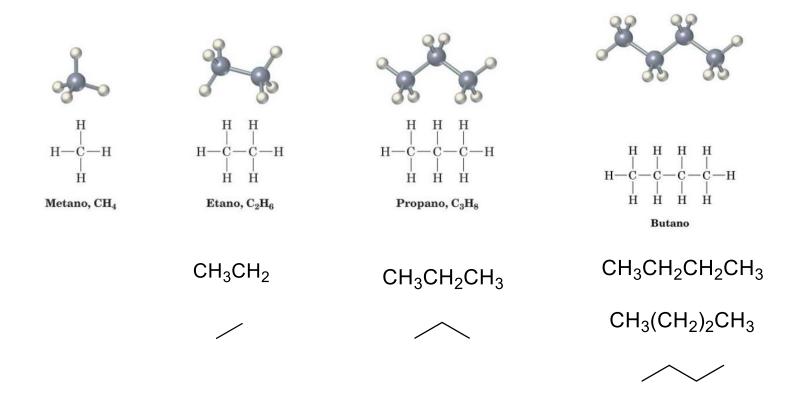
Alkanes

Chapters 3, 4, 10.2, 10.4 Organic Chemistry, 8th Edition John E. McMurry

Hydrocarbons

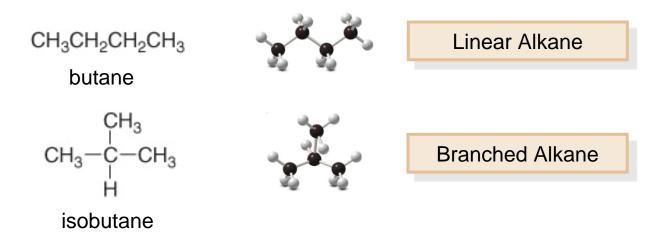
- Aliphatic (áleiphar = Ointment (unguento)).
 - Alkanes (saturated hydrocarbons): hydrocarbons having only single C-C and C-H bonds.
 - Linear (normal alkanes, n-alkanes)
 - Branched
 - Cyclic
 - Alkenes (olefins): hydrocarbons having double bonds.
 - Alkynes: hydrocarbons having triple bonds.

Aromatic

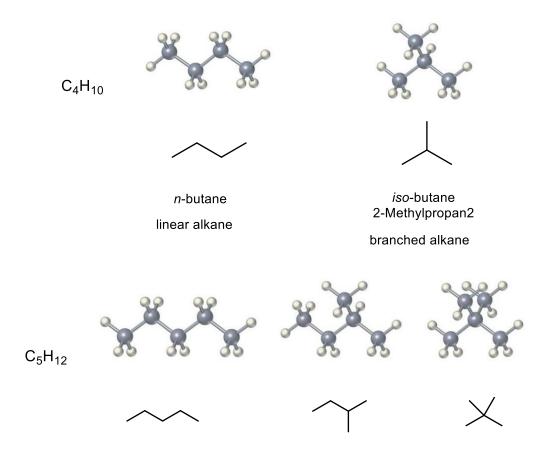

Alkanes

Number of C-atoms	Molecular formula	Name (<i>n</i> -alkane)
1	CH_4	methane
2	C_2H_6	ethane
3	C ₃ H ₈	propane
4	C ₄ H ₁₀	butane
5	C ₅ H ₁₂	pentane
6	C ₆ H ₁₄	hexane
7	C ₇ H ₁₆	heptane
8	C ₈ H ₁₈	octane
9	C_9H_{20}	nonane
10	C ₁₀ H ₂₂	decane
20	C ₂₀ H ₄₂	eicosane

Empirical formula: C_nH_{2n+2}


Alkanes

Carbon in alkanes always has a sp³ hybridization and only single bonds are present, so the carbon geometry is tetrahedral.



Alkanes – Structural Isomerism

- There are two hydrocarbons with empirical formula C₄H₁₀: butane and isobutane.
- Butane and isobutane are structural isomers: they have the same composition but different physico-chemical properties.

Alkanes – Structural Isomerism

Nomi	Formule	Numero possibili isomeri
metano	CH4	1
etano	C2H6	1
propano	СзНв	1
butano	C4H10	2
pentano	C5H12	3
esano	C6H14	5
eptano	C7H16	9
ottano	CsH18	18
nonano	C9H20	35
decano	C10H22	75

pentan2 linear alkane

2-metilbutano

2,2-dimetilpropano

branched alkane

Alkyl Groups

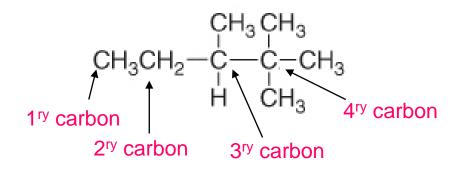
In branched alkanes a main chain (the longest) is identified; the groups attached to the main chain are considered substitutes for the main chain and are called **alkyl groups**.

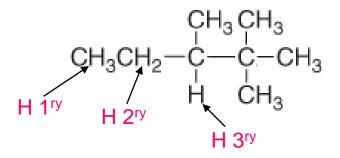
In general terms the alkyl substitute is referred to as -R.

$$H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H$$

Free valence = CH_3 - methyl

$$CH_3-CH_2-=C_2H_5-$$
 ethyl


$$CH_3-CH_2-CH_2-=C_3H_7-$$
 propy


Alkyl Groups

C-Atoms	Structure	Name	C-Atoms	Structure	Name
1	CH ₃ —	methyl	5	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -	<i>n</i> -pentyl
	-CH ₂ - -CH-	methylene		CH ₃ CHCH ₂ CH ₂ —	
		methine		ĊH₃	isopentyl
2	CH ₃ CH ₂ —	ethyl		CH CCH —	
3	CH ₃ CH ₂ CH ₂ -	<i>n</i> -propyl		CH₃ĊCH₂— CH₃	neopentyl
	CH₃CHCH₃	isopropyl		CH CHCH CH CH	
4	CH ₃ CH ₂ CH ₂ CH ₂	<i>n</i> -butyl		CH ₃ CHCH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CHCH ₂ CH ₃	sec-pentyl
•	CH ₃ CHCH ₂ — CH ₃	isobutyl		CH ₃ CH ₂ CHCH ₂ CH ₃	
	CH ₃ CH ₂ CH- CH ₃	sec-butyl			
	CH ₃ CH ₃ C — CH ₃	<i>tert</i> -butyl			

Classification of carbon atoms

Carbon atoms are classified according to the number of carbon atoms to which they are bound. Hydrogen atoms are also classified in analogy.

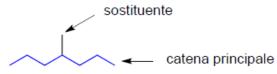
Costruzione del nome

prefisso + infisso + suffisso

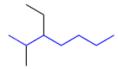
a) numero di carboni (but-, pent- ecc.)

b) presenza di doppi o tripli legami (an-, en-, in-)
c) classe chimica (-o, -e, -olo, -ale, -one, ecc.)

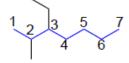
et-an-o

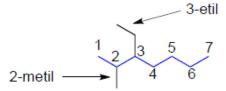

et-en-e

et-in-o

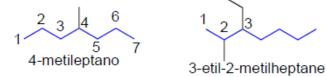

 Agli alcani lineari il nome è assegnato in base al numero degli atomi di carbonio presenti:

Metano, etano, propano, butano, pentano, esano, eptano, ottano, nonano, decano, undecano, dodecano, ...

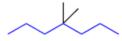

 Per alcani contenenti catene di carbonio ramificate, si individua la catena principale:


 Se due o più catene, nell'ambito della struttura, hanno la stessa lunghezza, si deve scegliere, come catena principale, quella con il numero maggiore di ramificazioni:

4. Si numerano consecutivamente i carboni della catena principale da una parte all'altra, nella direzione che attribuisce il numero più basso al primo punto di ramificazione:



5. Si assegna il nome a ciascuna ramificazione e si identifica il numero del carbonio della catena principale sul quale essa si trova. (ricorda: isopropile, isobutile, sec-butile, t-butile, neopentile):

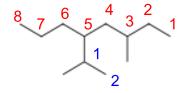


 Costruisci il nome scrivendo il numero del carbonio della catena principale cui è legato il sostituente, un trattino, il nome del sostituente e il nome

dell'alcano corrispondente alla catena principale:

7. Se la catena principale contiene più sostituenti dello stesso tipo, ognuno di essi riceve il proprio numero. Si utilizzano i prefissi di, tri, tetra e così via, per indicare il numero dei sostituenti uguali:

4,4-dimetileptano

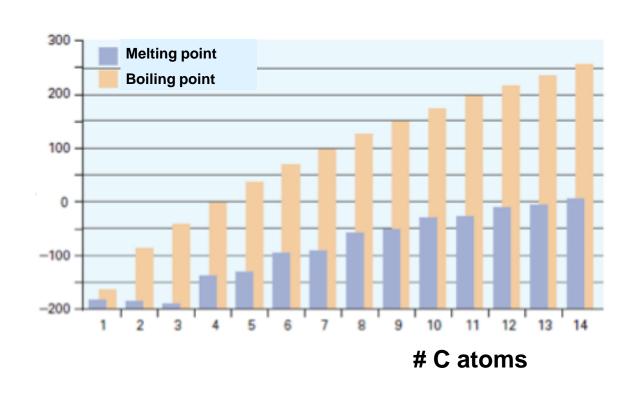

- 9. I gruppi sostituenti sono citati nel nome in ordine alfabetico, senza tener conto della loro posizione nella catena principale. Nello stabilire quest'ordine alfabetico, i prefissi numerici di, tri, tetra e così via, così come i prefissi uniti con un trattino t- e sec- sono ignorati, a differenza dei prefissi iso, neo e ciclo che vanno invece considerati.
- 10. Se la scelta della numerazione dei gruppi differenti non può essere effettuata sulla base delle regole precedenti, al gruppo citato per primo viene attribuito il numero più basso:

2-metilbutano

3-metill-6-propilnonano

2,2,3-trimetilpentano

5-isopropil-3-metilottano



5-(1-metiletil)-3-metilottano

$$\begin{array}{c} CH_3 \\ CH_2CH_3 \\ CH_3CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_3 \\ CH_3CH_2CH_2CH_3 \\ CH_3CH_2CH_3 \\ CH_3 \\ CH_4 \\ CH_2 \\ CH_4 \\ CH_5 \\ CH_5$$

5-(1,2-Dimetilpropil)-2-metilnonano

Physical Properties

Physical Properties

b.p.

CH₃CH₂CH₂CH₃ 0 °C CH₃CH₂CH₂CH₂CH₃
36 °C

CH₃CH₂CH₂CH₂CH₃ 69 °C

Surface area increases with C-atoms

CH₃ CH₃CHCH₂CH₃

CH3CH2CH2CH2CH3

10 °C

30 °C

36 °C

Surface area decreases with branching

m.p.

CH₃CH₂CH₂CH₃ -138 °C CH₃CH₂CH₂CH₂CH₂CH₃

-95 °C

Surface area increases with C-atoms

 $\mathsf{CH_3CH_2CH}(\mathsf{CH_3})_2$

(CH₃)₄C

-160°C

-17 °C

Increases with symmetry

Physical Properties

Physical state: C1-C4 gas /b.p. -160°-0°

C5-C17 liq./m.p. -130°-20°

>C17 solid

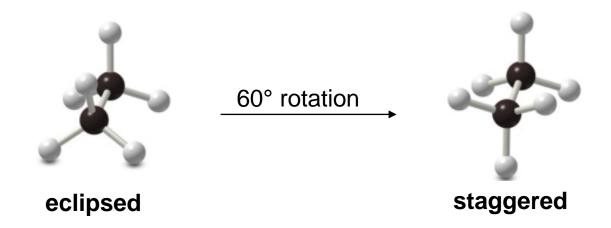
Solubility: soluble in organic solvents (apolar) insoluble in water

Natural Sources

Natural sources of alkanes are natural gas and oil.

Natural gas contains mainly methane: minor components are ethane, propane and butane.

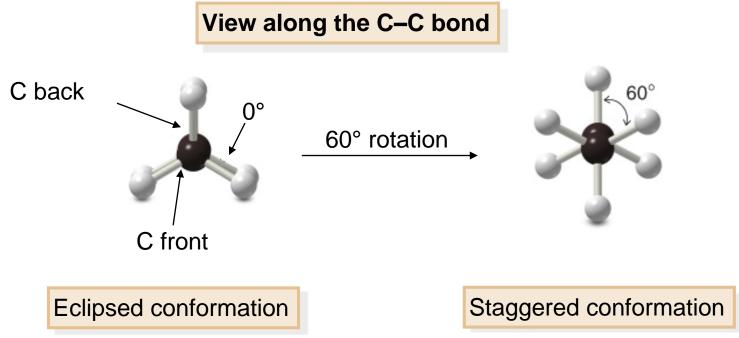
Oil is a complex mixture of, mainly, C_1 - C_{40} hydrocarbons. Distillation of crude oil (refining) separates oil in fractions with different boiling point. The main fractions are:


gasoline: $C_5H_{12} - C_{12}H_{26}$

kerosene: $C_{12}H_{26} - C_{16}H_{34}$

diesel oil: $C_{15}H_{32} - C_{18}H_{38}$

Conformational Isomerism

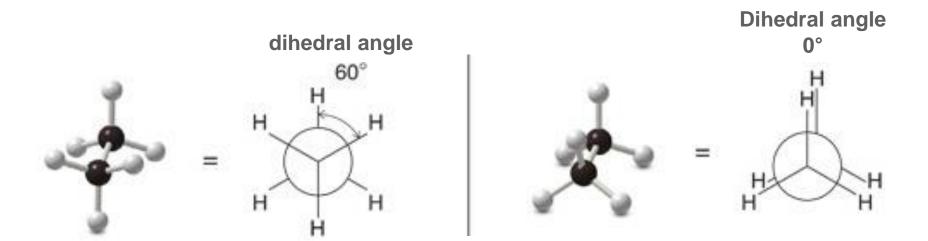

Ethane

- ➤ In the eclipsed conformation, all C-H bonds are alligned.
- ▶ In the staggered conformation, C-H bonds on each carbon bisect the H-C-H angles on the other carbon.

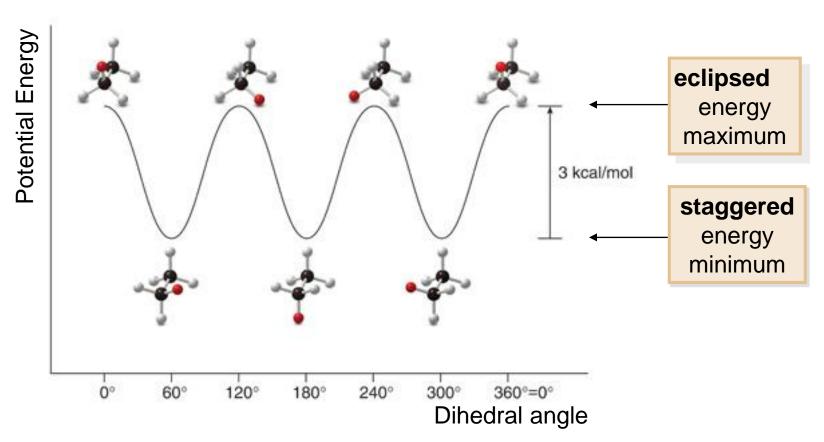
Ethane Conformations

➤ The H-C-C-H angle is called dihedral angle (0° in the eclipsed and 60° in the staggered conformation).

The front C-H bonds bisect the H-C-H angles on the carbon atom at the back

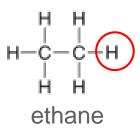

Newman Projection

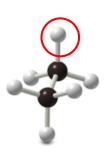
- How to draw a Newman projection
 - [1] Look along the C-C bond and draw a circle (the back C atom) with a dot in the centre (the front C atom).
 - [2] Draw the bonds
 - [3] Add the atoms

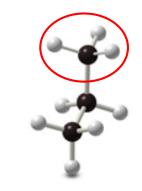

Newman Projections of Ethane

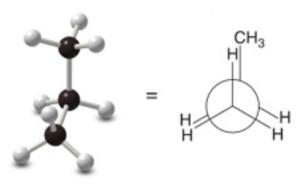
staggered conformation

eclipsed conformation

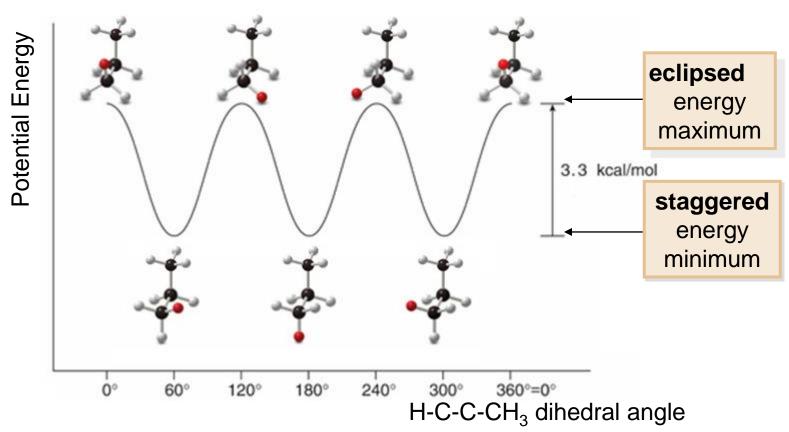



Conformations of Ethane

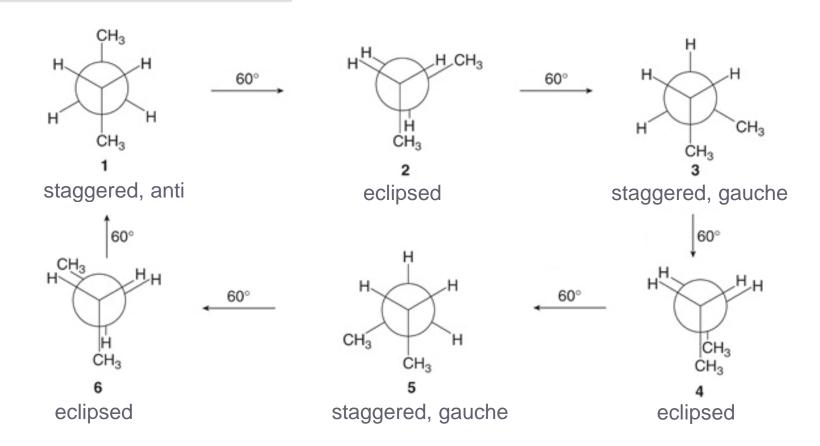



Torsional Strain 3.0 kcal/mole

Conformations of Propane



eclipsed conformation


Conformations of Propane

Torsional Strain (3.3 kcal/mole) is higher than in ethane. The methyl group is bulkier than a hydrogen atom

Conformations of Butane

6 different conformations

Conformations of Butane

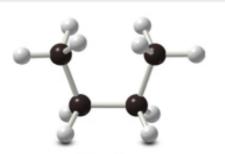

A staggered conformation with two large groups at 180° is called *anti*

A staggered conformation with two large groups at 60° is called *gauche*.

anti conformation

conformazione gauche

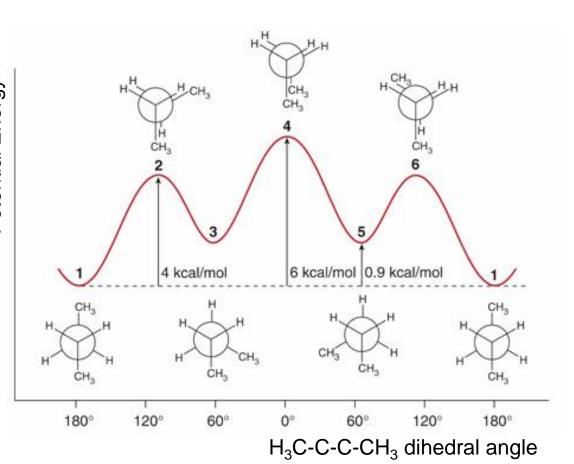
The CH₃ are at 180°


1

The CH₃ are at 60° steric strain

3

Eclipsed conformation



The CH₃ are at 0° steric strain

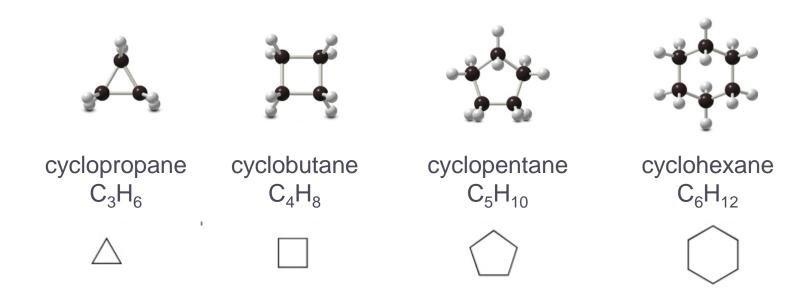
Conformations of Butane

- Staggered conformations:

 - 1 (anti) is the absolute minimum
 3,5 (gauche) are relative minima
- Eclipsed conformations:
 - 4 is the absolute maximum (CH₃ eclipsed)
 - 2,6 are relative maxima

Torsional Strain in Linear Alkanes

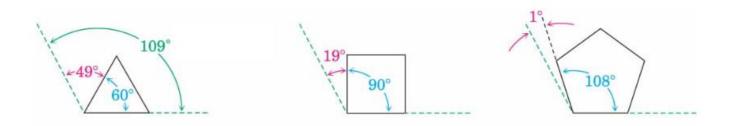
Interaction	Energy (kcal/mole)		
Eclipsing H,H	1		
Eclipsing H,CH ₃	1.5		
Eclipsing CH ₃ ,CH ₃	4		
Gauche CH ₃ ,CH ₃	0.9		


- A rotational barrier is the energy difference between two minima.
- The most stable conformation of linear hydrocarbons is staggered with the bulky groups in anti. Thus long chains are usually drawn with a zigzag.

Cycloalkanes

Cycloalkanes

 Cycloalkanes have empirical formula C_nH_{2n} and contain carbon atoms arranged in a cyclic chain

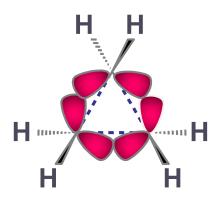

Nomenclature: cyclo + name of the corresponding alkane

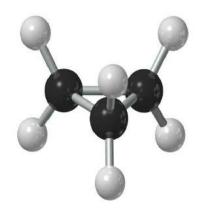
Stability: Angular Strain (Baeyer's Strain)

Baeyer (1885): as carbon prefers 109° bond angles, rings other than five or six membered may be too strained to exist.

Cycloalkanes from C₃ to C₃₀ do exist, but some of them are strained because of distorted bond angles and other interactions.

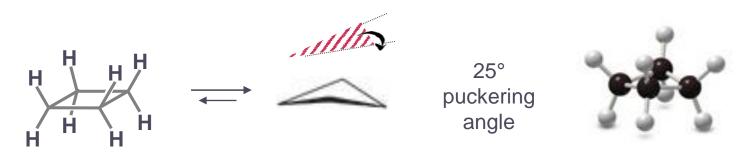
Ring Strain


Stability of cycloalkanes depend on ring strain:


- angle strain: distorted bond angles.
- torsional strain: eclipsing of C-H bonds.
- VdW or steric strain: repulsions between non bonded atoms.

Cyclopropane C₃H₆

- > Planar.
- Angle strain: 60° CCC angles.
- Torsional strain: all H are eclipsed.
- May be described as sp³ hybridized with banana bonds.



Cyclobutane C₄H₈

- In planar cyclobutane all hydrogens would be eclipsed.
- To relieve torsional strain, cyclobutane is puckered by about 25°.
- In doing so the CCC bond angles decrease to 88° and hydrogens on opposite carbons become closer.

Planar angle strain torsional strain

Puckered

slightly higher angle strain lower torsional strain some VdW strain

Cyclopentane C₅H₁₀

←

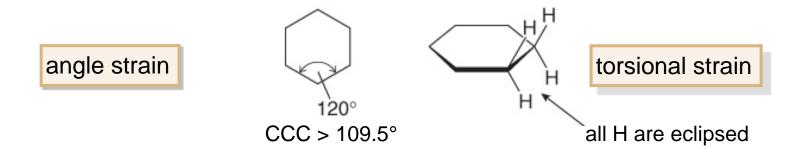
25° puckering angle

angle strain torsional strain

"envelope" conformation eclipsing is partially relieved

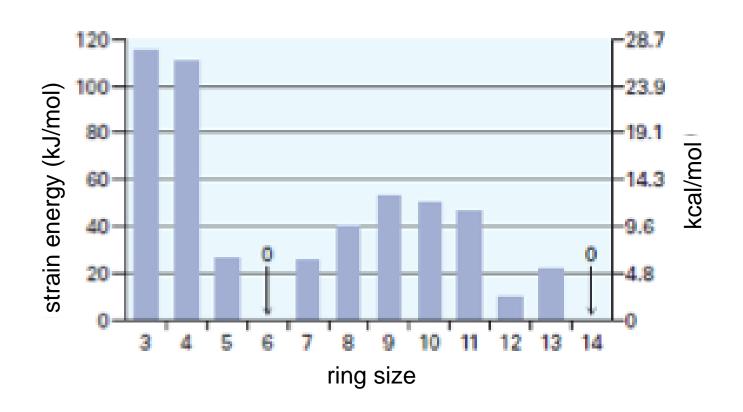
H H H

H


envelope

half-chair

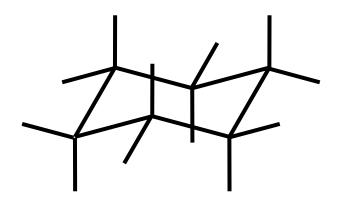
envelope and half-chair conformations have similar energies and rapidly interconvert into one another


Cyclohexane C₆H₁₂

Planar cyclohexane.

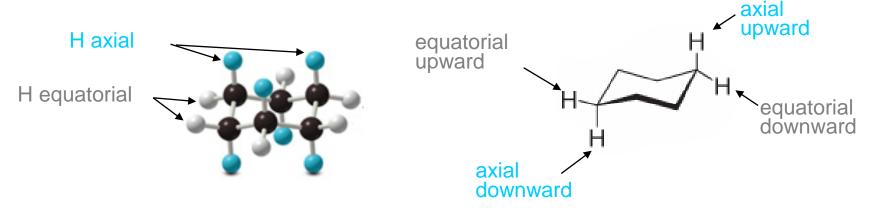
Chair conformation.

Strain Energies of Cycloalkanes



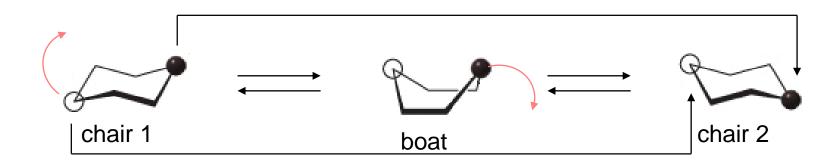
Strain Energies of Cycloalkanes

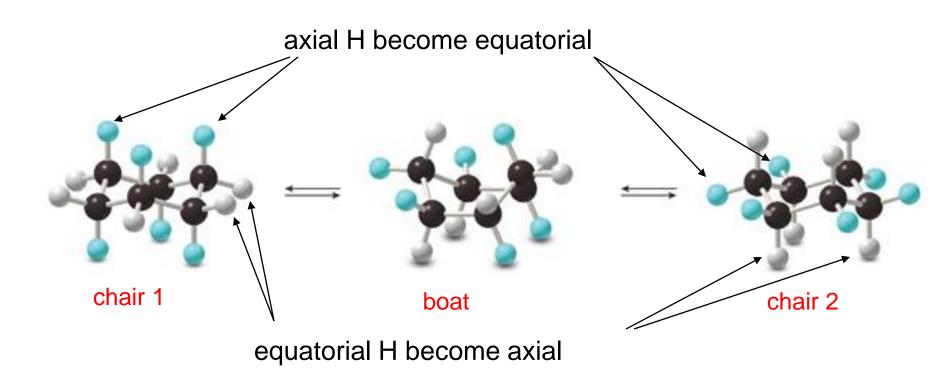
- Heats of combustion are used to calculate strain energies of cycloalkanes.
- Heats of combustion increase with the number of C atoms.
- Cyclohexane is taken as reference (Strain = 0).


	\triangle					
kJ/mol	2091	2724	3290	3910	4599	5264
Per CH ₂	697	681	658	653	657	658
Strain	132	112	25	0	28	40

How to Draw Chair Cyclohexane

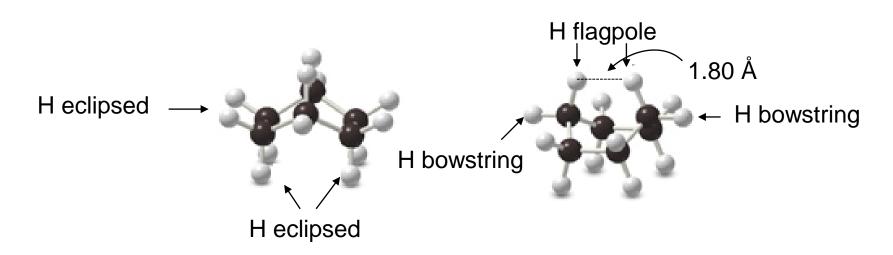
Chair Conformation of Cyclohexane


- There are two types of hydrogens:
 - Axial: perpendicular to the ring's mid-plane, above and below the ring.
 - Equatorial: in the ring's mid-plane, all around the ring.

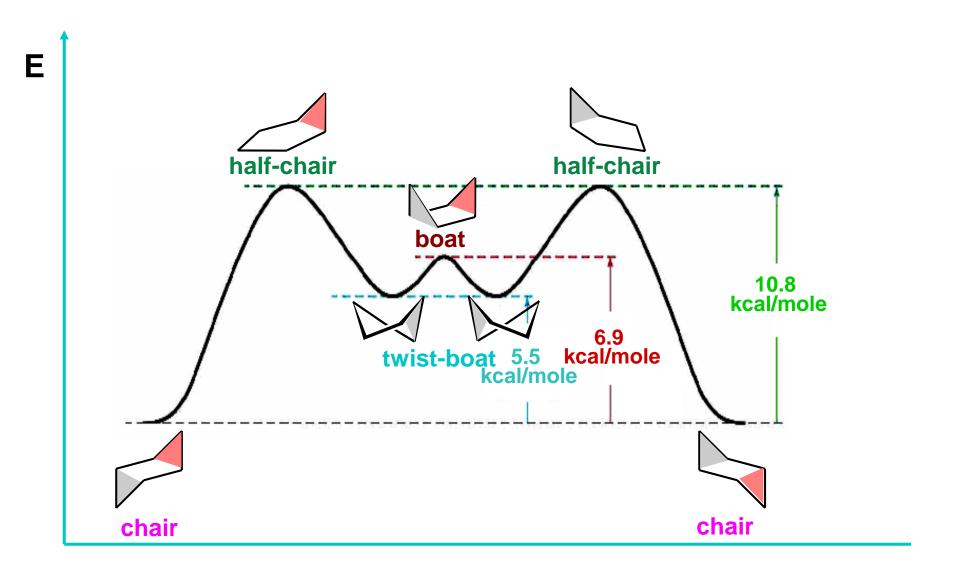

There are 6 axial and 6 equatorial hydrogens in cyclohexane.

Ring Flipping

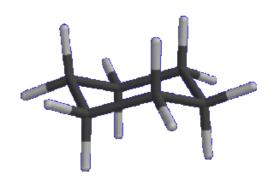
- Ring flipping is the interconversion between two chair conformations of cyclohexane.
- Upwards C become dawnwards and viceversa.
- Axial H become equatorial and viceversa.

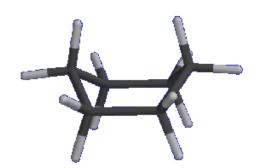


Ring Flipping

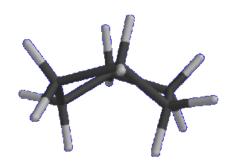


Conformations of Cyclohexane


- Chair conformations are 7 kcal/mol more stable than boat conformations.
- Torsional strain. In the boat conformation the H on the base are eclipsed.
- Steric strain. Flag pole H are forced in close proximity.


Conformations of Cyclohexane

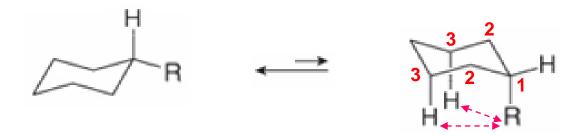
Conformations of Cyclohexane



chair no ring strain (99.99% at 25°C)

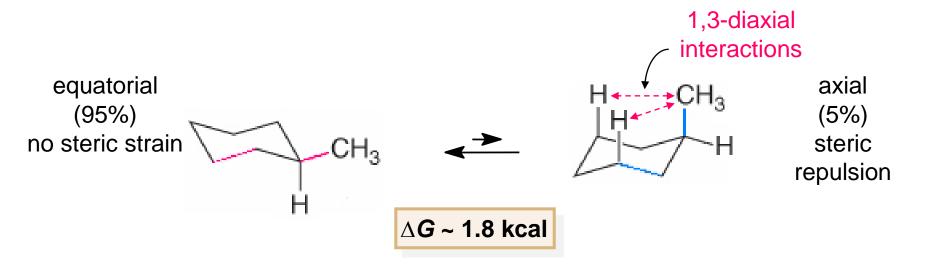
boat

- torsional strain
- steric strainring strain: ~ 7 kcal



twist-boat

1.5 kcal more stable than the boat (0.01% at 25°C)


Substitued Cyclohexanes

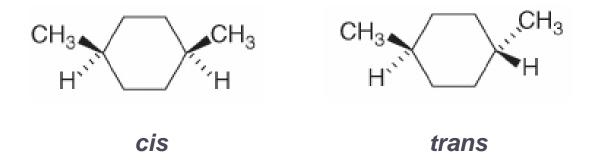
The chair conformations are no longer equivalent: they have different energies.

- The axial conformer is destabilized by 1,3-diaxial interactions (VdW interactions) between the substituent and axial hydrogens.
- The larger the substituent, the less stable the axial conformation.

Methylcyclohexane

Each CH₃ / H interaction destabilizes the axial conformer by 0.9 kcal/mol

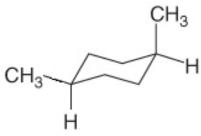
tert-Butylcyclohexane


The tert-butyl group is so bulky that there is no axial conformer at the equilibrium.

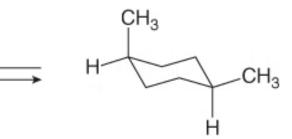
$$H$$
 H
 CH_3
 CH_3

The *tert*-butyl group **freezes** the conformational equilibrium.

Disubstitued Cyclohexanes. Geometrical Stereoisomerism

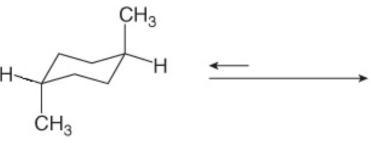

There are two isomers of 1,4-dimethylcyclohexane.

Each geometrical isomer has two possible chair conformations.


1,4-Dimethylcyclohexane

equatorial-axial

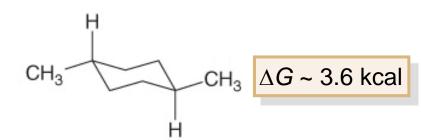
2 1,3-diaxial interactions $2 \times 0.9 = 1.8 \text{ kcal}$


 $\Delta G = 0 \text{ kcal}$

axial-equatorial

2 1,3-diaxial interactions

$$2 \times 0.9 = 1.8 \text{ kcal}$$


trans

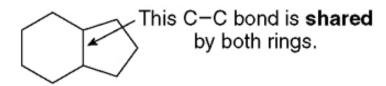
bisaxial

4 1,3-diaxial interactions

$$4 \times 0.9 = 3.6 \text{ kcal}$$

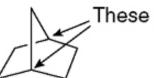
bisequatorial no repulsions

cis-1-t-Butyl-4-methylcyclohexane


The conformational equilibrium is frozen by the bulky t-butyl group.

CH₃

$$H$$
 CH_3
 CH_3


Polycyclic compounds

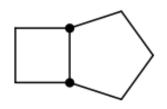
A fused bicyclic system

- One bond is shared by two rings.
- The shared C's are adjacent.

A bridged bicyclic system

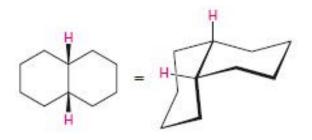
These C's are **shared** by two rings.

Two non-adjacent atoms are shared by both rings.


A spiro bicyclic system

One atom is shared by two rings

Polycyclic compounds

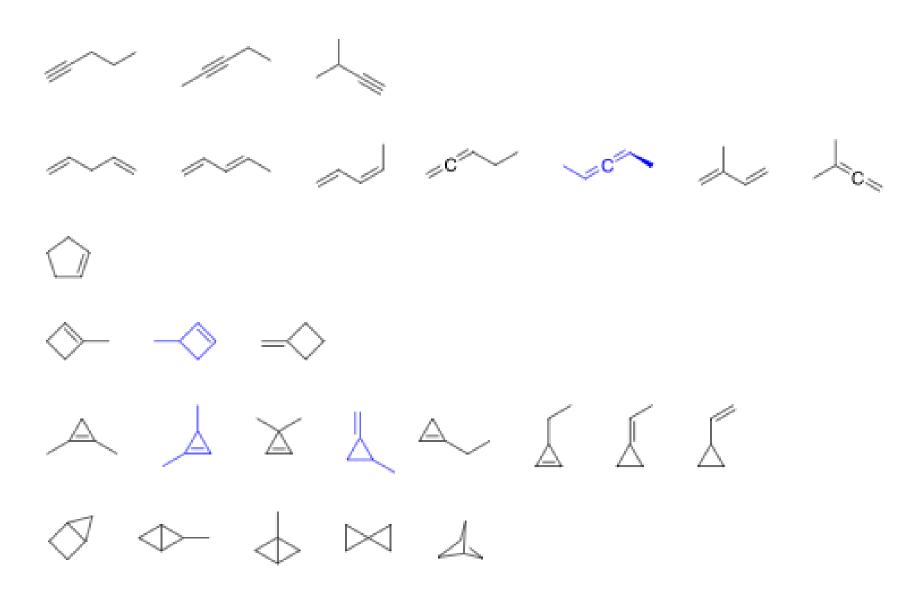


bicyclo[3.2.0]heptane

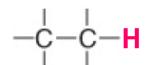
spiro[4,5]decane

Polycyclic Hydrocarbons

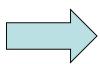
less stable (1 axial substituent)


cis-decaline

more stable (equatorial substituents)



trans-decaline


C5H8 Isomers

Reactions of Alkanes

- no lone pairs
- no π bonds
- no heteroatoms
- not nucleophilic
- not electrophilic
- strong, not polar C–C,
 C–H bonds

Alkanes react only at high temperatures, with radical mechanisms.

Halogenation of Alkanes

Chapt. 10 Organic Chemistry, 8th Edition John E. McMurry

Halogenation of Alkanes

In the presence of heat or light, alkanes react with halogens, with a radical mechanism, to give alkyl halides.

$$R-H + X_2 \xrightarrow{\Delta \text{ or hv}} R-X + HX$$

radical substitution

Halogenation of alkanes is carried out with Cl₂ o Br₂. The reaction with F₂ is too violent and the reaction with I₂ is too slow.

Halogenation of Methane

Initiation

Stage [1]: formation of Cl-radicals

$$: \ddot{C} | - \ddot{C} | : \xrightarrow{h_{V} \circ \Delta} 2 \cdot \ddot{C} | :$$

Propagation

Stages [2] and [3]: A new radical is formed for each reacting radical

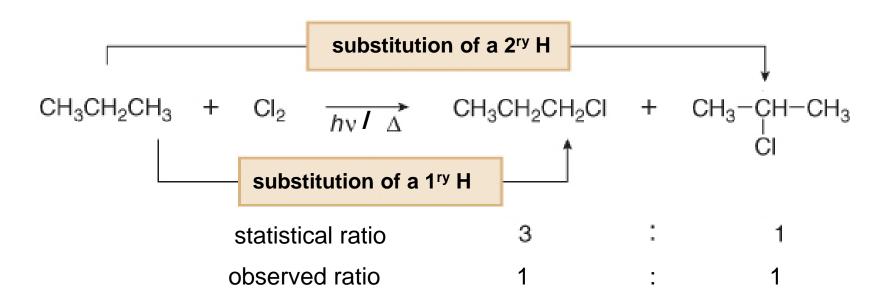
thousands of cycles.
Chain reaction

Termination

Stage [4]: Two radicals recombine forming a σ bond.

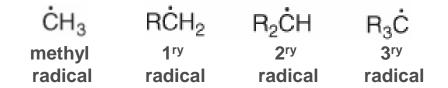
$$2 \text{ CI} \cdot \longrightarrow \text{ CI}_2$$

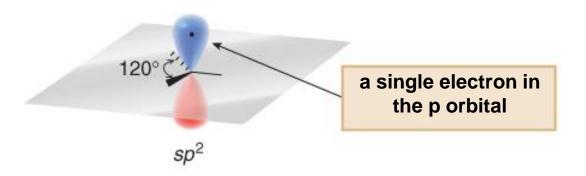
 $\dot{\text{CH}}_3 + \dot{\text{CH}}_3 \longrightarrow \text{ CH}_3\text{CH}_3$
 $\dot{\text{CH}}_3 + \text{ CI} \cdot \longrightarrow \text{ CH}_3\text{CI}$

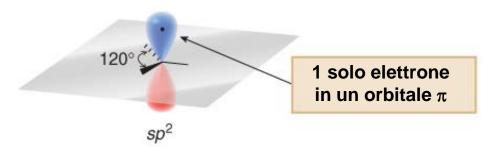

Halogenation of Alkanes

Monohalogenation is only possible with an excess of substrate, otherwise polyhalogenation predominates.

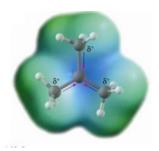
- Problem: mixture of halogenated products.
- Solution: CH₄ in large excess and recycled.


Regioselectivity

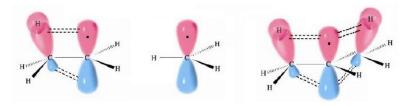

Isomers are formed in the halogenation of propane and higher hydrocarbons:


Structure of Radicals

- Alkyl radicals are sp² hybridized with a trigonal planar geometry.
- The p orbital contains an unpaired electron.



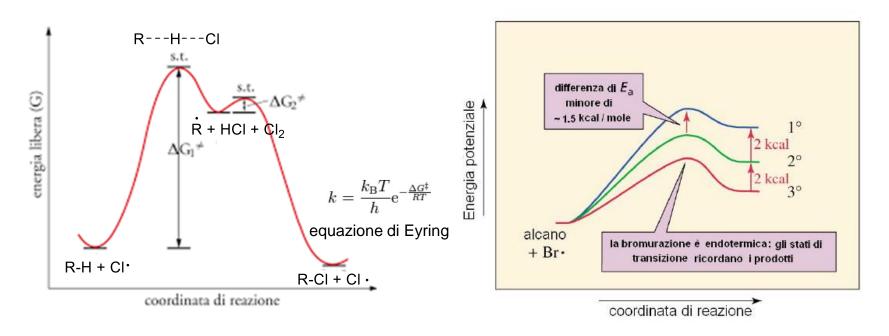
Stabilità dei radicali



ĊH ₃	\dot{RCH}_2	R₂ĊH	R₃Ċ
Radicale metile	1 ^{ry}	2 ^{ry}	3 ^{ry}

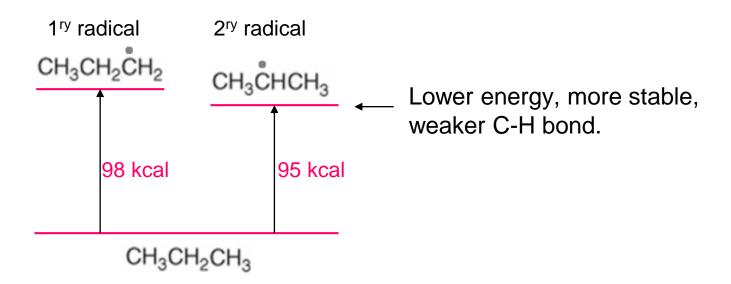
I gruppi alchilici hanno un effetto elettrondonatore e stabilizzano il radicale


effetto induttivo



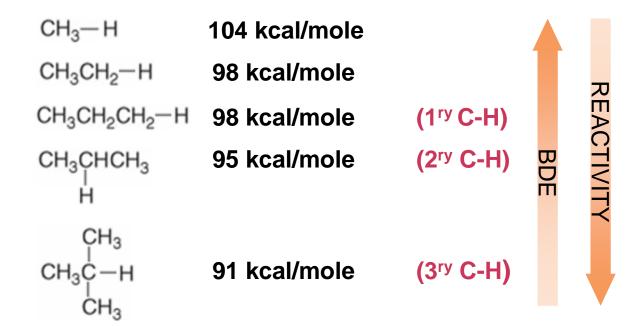
iperconiugazione

Stabilità dei radicali


radicale:

Si forma più velocemente il radicale più stabile e quindi il prodotto che deriva da quel radicale.

Regioselectivity

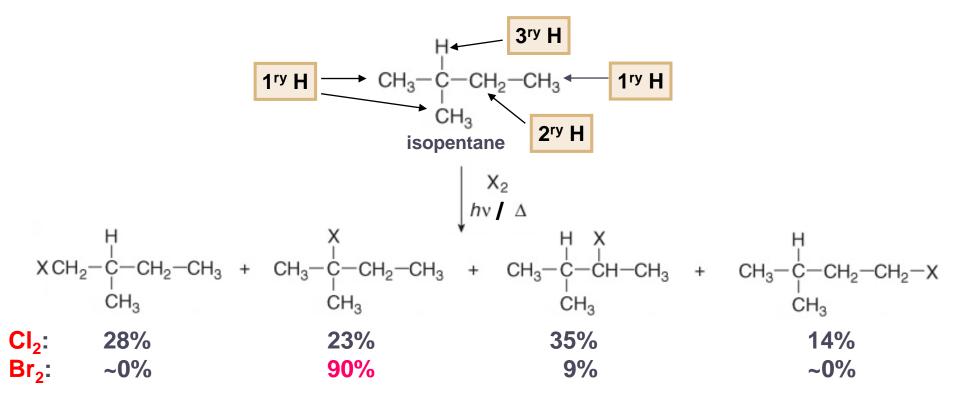


- ightharpoonup Radical stability: $3^{ry} > 2^{ry} > 1^{ry}$.
- > Strength of C-H bonds: $3^{ry} < 2^{ry} < 1^{ry}$.

C-H Bond Dissociation Energies

$$R-H \rightarrow R \cdot + H \cdot$$

DH = BDE bond dissociation energy

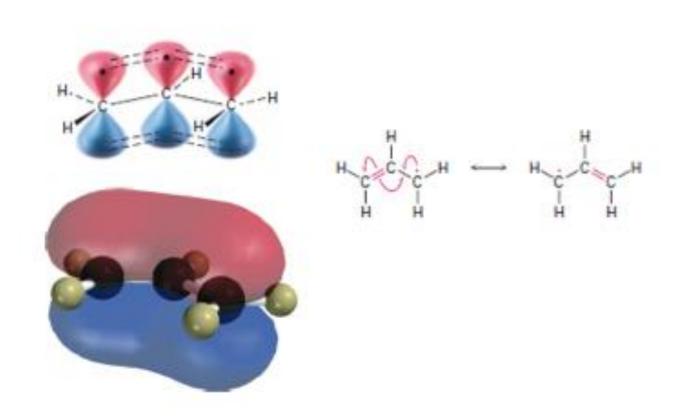


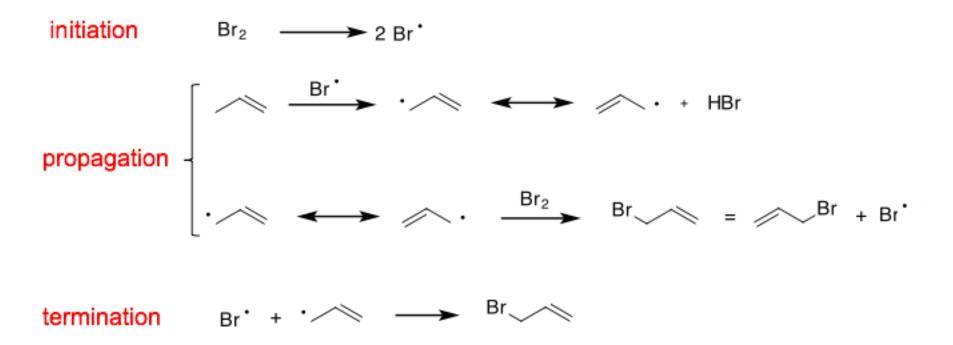
Reactivity of C-H bonds: $3^{ry} > 2^{ry} > 1^{ry} > CH_3-H$

Reactivity and Selectivity

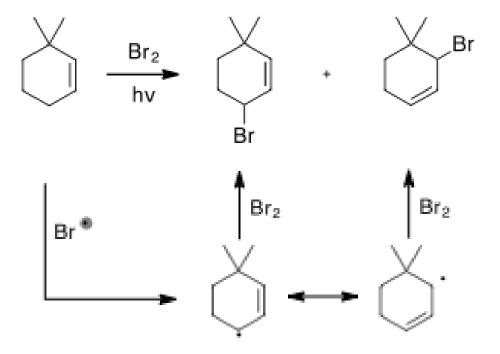
- Chlorination of alkanes is faster than bromination.
- Bromination of alkanes is more selective.

Regioselectivity


C-H relative reactivity	3ry	2ry	1ry
with Cl ₂	5.2	3.9	1
with Br ₂	1640	82	1


- ightharpoonup Allylic carbons are sp^3 carbons adjacent to a double bond.
- A resonance-stabilized allylic radical is obtained by omolysis of an allylic C-H bond.

$$CH_2=CH-CH_2-H$$
 \longrightarrow $CH_2=CH-\dot{C}H_2$ + $\cdot H$ $\Delta H^\circ=+87$ kcal/mol allylic radical


- BDEs of allylic C-H bonds are approximately 4 kcal/mol lower than BDE for 3ry C-H bonds.
- The delocalized allylic radical is more stable than a 3ry radical.

The Allylic Radical

- Allylic carbons can be selectively brominated with NBS and UV irradiation or a radical initiator.
- Breaking of the weak N-Br bond of NBS initiates the radical chain reaction.

Combustion

- Combustion is a redox reaction. C is oxidized and O is reduced.
- All hydrocarbons burn giving carbon dioxide, water and heat (ΔH <0).</p>
- C-C e C-H bonds are converted into C-O and H-O bonds.

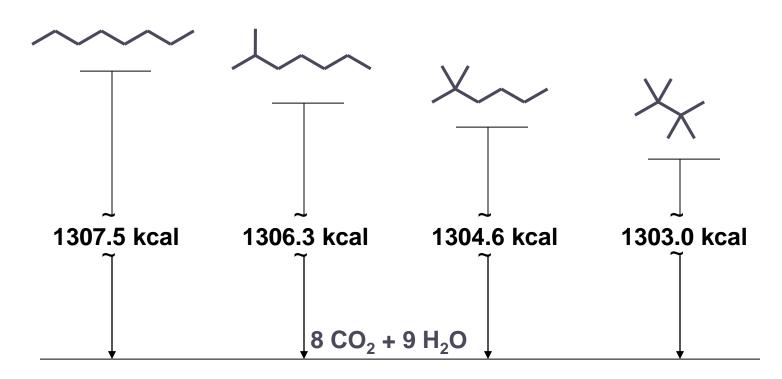
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + heat$$

$$(CH_3)_3CCH_2CH(CH_3)_2 + (25/2)O_2 \longrightarrow 8CO_2 + 9H_2O + heat$$

isoottano

$$C_nH_{2n+2} + \frac{3n+1}{2}O_2 \longrightarrow nCO_2 + (n+1)H_2O + heat$$

Every C atom is converted into CO₂


Strain Energies of Cycloalkanes

- Heats of combustion are used to calculate strain energies of cycloalkanes.
- Heats of combustion increase with the number of C atoms.
- Cyclohexane is taken as reference (Strain = 0).

	\triangle					
kJ/mol	2091	2724	3290	3910	4599	5264
Per CH ₂	697	681	658	653	657	658
Strain	132	112	25	0	28	40

Stability of Isomers

Heats of combustion are used to compare the stability of isomers. E.g.: C₈H₁₈

Branched isomers are more stable than linear ones.