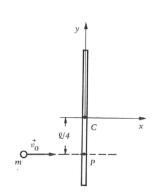
Università di Trieste A.A. 2017/2018 Lauree Triennali in Ingegneria A

FISICA GENERALE 1, Prova Scritta, 12.06.2018

Cognome	Nome	CYZ·	Δηης
	· · · · · · · · · · · · · · · · · · ·		

Istruzioni:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. Fare attenzione ai segni nelle risposte numeriche.


Problema 1. Una ragazza di massa $\mathbf{m} = 62$ kg si trova in un vagone appeso a una ruota panoramica che gira con velocità angolare costante. Nel punto più alto della traiettoria circolare, il suo peso apparente (la forza che il sedile esercita sulla ragazza) è $\mathbf{P_A} = 550$ N. Ilraggio della circonferenza percorsa del sedile è $\mathbf{r} = 25$ m. (a) Determinare il modulo della velocità angolare della ruota panoramica.

(b) Qual è il peso apparente della ragazza nel punto più basso della traiettoria circolare?

(c) Quanto tempo impiega la ragazza per andare dal punto più basso a quello più alto?

Problema 2. Una sbarra omogenea di massa $\mathbf{m}=0.200$ kg e lunghezza $\mathbf{\ell}=100$ cm, libera di muoversi su un piano orizzontale liscio (con attrito trascurabile) e inizialmente in quiete, viene colpita da una pallina di ugual massa, che viaggia sul piano con una velocità perpendicolare alla sbarra, di modulo $\mathbf{v}_0=2.00$ m/s in un punto \mathbf{P} a distanza $\mathbf{\ell}$ /4 dal suo centro di massa \mathbf{C} , come mostrato in figura. Nel caso l'urto sia totalmente anelastico e la sferetta si conficchi nell'asta rimanendovi attaccata, si determinino:

(a) le coordinate \mathbf{x}^* e \mathbf{y}^* del centro di massa \mathbf{C}^* del sistema complessivo (sbarra+pallina), all'istante dell'urto;

(b) le componenti v_X^* e v_Y^* della velocità del centro di massa C^* , dopo l'urto;				
(c) la velocità angolare ω acquisita dal sistema dopo l'urto (suggerimento: consid momento angolare totale del sistema, rispetto al centro di massa C^*).	erare il			
Problema 3 . Un cilindro a pareti isolanti è diviso in due parti da un setto fisso permeabile al calore ed è chiuso superiormente da un pistone, pure isolante, che può scorrere senza attrito. Le capacità termiche del cilindro e del pistone sono trascurabili. Nella parte inferiore (A in figura) e nella parte superiore (B in figura) del cilindro è contenuta la stessa quantità, $\mathbf{n}=2$ moli, di un gas perfetto monoatomico. Il sistema è inizialmente in equilibrio alla temperatura $\mathbf{T}_i=270$ K. Successivamente, con un lento movimento del pistone, si comprime il gas in B fino dimezzarne il volume, raggiungendo la temperatura di equilibrio finale $\mathbf{T}_f=340$ K. Determinare: (a) il rapporto tra le pressioni iniziale e finale del gas in B;	$ \begin{array}{c} B \\ n = 2 \end{array} $ $ A \\ n = 2 $			
(b) il lavoro assorbito dal sistema;				
(c) la variazione di entropia del sistema.				