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1 Colloids

1.1 Generalized Langevin equation

[Sources: R. Zwanzig "Nonequilibrium statistical mechanics", sec. 1.5]

The Langevin equation describes the motion of a colloidal particle in which the friction at time t is
proportional to the velocity at the same time. In general, however, we expect that the friction will
depend also on the history of the velocity ẋ(s) for times s earlier than t. To model such a memory
effect, we replace the friction coefficient ξ with a memory function M(t) so that the frictional force
becomes

−ξẋ(t)→ −
∫ t

−∞
F (t− s)ẋ(s)
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This leads to the generalized Langevin equation

mẍ(t) = −m
∫ t

0
M(t− s)ẋ(s)ds+ F (t)

At this stage the equation is purely phenomenological, but it can be establised both from a microscopic
model (see the Caldeira-Leggett model below), as well as from the general formalism of the projection
operator. Here, we will show that such the generalized Langevin equation also arises also when we
eliminate the momentum in the Brownian motion of a harmonic oscillator.

1. Write the Langevin equation of a colloidal particle of mass m in a harmonic external potential
φ(x) = 1

2kx
2 and determine the equations of motion as a system of two non-linear stochastic

differential equations

2. Determine (formally) the momentum p(t), assuming p(t = −∞) = 0

3. Show that the equation of motion for the colloidal particle can be put in the form

dx

dt
= −

∫ t

−∞
M(t− s)x(s) + Fx(t)

and provide explicit expressions for M(t) and for the new fluctuating force Fx(t).

4. Find the generalized fluctuation-dissipation relation between Fx and M by assuming that the par-
ticles is at equilibrium and therefore 〈x2〉 = kBT/(mω

2), where ω2 = k/m

1.2 Caldeira-Leggett model

[Sources: R. Zwanzig "Nonequilibrium statistical mechanics", sec. 1.6]

We now study the dynamics of a free particle interacting with a large number of independent harmonic
oscillators in thermal equilibrium. The model we will present, known as the Caldeira-Leggett model,
can be solved exactly and provides a microscopic basis to the Langevin equation, in both its original
and generalized form.

Consider a particle of mass m described by its coordinate x and conjugate momentum p. The particle
is coupled to a heat bath of N independent harmonic oscillators of masses mn, described by the
coordinates xi and momenta pi, with i = 1, . . . , N . We assume a bilinear coupling between the particle
and each oscillator. The Hamiltonian of the system thus reads

H =
p2

2m
+

1

2

N∑
i=1

[
p2i
mi

+miω
2
i

(
xi −

ci
miω2

i

x

)2
]

where ci are coupling constants.

1. Write the equations of motion of the particle and of the harmonic oscillators

2. We now use a trick: we assume that x(t) is known. Show that the equations of motion for the
oscillators can then be solved (formally) to give

xi(t) = xi(0) cos(wit) +
pi(0)

miωi
sin(ωit) + ci

∫ t

0

sin [ωi(t− t′)]
miωi

x(t′)dt′

3. Integrate by parts the integral on the right-hand side and find an expression for xi(t)− ci
miω2

i
x(t).
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4. Use the previous results to express the particle’s equations of motion in the form of a generalized
Langevin equation

mẍ(t) = m

∫ t

0
M(t− s)ẋ(s)ds+ Fx(t)

and provide the explict expressions for the memory function M(t) and the random force F (t).

5. Under which conditions does one recover the simple (Markovian) Langevin equation?
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2 Polymers

2.1 Gyration radius

We want to determine the gyration radius

Rg =

(〈
1

N

N∑
i=1

|~Ri − ~RCM|2
〉)1/2

of simple models of polymer chains, where 〈. . . 〉 indicates an average over chain conformations and
~RCM is the center of mass of the chain. We will assume that all monomers are identical and that the
monomer-monomer distance is b.

First off, show that the gyration radius can be expressed as

Rg =

〈 1

2N2

N∑
i=1

N∑
j=1

|~Ri − ~Rj |2
〉1/2

which provides a more convenient starting point for the following calculations.

2.1.1 Linear polymer

We first consider an ideal linear chain. Remembering that

N∑
i=1

i =
N(N + 1)

2

N∑
i=1

i2 =
N(N + 1)(2N + 1)

6

show that

R2
g =

b2

6

N2 − 1

N

Where do the two above expressions come from, by the way?

2.1.2 Star polymers

We now consider a star polymer with "functionality", i.e., the number of arms, f . Each arm α has an
equal number N/f of monomers. Since we will consider the limit of a very large number of monomers,
it is convenient to recast the sums over monomer index as integrals

N∑
i=1

→
∫ N

0
di
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1. Compute the radius of gyration Rg. Hint : consider separately the case in which the monomers
belong to the same arm or not.

2. Consider the results for f = 1, 2: what do you notice?

3. What is the effect of increasing the functionality at constant N?

4. How does the gyration radius scale with f in the limit f → ∞? Establish a link with an effective
ideal chain with M monomers.

2.2 Rouse model

[Sources: M. Doi "Introduction to polymer physics", sec. 4.2.2]

2.2.1 Rotational dynamics

We study the rotational motion of a polymer chain of N + 1 monomers within the Rouse model. To
this end, we consider the time correlation function 〈~R(t) · ~R(0)〉 of the end-to-end vector ~R = ~RN − ~R0.

1. Show that ~R = −4
∑

p=1,3,5,...
~Xp(t)

2. Use this result to compute the correlation function 〈~R(t) · ~R(0)〉

3. Show that the relaxation of 〈~R(t)~R(0)〉 is dominated by the largest Rouse mode relaxation time, τ1.

2.2.2 Segmental motion

We now focus on the internal motion of the polymer segments, always within the Rouse model. We
consider the mean square displacement of the n-th monomer after a time t.

∆R2(t) = 〈|~R(n, t)− ~R(n, 0)|2)〉

1. Using the correlations between the Rouse vectors 〈 ~Xpα · ~Xqβ〉, show that

∆R2(t) = 6
kBT

Nξ
t+

4Nb2

π2

∞∑
p=1

cos2
(pπn
N

)1− exp (−tp2/τ1)
p2

where τ1 = ξN2b2

3π2kBT
is the largest Rouse mode relaxation time.

1. The behavior of ∆R2(t) for t >> τ1 is diffusive. What is the physical interpretation of the diffusion
coefficient?

2. Show that the behavior of ∆R2(t) for t << τ1 is sub-diffusive with an exponent 1/2. Hint : replace
the summation in ∆R2(t) with an integral over the continuous variable p
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3 Liquids

3.1 Short-time dynamics

[Sources: J.-P. Hansen and I. MacDonald "Theory of simple liquids", sec. 7.1 and 7.2]

We want to determine the short-time behavior of the velocity autocorrelation function

Z(t) =
1

3
〈~v(t+ s)~v(s)〉

of a tagged particle of mass m in a liquid.

To this end, it will be useful to establish some general "sum rules" concerning time-dependent corre-
lation functions CAB(t) = 〈A(s+ t)B(s)〉. We will assume that the correlation function is stationary,

dCAB
ds

= 0

1. Show that
〈Ȧ(t+ s)B(s)〉 = −〈A(t+ s)Ḃ(s)〉

2. Show that
〈Ä(t+ s)B(s)〉 = −〈Ȧ(t+ s)Ḃ(s)〉

3. Consider now the simple but important case in which A and B are the same variable. It can be
shown that the correlation function CAA(t) is even in time, if it is stationary. Determine the Taylor
expansion of CAA(t) around t = 0 up to second order

We now focus on the velocity auto-correlation Z(t). Show that the short time expansion of Z(t) can
be put in the form

Z(t) =
kBT

m

(
1− 1

2
Ω2
0t

2 + . . .

)
where Ω0 is the so-called Einstein frequency. Assuming that the fluid is at equilibrium at temperature
T , express Ω0 in terms of the average square force 〈|~F |2〉 acting on the tagged particle.

3.2 Memory effects

[Sources: J.-P. Hansen and I. MacDonald "Theory of simple liquids", sec. 7.3]

We consider a generalized Langevin equation for a tagged particle in a liquid at equilibrium at a
temperature T

m~̇v(t) = −m
∫ t

0
M(t− s)~v(s)ds+R(t)

where M(t) is a memory kernel and R(t) is the random force. This equation is formally exact and can
be established using the projector operator formalism. However, an explicit expression for the memory
kernel is not available. Here, we will model the memory function M(t) as a simple exponential

M(t) = M(0) exp (−|t|/τ)

1. Show that the velocity autocorrelation function Z(t) obeys the following integro-differential equation

Ż(t) = −
∫ t

0
M(t− s)Z(s)ds
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2. By a Laplace transform, show that

Z̃(z) =
kBT/m

−iz + M̃(z)

3. Use the short-time expansion of Z(t) obtained in the previous exercise to show that M(0) =

−Z̈(0)/Z(0) = Ω2
0 and determine M̃(z)

4. By an inverse Laplace transformation, show that

Z(t) =

(
kBT/m

α− − α+

)
[α+ exp (−α−|t|)− α− exp (−α+|t|)]

where α+ and α− are the two poles of Z̃(z = iα).

5. Show that if τ < 1/(2Ω0), Z(t) decays monotonically to zero and with the correct curvature at the
origin

6. Show that if τ > 1/(2Ω0), Z(t) displays dampled oscillations, with a negative region at intermediate
times

Note that the memory relaxation time τ is a free parameter of the model and would have to be
determined from experimental or numerical data.
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4 Supercooled liquids

4.1 Gaussian landscape

[Sources: S. Sastry, Nature 409, 164 (2001)]

We develop a simple model of the potential energy surface of systems with short range interactions and
a large number N of interacting particles. The potential energy density of local minima is um = Um/N .
The two basis hyopthesis of the model are

– The density of states of local minima is Gaussian

Ω(Um) = exp (αN) · 1√
2πσ2

exp

[
−(U0 − Um)2

2σ2

]
where U0 is a reference energy and α a combinatorial factor (N -independent). This functional
form arises from the idea that a that for large N and short-range interactions the system can
be decomposed into weakly interacting sub-systems. According to the central limit theorem, the
distribution of the total potential energy can then be approximated by a Gaussian with σ2 ∼ N .

– The vibrational free energy is given by the harmonic approximation

fvib(um, T ) = fvib(u0, T )− kBTb(um − u0)

where b is a constant

For a comparison between the model predictions and computer simulation data, see S. Sastry, Nature
409, 164 (2001) http://dx.doi.org/10.1038/35051524.

1. Compute the average energy density 〈um〉 and plot it as a function of T and 1/T . Compare with
the behavior observed at high and low T in the simulations of Sastry.

2. Compute the configurational entropy Sc as a function of Um. Find the Kauzmann temperature TK
at which the configurational entropy vanishes. Is TK finite in the thermdynamic limit?

4.2 Schematic mode-coupling theory

[Sources: Barrat Hansen 12.4; E. Leutheusser Phys. Rev. A, 29 2765 (1984)]

The schematic mode-coupling equation

φ̈+ Ω2φ(t) + λ2

∫ t

0
dsφ2(t− s)φ̇(s) = 0

provides a simplified description of the time-dependence of a dynamic correlation function φ(t) in a
glass system. The coupling constant λ2 plays the role of a control parameter, similar to temperature or
density in a liquid, while Ω is a constant. This equation can be obtained from the full mode-coupling
equations for the (normalized) intermediate scattering function F (k, t)/S(k) by ignoring the coupling
between density components and retaining only the contribution to the memory kernel around the
main peak of S(k).

Our goal is to determine the asymptotic behavior of φ(t) for t → ∞ and discover the existence of an
"ideal" glass transition at a finite value of the coupling parameter λc. The standard way to tackle this
problem is using Laplace transforms [see E. Leutheusser Phys. Rev. A, 29 2765 (1984)]. Here we will
try to work in the time domain.
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1. Let us write φ(t) = f + ε(t), where ε → 0 for t → ∞. By taking the infinite time limit of the
schematic mode-coupling equation, show that that f = φ(∞) obeys

(Ω2 − Ω2
0)f + λ2f(f − 1) = 0

and provide the expression of Ω2
0. In the following, we will assume that Ω2

0 can be neglected (Is this
reasonable? Later on, think about which of the results below would be affected if this were not the
case.)

2. Let us determine the solutions of the equation Ω2f + λ2f(f − 1) = 0 as a function of the reduced
coupling constant λ = λ2/(4Ω2). It is clear that f = 0 is always a solution and corresponds to an
ergodic liquid. Show that for λ > λc the equation admits two additional solutions f+, f−. Determine
the critical coupling parameter λc.

3. Only the solution f+ is physically acceptable. Why? Hint: analyze how f− depends on λ. It can
also be shown that the solution f = 0 becomes unstable for λ > λc.

4. Make a first-order Taylor expansion of f(λ) close to the transition point λc and sketch the behavior
of f(λ) as a function across the transition. Provide a physical interpretation to the following
statement: the system undergoes a transition to an "ideal" glass at λc.

9


	Colloids
	Generalized Langevin equation
	Caldeira-Leggett model

	Polymers
	Gyration radius
	Linear polymer
	Star polymers

	Rouse model
	Rotational dynamics
	Segmental motion


	Liquids
	Short-time dynamics
	Memory effects

	Supercooled liquids
	Gaussian landscape
	Schematic mode-coupling theory


