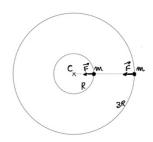
Università di Trieste A.A. 2018/2019 Lauree Triennali in Ingegneria A

FISICA GENERALE 1, Prova Scritta, 11.06.2019


Cognome	Nome	. CdS:

Istruzioni:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. Fare attenzione ai segni nelle risposte numeriche.

Problema 1. Due corpi puntiformi aventi la stessa massa **m** percorrono, con velocità angolare costante, orbite circolari di raggi \mathbf{R} e $3\mathbf{R}$ intorno ad uno stesso centro \mathbf{C} (v. figura). Durante il moto, ciascuno dei due corpi è soggetto ad una forza di stesso modulo costante \mathbf{F} sempre diretta verso \mathbf{C} .

(a) Determinare quale dei due corpi completa per primo un quarto di giro, a partire da un certo istante, giustificando la riposta.

(b) Elencare le grandezze fisiche che si conservano durante il moto giustificando la risposta.

(c) Determinare il lavoro totale necessario per portare i due corpi sulla medesima orbita circolare di raggio 2**R**

Problema 2. Un uomo, solidale con una piattaforma circolare omogenea di raggio $\mathbf{R}=1.0$ m e massa $\mathbf{M}=10.0$ kg, inizialmente in quiete, pone in rotazione con una fune un sasso di massa $\mathbf{m}=0.30$ kg. (v. figura). A regime, il sasso descrive una circonferenza di raggio $\mathbf{r}=1.0$ m su piano orizzontale con centro sull'asse verticale della piattaforma e la sua velocità angolare rispetto ad un osservatore inerziale esterno alla piattaforma ha modulo $\omega_0=21$ rad/s. Trascurando gli attriti lungo l'asse di rotazione e sapendo che il momento di inerzia dell'uomo rispetto all'asse di rotazione z è $\mathbf{l}=1.1$ kg·m² determinare:

(a) la velocità angolare ω dell'uomo rispetto ad un osservatore inerziale esterno alla piattaforma;

(b) il lavoro compiuto dall'uomo;

<i>Problema 3</i> Un sommozzatore di massa m_{sub} = 85 kg ha una densità ρ_{sub} = 0.97 · 10³ kg/m³ (valore medio). Quanto vale la massa di piombo m_{Pb} (densità ρ_{Pb} = 11.3 · 10³ kg/m³) che il sommozzatore deve agganciare alla sua cintura per risentire di una forza risultante nulla quando è immerso in acqua di mare con densità ρ_a = 1.02 · 10³ kg/m³? Nella soluzione si tenga conto anche del volume del piombo.
Problema 4 Un blocchetto di ferro di massa $m_{Fe} = 0.15$ kg si trova inizialmente alla temperatura di 770 °C (oltre questa temperatura, detta di Curie, il ferro si smagnetizza) e successivamente è immerso in un contenitore adiabatico con acqua allo stato liquido e alla temperatura di 100 °C. Si assuma che l'acqua evapori completamente e che rimanga alla temperatura di 100 °C e alla pressione atmosferica. (a) Calcolare la quantità minima di acqua necessaria a raffreddare il blocchetto di ferro fino alla temperatura di 100 °C, sapendo che il calore latente di vaporizzazione dell'acqua è $L_V = 2.26 \cdot 10^6$ J/kg e che il calore specifico del ferro vale $c_p = 447$ J/(kg · K).
(b) Calcolare le variazioni di entropia ΔS_{Fe} e ΔS_{Acqua} del ferro e dell'acqua (facoltativo: spiegare quali processi termodinamici si possono usare per fare questi calcoli).

(c) il modulo della velocità angolare del sasso vista dall'uomo.