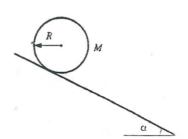
Università di Trieste A.A. 2017/2018 Lauree Triennali in Ingegneria A

FISICA GENERALE 1	, Prova Scritta	, 29.01.2019
--------------------------	-----------------	--------------

Cognome	.Nome	CdS:	Pref. orale 29-30
000			

Istruzioni:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. Fare attenzione ai segni nelle risposte numeriche.


Problema 1. Un treno di massa $M = 7.3 \times 10^5$ kg è accelerato dalla locomotiva che compie lavoro alla potenza costante P = 2.1×10^3 kW. La velocità del treno all'istante iniziale t_0 = 0 s è v_0 = 32 km/h. (a) L'accelerazione del treno negli istanti successivi è costante, aumenta o diminuisce al passare del tempo? Giustificare la risposta.

(b) Quanto lavoro ha compiuto la locomotiva nell'intervallo di tempo fra t₀ e t₁?

(c) Quanto valgono la velocità e l'accelerazione del treno all'istante t₁ = 75 s?

Problema 2. Partendo da fermo un cilindro omogeneo di raggio R = 10 cm e massa M = 1.5 kg rotola senza strisciare lungo un piano inclinato di un angolo α = 30°. Determinare.

(a) La velocità v_{CM} del centro di massa, quando il cilindro ha percorso un tratto di lunghezza L = 2.0 m (istante finale).

(b) Modulo, direzione e verso del momento angolare del cilindro rispetto al centro di massa nell'istante finale.
(c) Modulo, direzione e verso della forza di attrito statico agente nel punto di contatto durante il moto.
Problema 3 Un sommozzatore di massa m_{sub} = 75 kg ha una densità ρ_{sub} = 0.97×10³ kg/m³ (valore medio). Quanto vale la massa di piombo m_{Pb} (densità ρ_{Pb} = 11.3×10³ kg/m³) che il sommozzatore deve agganciare alla sua cintura per risentire di una forza risultante nulla quando è immerso in mare con densità ρ_a = 1.02×10³ kg/m³?
Problema 4 Una macchina di Carnot reversibile scambia calore tra due sorgenti con differenza di temperatura $\Delta T = T_C - T_F = 100$ K. Lungo l'isoterma a temperatura T_C il fluido subisce una variazione di entropia pari a $\Delta S_C = 11$ J/K. (a) Disegnare qualitativamente in due grafici il ciclo di Carnot, prima nel piano delle variabili termodinamiche p-V (p in ordinata e V in ascissa) e poi T-S (T in ordinata e S in ascissa).
(b) Calcolare il lavoro W prodotto dalla macchina in un ciclo.