140.105.74.223:8080/v1/AUTH_ff8fcc76cdb14e1a8568202b89d34a16

export OS_AUTH_TOKEN=b45d1bc7ec69470fa8d75a51a8020c29

[root@cloud SWIFT(keystone_taffoni)]# swift upload TestFile tests.sh

tests.sh

[root@cloud SWIFT(keystone_taffoni)]# swift list

CADC

TestFile

Lecture short titleCourse title

Using an Object Storage

import swiftclient
user = 'account_name:username'
key = 'your_api_key'
container_name= 'astro_data'

conn = swiftclient.Connection(
 user=user,
 key=key,
 authurl='https://XXX.XXX.XXX.XXX/auth',

for data in conn.get_container(container_name)[1]:
 print '{0}\t{1}\t{2}'.format(data['name'], data['bytes'],
data['last_modified'], data['OBSERVER'])

obj_tuple = conn.get_object(container_name, 'IMAGE.FITS')

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Lecture short titleCourse title

Using an Object Storage

Lecture short titleCourse title

Using Swift: print file content

Lecture short titleCourse title

Using Swift: file content

Lecture short titleCourse title

Using Swift: range

Lecture short titleCourse title

AMAZON S3 object storage

● Amazon Simple Storage Service is an object storage.

● Amazon S3 has a simple web services interface that you can use to
store and retrieve any amount of data, at any time, from anywhere on
the web.

● It provides access to developers through REST APIs or proprietary
APIs.

● It is based on buckets and objects

● Files from 1 byte to 5 TBs

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

AMAZON S3 object storage

Lecture short titleCourse title

Cloud Storage security and Integrity

● How to create secure and reliable data storage and access facilities
● Cloud storage security is not much different from existing security

practices (e.g. TLS, X509 certificates, encryption etc.)
● At least two concerns when using the cloud

○ The users do not want to reveal their data to the cloud service provider
(The data could be sensitive information like medical records)

○ The users are unsure about the integrity of the data they receive from the
cloud.

○ Within the cloud, more than conventional security mechanisms will be
required for data security

Lecture short titleCourse title

From a user perspective Cloud storage is complex distributed and undefined

No One Understand the Cloud!!!!!

http://www.youtube.com/watch?v=ecZL4Q2EVuY

Lecture short titleCourse title

Cloud Storage Security

The single largest security concern that most organizations should have.

As with any WAN traffic, any data can be intercepted and modified.

Data can be located anywhere in the cloud provider data centers

Data can be accessed by provider personnel.

Lecture short titleCourse title

How to protect my data

● Identify the security boundary separating the client’s and vendor’s
responsibilities

● Determine the sensitivity of the data to risk
● Data should be transferred and stored in an encrypted format.
● Separate clients from direct access to shared cloud storage.
● These are the key mechanisms for protecting data mechanisms:

○ Access control
○ Auditing
○ Authentication
○ Authorizations

Lecture short titleCourse title

Data Segregation and Isolation

Isolate data from direct client access
creating a layered access to the data.

Data segregation based on tenants

Lecture short titleCourse title

Encryption

Most cloud service providers store data in an encrypted form (e.g.
Amazon S3 256-bit Advanced Encryption Standard) on server side or
client side.

Some example of java code here:

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncr
yption.html

Problems:

● a problem with encrypted data may result with data that may not be
recoverable.

● it does nothing to prevent data loss: keep you keys!!!!!

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Lecture short titleCourse title

Encryption example: swift

Encryption of object data at rest on storage node.

What is encrypted:

● Object content i.e. the content of an object PUT request’s body
● The entity tag (ETag) of objects that have non-zero content
● All custom user object metadata values i.e. metadata sent using

X-Object-Meta- prefixed headers with PUT or POST requests

How:

● Encryption filter in swift proxy server.
○ encrypt object data and metadata when handling PUT and POST

requests
○ decrypt object data and metadata when handling GET and HEAD

requests

Lecture short titleCourse title

Encryption example: swift

For security reasons encryption keys are stored using a Key
Management System (e.g. Barbican, KMIP).

Plaintext data is encrypted to ciphertext using the AES cipher with 256-bit
keys implemented by the python cryptography package.

only user data is encrypted

Lecture short titleCourse title

Lecture short titleCourse title

Swift: encrypting data on client side using python

Simple python script to encrypt data

from cryptography.fernet import Fernet

key = Fernet.generate_key()

f = Fernet(key)

withopen(sys.argv[1], 'r') as input_file, open(sys.argv[2],

'w') as output_file:

 for line in input_file:

 output_file.write(f.encrypt(line) +'n')

print'Key: '+ key

upload data on swift as object:

swift post -H “X-Delete-After: 5” -m “Some: value”
my_data.crypt

Lecture short titleCourse title

From Cloud Storage to a Data Cloud

Cloud Storage is an online repository of data.

To build a Data Cloud you need to make data

● easy to find,
● easy to share
● easy to process

Data cloud is a distributed infrastrucuture

Lecture short titleCourse title

Eudat: a data cloud example

EUDAT is an european Distributed Data Infrastructure (now EOSC) that is
used by both scientific projects and single scientists

Lecture short titleCourse title

EUDAT infrastructure design

Lecture short titleCourse title

B2DROP

Who
 Citizens Scientists and small teams
What
 Store and exchange data

 Synchronize multiple versions
 Ensure automatic desktop synchronization
Why
 Ease of Use
 Trusted European Service

Integration with B2ACCESS to
enable access by many
different Identity Providers

Cloud Storage Federation,
collaboration with GEANT in
OpenCloudMesh

Assess B2DROP as workspace
area to computing facilities

Lecture short titleCourse title

Lecture short titleCourse title

B2SHARE

Who
 Small to Medium Teams
What
 Store data (incl. software) and add domain meta data
 Share registered research data worldwide
 Preserve (small-scale) research data for long-term
Why
 Register Data for Publications
 Make known to wider community

Further integration with EUDAT CDI (e.g. B2DROP,
B2SAFE)
Integration with B2ACCESS (incl eduGAIN), focus on
authorization
Embargo period
Editing of metadata
Data versioning and annotation
Extended HTTP Restful API interface
Easy installable software package

Lecture short titleCourse title

Lecture short titleCourse title

Lecture short titleCourse title

B2SAFE

Who
 Community Data Managers
 ‘Sophisticated’ Organisations
What
 Provide an abstraction layer which virtualizes large-scale data resources

 Guard against data loss in long-term archiving and preservation
 Optimize access for users from different regions
 Bring data closer to powerful computers
Why
 Performance
 Replication between trusted sites
 Data Preservation

Support iRODS v4
Support metadata
Optimize and extend policies to
support data curation and
provenance
Further integration with
B2ACCESS
Support authorization on basis
of community access rules
Assess B2SAFE as workspace
area to computing facilities

Lecture short titleCourse title

B2SAFE
Data policies are centrally managed
Policy rules are implemented and enforced by site-local rule
engines
Policies describe in an abstract language
Community data managers must authenticate to provide trust
Support policies for data replication and integrity checking
Central logging for auditable data policies to monitor
execution

Active collaboration with the RDA Practical Policy WG

Lecture short titleCourse title

B2STAGE

Who
Users and Communities with Significant Computational Needs
What
Transfer large data collections from EUDAT storages to external
HPC facilities for processing
Copy large data sets, ingesting them onto EUDAT storage
resources
Why
Integration/Collaboration with PRACE
Simplify Data Transfer

Further develop HTTP to a
mature interface and extend
functionality to metadata
Native support PIDs within
GridFTP transfers
Extend EUDAT client API library
to other B2 services (e.g.
B2SHARE, B2FIND, PID)
Further integration with
B2ACCESS

Lecture short titleCourse title

B2FIND

Who
 Anyone
What
 Find collections of scientific data quickly and easily,
irrespective of their origin, discipline or community

 Get quick overviews of available data
 Browse through collections using standardized facets
Why
 Unique collection
 Ease of Searching

Community customizations
Annotation of datasets
Further assess RDF and Linked Data

Lecture short titleCourse title

Lecture short titleCourse title

B2HANDLE
Who
 Groups or Communities who want to make their data citable
What
 Follows policies to register data and make it long term refer- and citable
 Reliability through mutual PID mirroring
 Provides abstraction layer between a globally unique persistent identifier and physical
location of data objects

 Machine readable via HTTP RESTful API
Why
 Simple integration
 Technology Agnostic

Lecture short titleCourse title

B2ACCESS

Who
 Anyone wanting to use the B2 Services
What
 Complies with community ownerships and access rights, basis of trust
 Credential conversion approach (e.g. SAML, OpenID, X.509, Username/password)
 Identity provider for citizen scientists
Why
 Use your own ID in federated
 environment

Lecture short titleCourse title

Lecture short titleCourse title

Eudat APIs list

https://github.com/EUDAT-Training

https://github.com/EUDAT-Training

