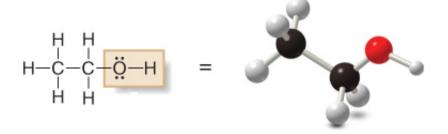
Chapter 3.1
Organic Chemistry, 8th Edition
J. McMurry

A functional group is an atom or a group of atoms all or in part # than C with specific and well defined physico-chemical properties.


(from a hydrocarbon)

Functional Group

(heteroatom or group of atoms containing one ore or more heteroatoms)

- Only C-C and C-H bonds
- No functional groups
- \triangleright Does not posses polar bond or π bonds: very unreactive.
- Insoluble in water

- OH functional groups
- Polar C-O and O-H bonds
- Lone pair on O
- Reacts with electrophiles
- Reacts with strong bases
- Soluble in water

- 1. Defines a class of compounds
 - Compounds belonging to the same class have similar properties and reactivity.
- 2. Is frequently the reaction site
 - Defines the reactivity of a molecule
- 3. Determines the name
 - For example all chetones have the suffix –one:
 - » acetone
 - » cyclopropanone
 - » cortisone

Hydrocarbons

Hydrocarbons possess only C-C e C-H bonds.

aliphatic (alkanes, alkenes, alkynes) and aromatic.

Hydrocarbon	General structure	Example	Functional Group
Alkanes	R-H	CH ₃ CH ₃	
Alkenes	c=c	HC=CH	Double bond
Alkynes	—C≡C—	H-C≡C-H	Triple bond
Aromatics			Aromatic ring

Functional Groups Containing C-Y o bonds

Class Name	Structure	Example	3D Structure	Functional Group
Alkyl Halide	R- <u>;;</u> (X=F, Cl, Br, I)	CH₃−ër:	•	–X halo
·	R−ÖH	CH₃−ÖH		–OH hydroxy
Alcohol	R-Ö-R	сн₃-ё-сн	3 3	–OR alcoxy
Amine	R−ÑH₂ o R₂ÑH or R₃Ñ	CH ₃ -NH ₂	-	-NH ₂ amino
Thiol	R-SH	CH₃−ÄH	3	–SH mercapto
Sulfide	R-ÿ-R	CH ₃ -ÿ-CH ₃	3 3	–SR alkylthio

Functional Groups Containing The C=O Bond

Class Name	Structure	Example	3D Structure	Functional Group
Aldehyde	:O: R_C_H	CH ₃ C H		H–C=O formyl
Ketone	:O: R C R	CH ₃ CH ₃	3 3	C=O carbonyl
Carboxylic Acid	;o: R ^{∕C} ∖ÖH	CH3 ÖH	3	–COOH carboxylate
Ester	eo: R ÖR	CH3 ÖCH3		-COOR
Amide	:O: 	CH ₃ CNH ₂	3	-CONH ₂ -CONHR -CONR ₂
Acid Chloride	eo: R Č Çİ:	:O: CH ₃ Č;		-COCI

Polyfunctional Molecules

nicotine

amide

caffein

cholesterol

$$\begin{array}{c} \text{aromatic} \\ \text{H}_3\text{CO} \\ \text{H}_3\text{CO} \\ \text{OCH}_3 \end{array}$$

mescalin