
Alkyl Halides

Chapter 10
Organic Chemistry, 8th Edition
John McMurry

Introduction to Alkyl Halides

- Alkyl halides are organic molecules containing a halogen atom bonded to an sp³ hybridized carbon atom.
- Alkyl halides are classified as primary (1°), secondary (2°), or tertiary (3°), depending on the number of carbons bonded to the carbon with the halogen atom.
- The halogen atom in halides is often denoted by the symbol "X".

Introduction to Alkyl Halides

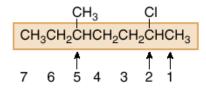
Different reactivity

Nomenclature

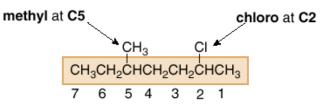
How To

Name an Alkyl Halide Using the IUPAC System

Example Give the IUPAC name of the following alkyl halide:


Step [1] Find the parent carbon chain containing the halogen.

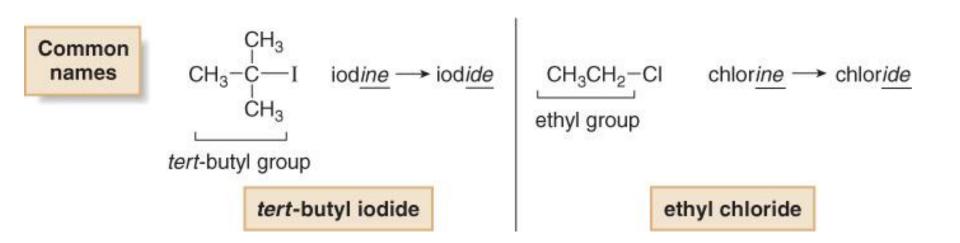
7 C's in the longest chain


 Name the parent chain as an alkane, with the halogen as a substituent bonded to the longest chain.

Step [2] Apply all other rules of nomenclature.

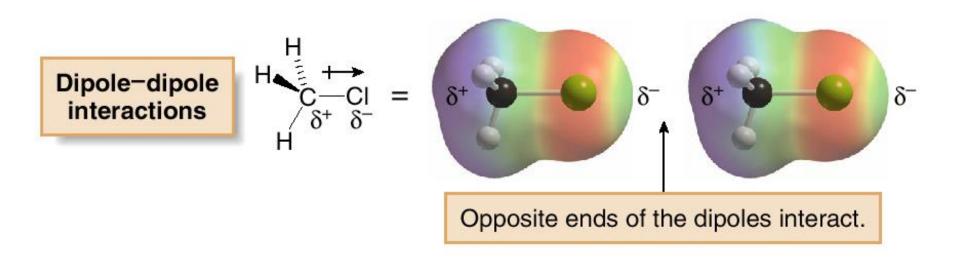
a. Number the chain.

 Begin at the end nearest the first substituent, either alkyl or halogen. b. Name and number the substituents.



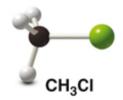
c. Alphabetize: c for chloro, then m for methyl.

ANSWER: 2-chloro-5-methylheptane


Nomenclature

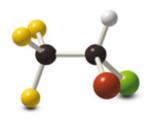
Common names are often used for simple alkyl halides. To assign a common name:

Physical Properties

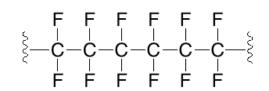

 Alkyl halides are weak polar molecules. They exhibit dipole-dipole interactions because of their polar C—X bond, but because the rest of the molecule contains only C—C and C—H bonds, they are incapable of intermolecular hydrogen bonding.

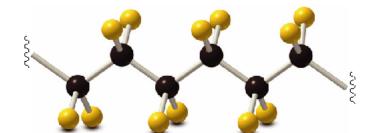
Physical Properties

Property	Observation
Boiling point	Alkyl halides have higher bp's and mp's than alkanes having the same number of carbons
and melting point	CH_3CH_3 and CH_3CH_2Br $bp = -89 ^{\circ}C$ $bp = 39 ^{\circ}C$
	Bp's and mp's increase as the size of R increases.
	CH ₃ CH ₂ CI and CH ₃ CH ₂ CH ₂ CI mp = -136 °C mp = -123 °C bp = 47 °C larger surface area—higher mp and bp
	Bp's and mp's increase as the size of X increases.
	CH ₃ CH ₂ CI and CH ₃ CH ₂ Br more polarizable halogen—higher mp and bp
	bp = 12 °C bp = 39 °C
Solubility	RX is soluble in organic solvents.
	RX is insoluble in water.

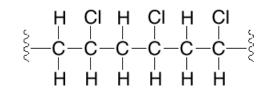

Interesting Alkyl Halides

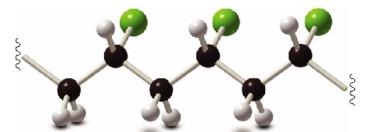
 Chloromethane (CH₃CI) is produced by giant kelp and algae and also found in emissions from volcanoes such as Hawaii's Kilauea. Almost all of the atmospheric chloromethane results from these natural sources.

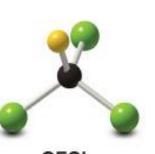

Dichloromethane (or methylene chloride, CH₂Cl₂) is an important solvent, once used to decaffeinate coffee. Coffee is now decaffeinated by using supercritical CO₂ due to concerns over the possible ill effects of trace amounts of residual CH₂Cl₂ in the coffee. Subsequent studies on rats have shown, however, that no cancers occurred when animals ingested the equivalent of over 100,000 cups of decaffeinated coffee per day.



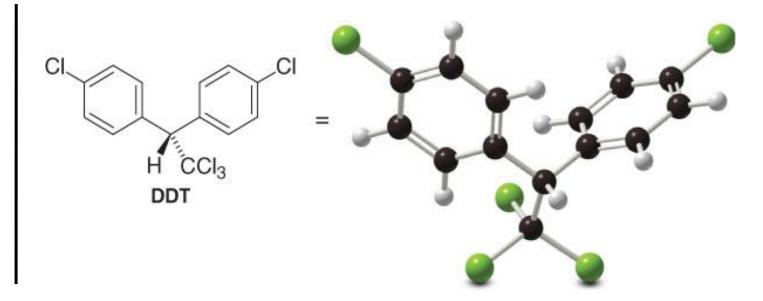
CF₃CHCIBr


 Halothane (CF₃CHCIBr) is a safe general anesthetic that has now replaced other organic anesthetics such as CHCl₃, which causes liver and kidney damage, and CH₃CH₂OCH₂CH₃ (diethyl ether), which is very flammable.


Interesting Alkyl Halides



Teflon (nonstick coating)

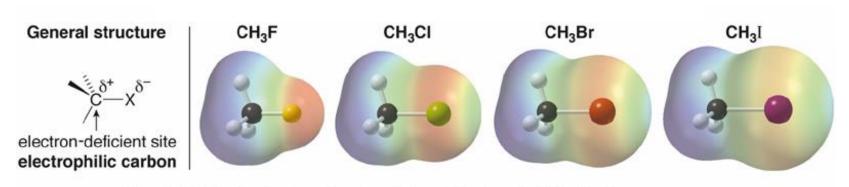


poly(vinyl chloride) (PVC)
(plastic used in films, pipes, and insulation)

CFCI₃ CFC 11 Freon 11

Preparation

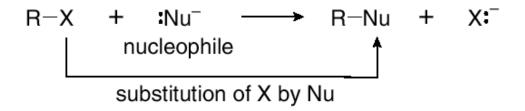
Preparation from alcohols

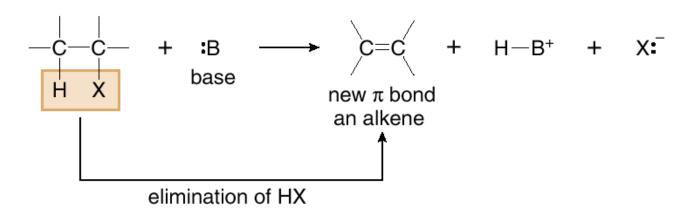

tertiary
$$\nearrow$$
 OH \xrightarrow{HX} \nearrow X

primary and secondary \nearrow OH $\xrightarrow{PBr_3}$ $\xrightarrow{SOCl_2}$ \nearrow X

 \nearrow OH $\xrightarrow{PBr_3}$ \nearrow X

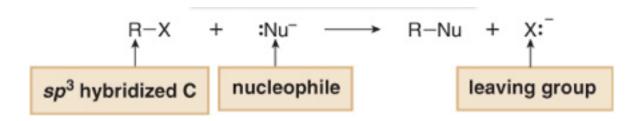
The Polar Carbon-Halogen Bond

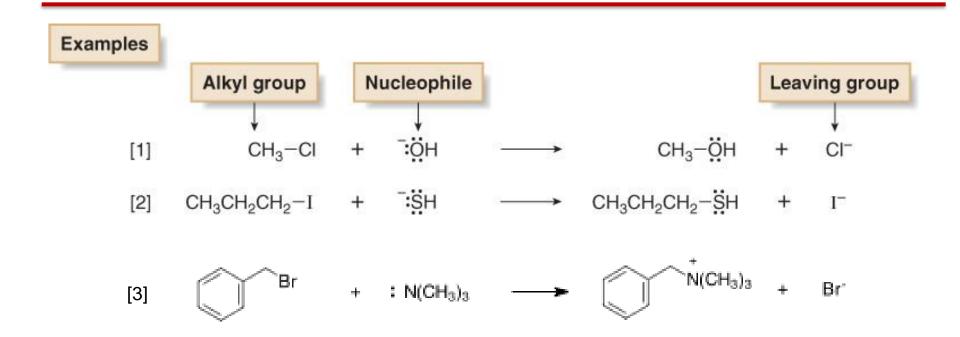

• The electronegative halogen atom in alkyl halides creates a polar C—X bond, making the carbon atom electron deficient. Electrostatic potential maps of four simple alkyl halides illustrate this point.


The polar C-X bond makes the carbon atom electron deficient in each CH₃X molecule.

The Polar Carbon-Halogen Bond

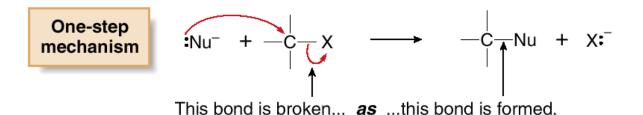
Alkyl halides undergo substitution reactions with nucleophiles.

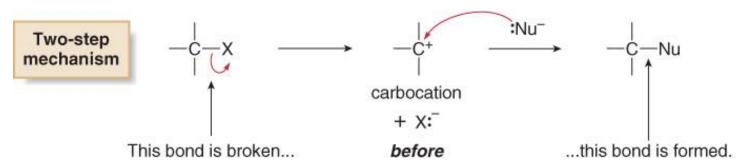

Alkyl halides undergo elimination reactions with Brønsted-Lowry bases.



Nucleophilic Substitution

Chapter 11
Organic Chemistry, 8th Edition
John McMurry


General Features of Nucleophilic Substitution



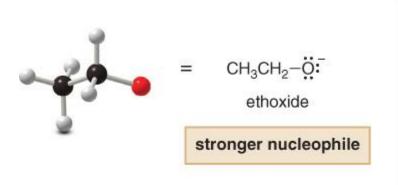
Mechanism

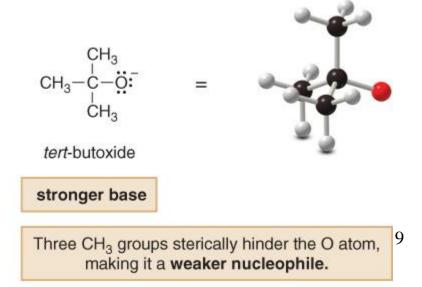
Bond making and bond breaking occur at the same time. $S_N 2$

Bond breaking occurs before bond making. S_N1

- Although nucleophilicity and basicity are interrelated, they are fundamentally different.
 - Basicity is a thermodynamic property.

$$B: + H_2O \stackrel{K_B}{\Longrightarrow} BH^+ + OH^-$$


Nucleophilicity is a kinetic property.


• For two nucleophiles with the same nucleophilic atom, the stronger base is the stronger nucleophile.

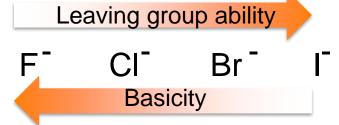
```
HO^- is a stronger base and stronger nucleophile than CH_3COO^-. (pK_a: H_2O = 15.7, CH_3COOH = 4.8).
```

- A negatively charged nucleophile is always a stronger nucleophile than its conjugate acid.
 - HO[−] is a stronger base and stronger nucleophile than H₂O.
- Going down along a group nucleophilicity increases as polarizability increases:
- H₂S is a weaker base but a stronger nucleophile than H₂O. Nucleophilicity increases following the order F⁻<Cl⁻<Br⁻<l⁻ while basicity follow the opposite order
 - Right-to-left across a row of the periodic table, nucleophilicity increases as basicity increases:
 - NH₃ is a stronger base and stronger nucleophile than H₂O.

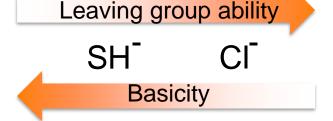
- Nucleophilicity does not parallel basicity when steric hindrance becomes important.
- Steric hindrance results from the presence of bulky groups at the site of a reaction.
- Steric hindrance decreases nucleophilicity but not basicity.
- Sterically hindered bases that are poor nucleophiles are called nonnucleophilic bases.

Some Common Nucleophiles

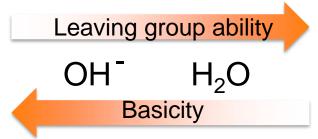
: E	Negatively charged nucleophiles			Neutral nucleophiles	
Oxygen	-ОН	-OR	CH ₃ COO ⁻	H ₂ O	ROH
Nitrogen	N ₃ -			NH ₃	RNH ₂
Carbon	-CN	HC≡C-			
Halogen	CI	Br ⁻	Γ		
Sulfur	HS ⁻	RS-		H ₂ S	RSH


Tabella 11.1 Alcune reazioni S_N2 con il bromometano

$Nu:^- + CH_3Br \rightarrow CH_3Nu + Br^-$					
Nucleofilo		Prodotto		Velocità relativa	
Formula	Nome	Formula	Nome	di reazione	
H ₂ O	Acqua	CH ₃ OH ₂ +	Ione metilidronio	1	
CH ₃ CO ₂ -	Acetato	CH ₃ CO ₂ CH ₃	Metil acetato	500	
NH ₃	Ammoniaca	CH ₃ NH ₃ +	Ione metilammonio	700	
CI-	Cloruro	CH ₃ CI	Clorometano	1000	
HO ⁻	Idrossido	CH ₃ OH	Metanolo	10000	
CH ₃ O ⁻	Metossido	CH ₃ OCH ₃	Dimetil etere	25000	
I-	Ioduro	CH ₃ I	Iodometano	100000	
-cN	Clanuro	CH ₃ CN	Acetonitrile	125000	
HS-	Idrogenosolfuro	CH ₃ SH	Metantiolo	125000	


The Leaving Group

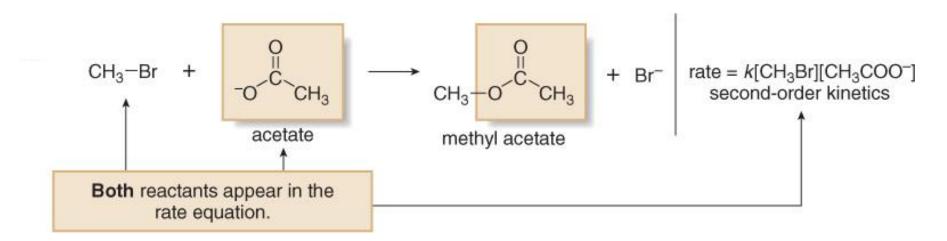
Stable (weak bases) species are good leaving groups.


Leaving group ability increases down a group:

Leaving group ability increases from left to right across a period:

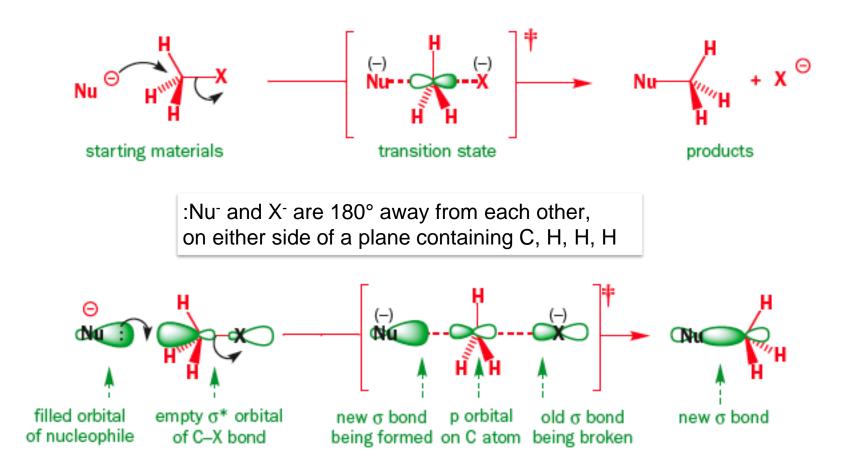
Neutral leaving groups are better than charged ones

The Leaving Group

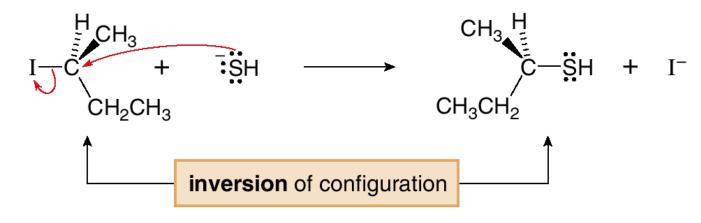

These molecules undergo nucleophilic substitution

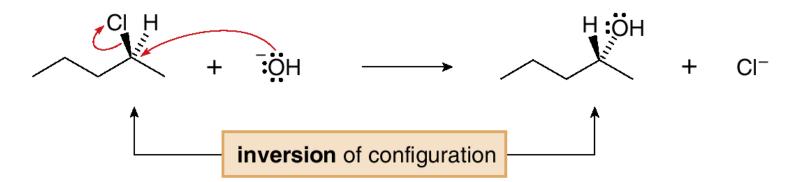
	Starting material	Leaving group	Conjugate acid	pK _a
_	R-CI	CI	HCI	-7
S	R-Br	Br ⁻	HBr	-9
	R-I	I-	HI	-10
	R-OH ₂ +	H ₂ O	H ₃ O ⁺	-1.7

These molecules do not undergo nucleophilic substitution


Starting material	Leaving group	Conjugate acid	pK _a
R-F	F-	HF	3.2
R-OH	-ОН	H ₂ O	15.7
R-NH ₂	"NH ₂	NH_3	38
R-H	H-	H ₂	35
R-R	R-	RH	50

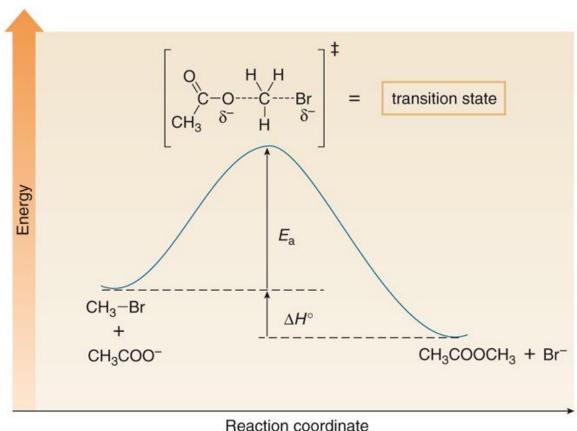
S_N2 Mechanism: Kinetics


S_N2 Mechanism: Stereochemistry


 All S_N2 reactions proceed with backside attack of the nucleophile, resulting in inversion of configuration at a stereogenic center.

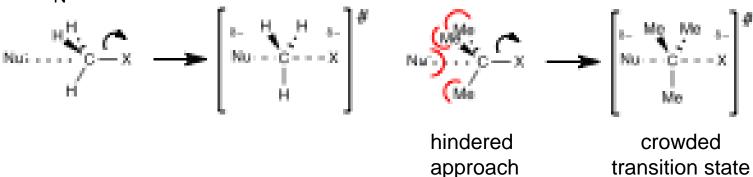
S_N2 Mechanism: Stereochemistry

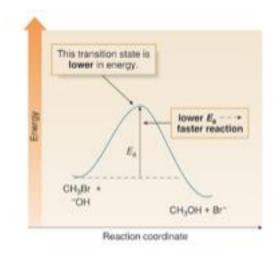
 The bond to the nucleophile in the product is always on the opposite side relative to the bond to the leaving group in the starting material.

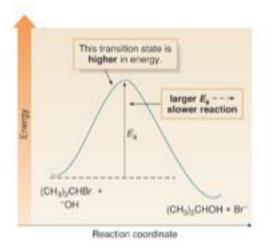


S_N2 Mechanism: Energy Profile

Energy profile for the reaction:

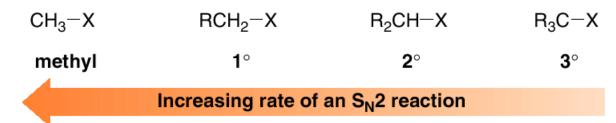

$$CH_3Br + CH_3COO^- \rightarrow CH_3COOCH_3 + Br^-$$




• In the transition state, the C-Br bond is partially broken, the C-O bond is partially formed, and both the attacking nucleophile and the departing leaving group bear a partial negative charge.

S_N2 Reaction: The Alkyl Substrate

- Increasing the number of R groups on the carbon with the leaving group makes the approach of the nucleophile more difficult and increases crowding in the transition state.
- The S_N2 reaction is fastest with unhindered halides.



The Alkyl Substrate

 As the number of R groups on the carbon with the leaving group increases, the rate of an S_N2 reaction decreases.

This order of reactivity can be explained by steric effects.

- Methyl and 1° alkyl halides undergo S_N2 reactions with ease.
- 2° Alkyl halides react more slowly.
- 3° Alkyl halides do not undergo S_N2 reactions.

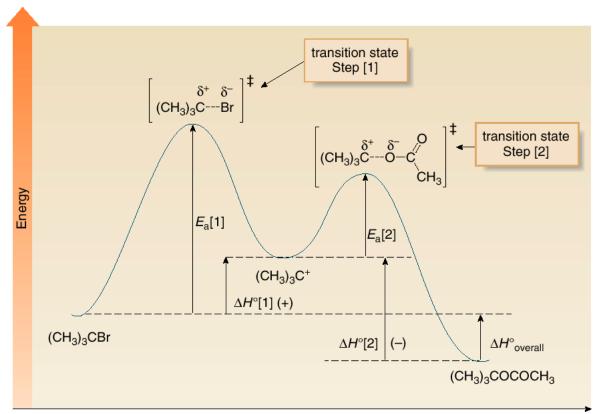
S_N2 Mechanism

Characteristic	Result		
Kinetics	 Second-order kinetics; rate = k[RX][:Nu⁻] 		
Mechanism	One step		
Stereochemistry	 Backside attack of the nucleophile Inversion of configuration at a stereogenic center 		
Identity of R	 Unhindered halides react fastest. Rate: CH₃X > RCH₂X > R₂CHX > R₃CX 		

S_N1 Mechanism

The S_N1 mechanism has two steps, and carbocations are formed as reactive intermediates.

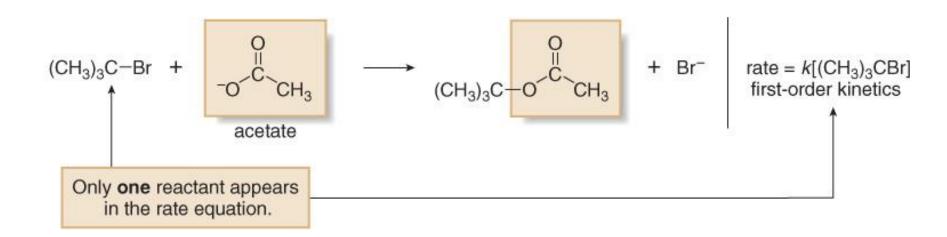
Step [1] The C-Br bond is broken.


 Heterolysis of the C-Br bond forms an intermediate carbocation. This step is rate-determining because it involves only bond cleavage.

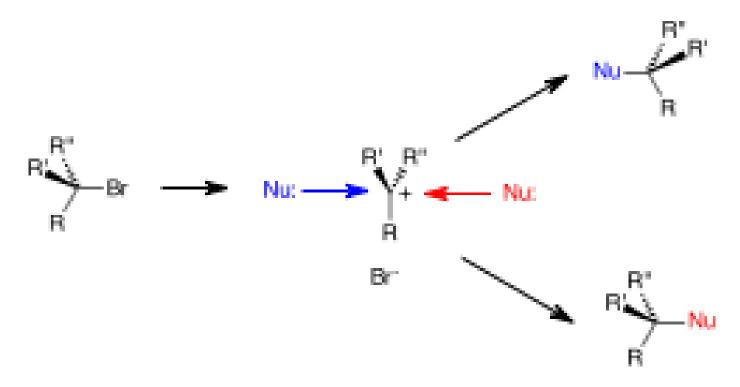
Step [2] The C-O bond is formed.

 Nucleophilic attack of acetate on the carbocation forms the new C – O bond in the product. This is a Lewis acid-base reaction; the nucleophile is the Lewis base and the carbocation is the Lewis acid. Step [2] is faster than Step [1] because no bonds are broken and one bond is formed.

S_N1 Mechanism: Energetics


 $(CH_3)_3CBr + CH_3COO^- \rightarrow (CH_3)_3COCOCH_3 + Br^-$

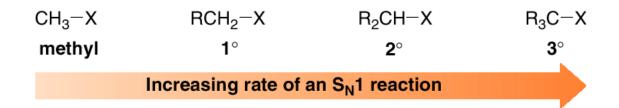
Reaction coordinate


- Since the S_N1 mechanism has two steps, there are two energy barriers.
- $E_a[1] > E_a[2]$ since Step [1] involves bond breaking and Step [2] involves bond formation.
- In each step only one bond is broken or formed, so the transition state for each step has one partial bond.
- The reaction is drawn with ΔH°_{overall} as a negative value, since the products are lower in energy than the starting materials.

S_N1 Mechanism: Kinetics

S_N1 Mechanism. Stereochemistry

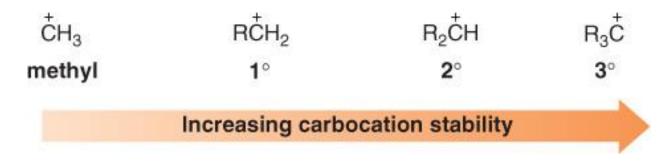
 Loss of the leaving group in Step [1] generates a planar carbocation that is achiral. In Step [2], attack of the nucleophile can occur on either side to afford two products which are a pair of enantiomers. Racemization has occurred.

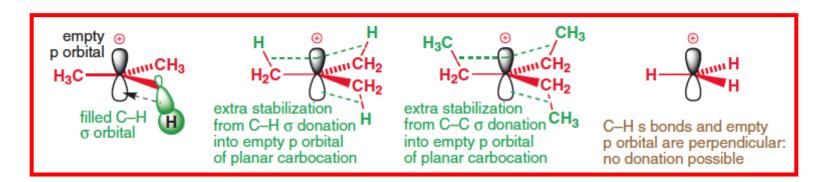


S_N1 Mechanism: Stereochemistry

- Nucleophilic substitution of each starting material by an S_N1 mechanism forms a racemic mixture of two products.
- With H₂O, a neutral nucleophile, the initial product of nucleophilic substitution (ROH₂⁺) loses a proton to form the final neutral product, ROH (Section 7.6).

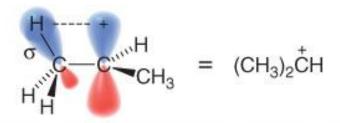
The Alkyl Substrate


- The rate of an S_N1 reaction is affected by the type of alkyl halide involved.
 - As the number of R groups on the carbon with the leaving group increases, the rate of an S_N1 reaction increases.


- 3° Alkyl halides undergo S_N1 reactions rapidly.
- 2° Alkyl halides react more slowly.
- Methyl and 1° alkyl halides do not undergo S_N1 reactions.

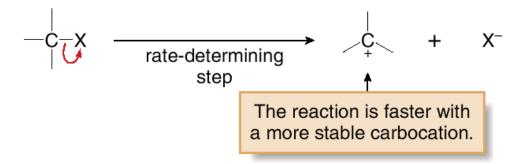
• This trend is exactly opposite to that observed in S_N2 reactions and reflects the stability of the carbocation.

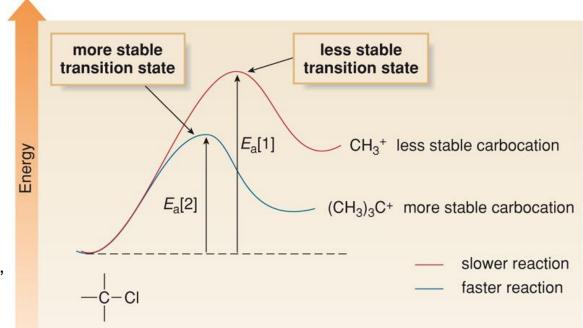
Carbocation Stability


• Alkyl groups are electron donating. Since an alkyl group has several σ bonds, each containing electron density, it is more polarizable than a hydrogen atom, and better able to donate electron density.

Carbocation Stability

- Hyperconjugation is the spreading out of charge by the overlap of an empty p orbital with an adjacent σ bond. This overlap (hyperconjugation) delocalizes the positive charge on the carbocation, spreading it over a larger volume, and this stabilizes the carbocation.
- Example: CH₃+ cannot be stabilized by hyperconjugation, but (CH₃)₂CH+ can.


This carbocation has no opportunity for orbital overlap with the vacant *p* orbital.



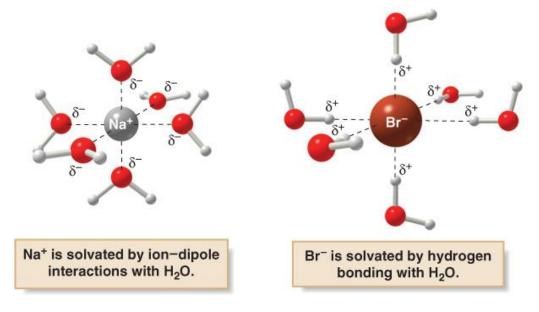
Overlap of the C-H σ bond with the adjacent vacant p orbital stabilizes the carbocation.

The Hammond Postulate

Thus, the rate of an S_N1 reaction increases as the stability of the carbocation increases.

 Since CH₃⁺ is less stable than (CH₃)₃C⁺, E_a[1] > E_a[2], and Reaction [1] is slower.

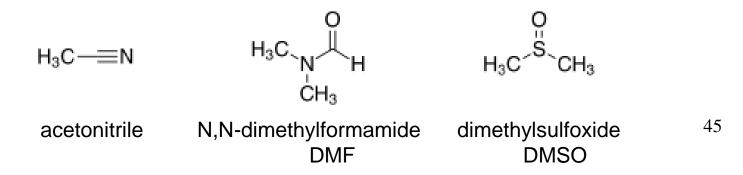
S_N1 Mechanism


Characteristic	Result		
Kinetics	 First-order kinetics; rate = k[RX] 		
Mechanism	Two steps		
Stereochemistry	 Trigonal planar carbocation intermediate Racemization at a single stereogenic center 		
Identity of R	 More substituted halides react fastest. Rate: R₃CX > R₂CHX > RCH₂X > CH₃X 		

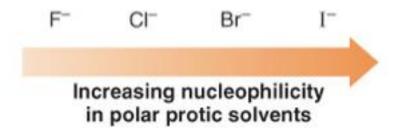
S_N1 Mechanism

- Leaving group: the same reactivity order as in S_N2 reactions.
- Nucleophile: has little effect in S_N1 reactions because it reacts after the slow step (must be nonbasic to prevent elimination) bur good nucleophiles favour S_N2 reactions.
- Solvent: polar solvents favor the reaction by stabilizing the intermediate carbocation (Hammond postulate).

	ethanol	40% water/60% ethanol	80% water/20% ethanol	water
Relative reactivity	1	100	14000	100000


The Solvent

Protic solvents slow down SN₂ reactions

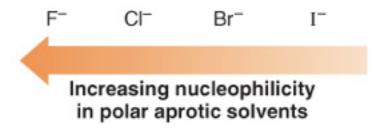

H₂O CH₃OH CH₃CH₂OH (CH₃)₃COH CH₃COOH methanol ethanol tert-butanol acetic acid

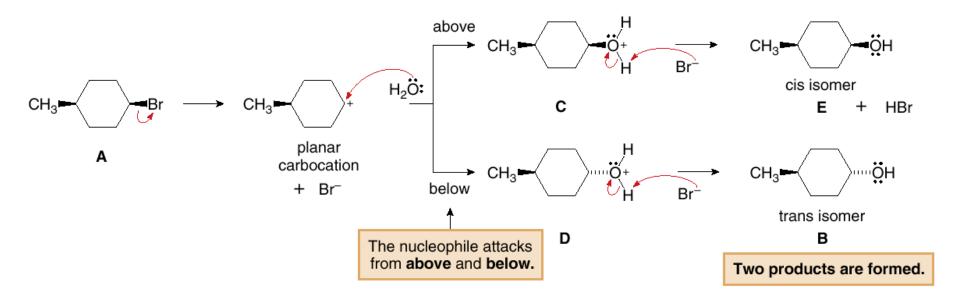
SN₂ reations are best carried out in polar aprotic solvents

Solvent Effects on Nucleophilicity

 Hydrogen bonds are stronger with small anions In polar protic solvents:

In polar aprotic solvents, nucleophilicity parallels basicity.



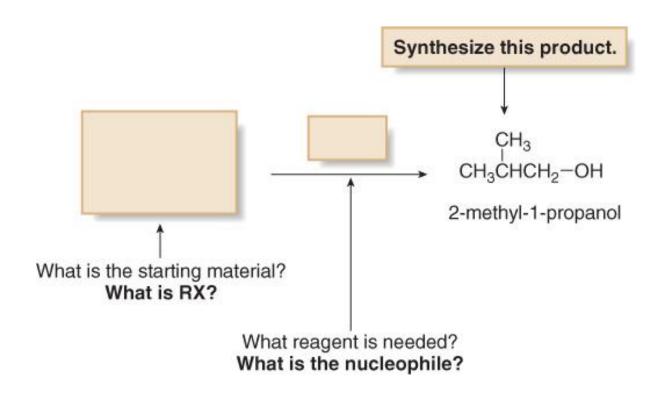

Table 2. Properties of some common solvents

Solvent	Chemical formula	Water solubility in solvent	Dielectric constant (x)	Dipole moment (μ)
		percentage		debye
Pentane	C ₅ H ₁₂	0.01	1.84	_*
Hexane	C ₆ H ₁₄	0.01	1.88	_
Cyclohexane	G ₆ H ₁₂	0.012	2.02	_
Carbon disulfide	CS ₂	0.005	2.64	0
Carbon tetrachloride	CCI.	0.008	2.24	0
Benzene	C ₆ H ₆	0.058	2.30	0
Diethyl ether	(C ₂ H ₅) ₂ O	1.3	4.3	1.15
Chloroform	CHCI ₃	0.07	4.8	1.01
Methyl chloride	CH ₂ Cl ₂	0.17	8.9	1.60
Tetrahydrofuran	C ₄ H ₈ O	miscible	7.6	1.63
Acetone	CH ₃ COCH ₃	miscible	_	2.88
Dioxane	C ₄ H ₈ O ₂	miscible	2.2	0
Ethyl acetate	CH,COOC,H,	9.8	6.0	1.78
1-Pentanol	C ₅ H ₁₁ OH	10.0	15.0	_
Acetonitrile	CH ₃ CN	miscible	_	3.92
1-Propanol	C ₃ H ₈ OH	miscible	20.3	1.68
Dimethylsulfoxide	(CH ₃) ₂ SO	miscible	4.7	3.96
Dimethylformamide	HCON(CH ₃) ₂	miscible	36.7	3.82
Methanol	CH ₃ OH	miscible	32.7	1.70
Water	H₂O	_	80.0	1.85

Predicting the Mechanism

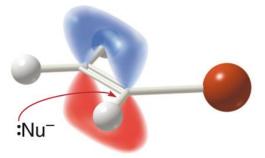
Alkyl halide	Mechanism	Other factors
CH ₃ X	S _N 2	Favored by
RCH ₂ X (1°)		 strong nucleophiles (usually a net negative charge)
		polar aprotic solvents
R ₃ CX (3°)	S _N 1	Favored by
		 weak nucleophiles (usually neutral)
		polar protic solvents
R ₂ CHX (2°)	S _N 1 or S _N 2	The mechanism depends on the conditions.
		 Strong nucleophiles favor the S_N2 mechanism over the S_N1 mechanism. For example, RO⁻ is a stronger nucleophile than ROH, so RO⁻ favors the S_N2 reaction and ROH favors the S_N1 reaction.
		 Protic solvents favor the S_N1 mechanism and aprotic solvents favor the S_N2 mechanism. For example, H₂O and CH₃OH are polar protic solvents that favor the S_N1 mechanism, whereas acetone [(CH₃)₂C=O] and DMSO [(CH₃)₂S=O] are polar aprotic solvents that favor the S_N2 mechanism.

Predicting the Mechanism



Organic Synthesis

	Nucleophile (:Nu ⁻)	Product	Name
Oxygen compounds	⁻ОН	R-OH	alcohol
	-OR'	R-OR'	ether
	-0 C R	R-O'C'R'	ester
Carbon compounds	-CN	R-CN	nitrile
	_:C≡C-H	R-C≡C-H	alkyne
Nitrogen compounds	N ₃ -	R-N ₃	azide
	:NH ₃	R-NH ₂	amine
Sulfur compounds	-SH	R-SH	thiol
	-SR'	R-SR'	sulfide


Organic Synthesis

 To carry out the synthesis of a particular compound, we must think backwards, and ask ourselves the question: What starting material and reagents are needed to make it?

Vinyl Halides

a. Vinyl halides and the S_N2 mechanism: Backside attack of the nucleophile is not possible.

Backside attack would force the nucleophile to approach in the plane of the double bond.

b. Vinyl halides and the S_N1 mechanism: Heterolysis of the C-X bond forms a very unstable carbocation, making the ratedetermining step very slow.

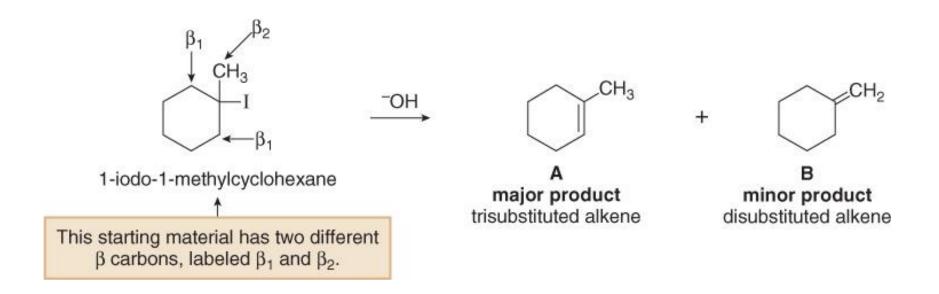
Aryl Halides

Aryl Halides

- Aromatic compounds are electron rich.
- They react only when strong –R substituents are present.
- The order of reactivity is F>Cl>Br>I

Eliminations

Chapter 11
Organic Chemistry, 8th Edition
John McMurry

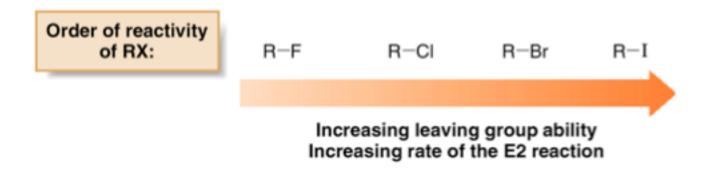

General Features of Elimination

 Alkyl halides undergo elimination reactions with Brønsted–Lowry bases. The elements of HX are lost and an alkene is formed.

Elimination Mechanisms

The Zaitsev (Saytzeff) Rule

 The major product is the more stable product—the one with the more substituted double bond.

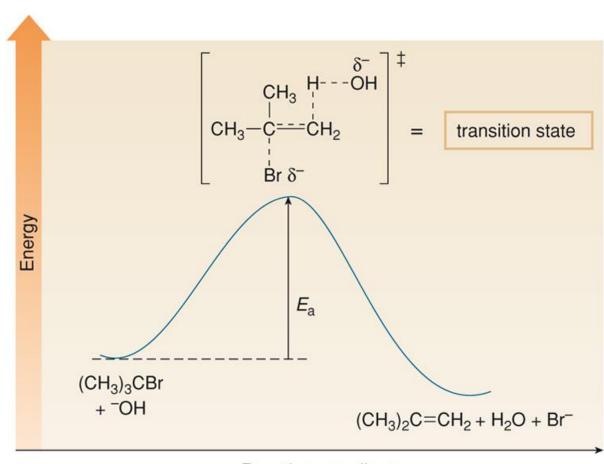


• A reaction is regioselective when it yields predominantly or exclusively one constitutional isomer when more than one is possible. Thus, elimination reactions are regioselective.

64

Leaving Groups in Elimination Reactions

Elimination reactions are faster with good leaving groups:



• The most common mechanism for dehydrohalogenation is the E2 mechanism.

- The base OH removes a proton from the β carbon, forming H₂O (a by-product).
- The electron pair in the β C-H bond forms the new π bond.
- The leaving group Br comes off with the electron pair in the C-Br bond.
- The reaction is concerted—all bonds are broken and formed in a single step.
- It exhibits second-order kinetics, and both the alkyl halide and the base appear in the rate equation, i.e.,

rate =
$$k[(CH_3)_3CBr][-OH]$$

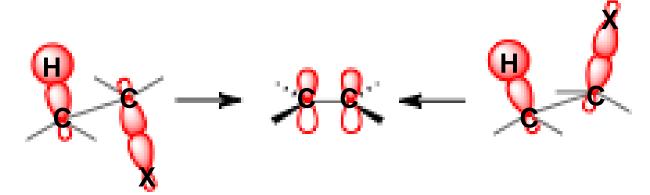
$$(CH_3)_3CBr + {}^-OH \rightarrow$$

 $(CH_3)_2C=CH_2 + H_2O + Br^-$

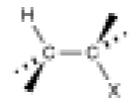
Reaction coordinate

- E2 reactions are favoured by strong negatively charged bases, such as HO⁻ and its alkyl derivatives, RO⁻, called alkoxides.
- Potassium t-butoxide is a strong, non-nucleophilic base.

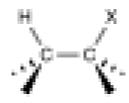
Na^{+ -}OH sodium hydroxide

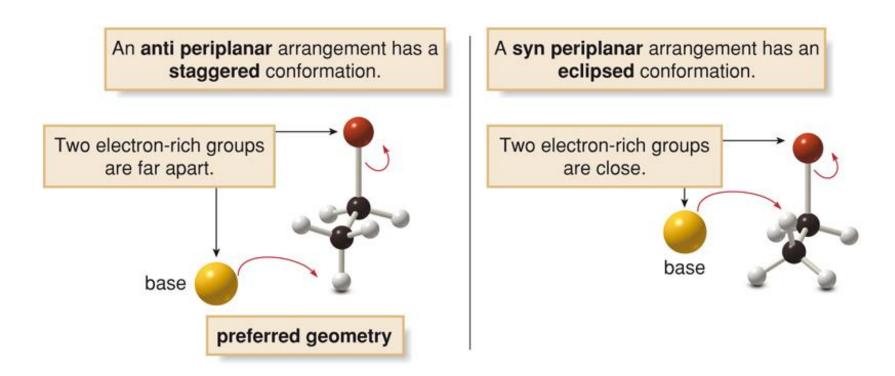

K⁺ OH potassium hydroxide

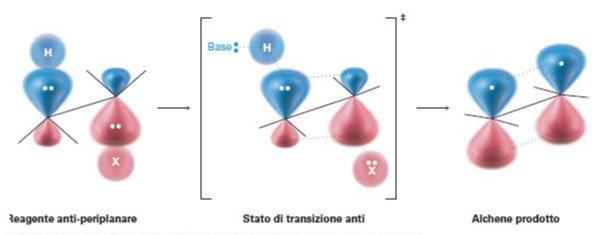
Na⁺ OCH₃ sodium methoxide

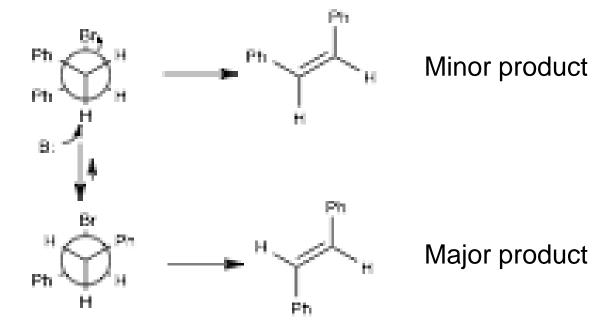

Na^{+ -}OCH₂CH₃ sodium ethoxide

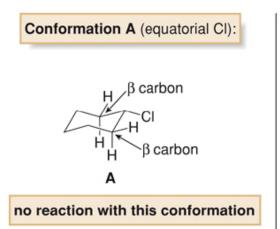
 K^{+} OC(CH₃)₃ potassium *tert*-butoxide


• For efficient overlap the C—H and C—X bonds must be coplanar.


anti periplanar


dihedral angle: 180° staggered favoured syn periplanar


dihedral angle: 0° eclipsed disfavoured


• E2 elimination occurs most often in the anti periplanar geometry.

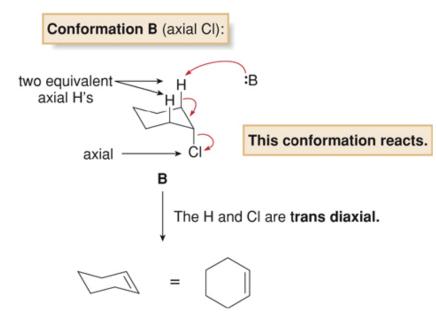
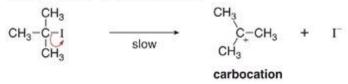


Figura 11.18 Lo stato di transizione per la reazione E2 di un alogenuro alchilico con una base. La sovrapposizione degli orbitali *p* che si formano nello stato di transizione richiede che il reagente abbia geometria periplanare.

• The E2 reaction is stereoselective because one stereoisomer is formed preferentially.

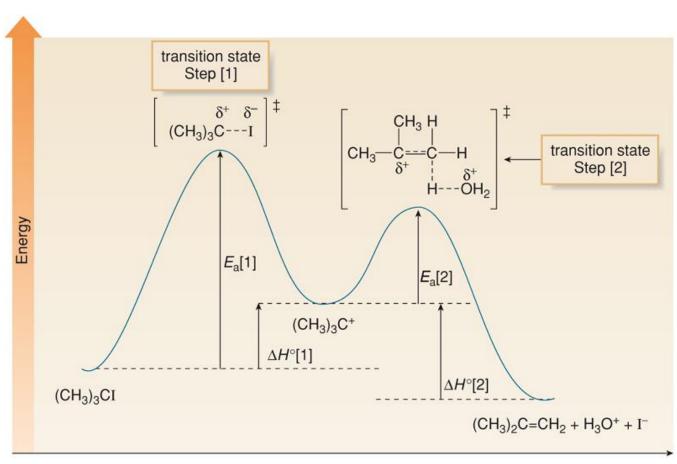

$$CI = CH_3 = CH_3$$

$$CH_3 = CH$$

$$CH_3$$

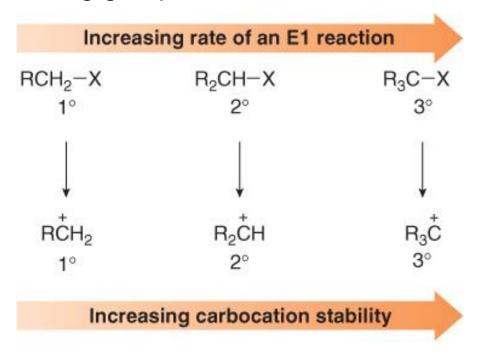
E2 Reactions and Alkyne Synthesis

Step [1] The C-I bond is broken.

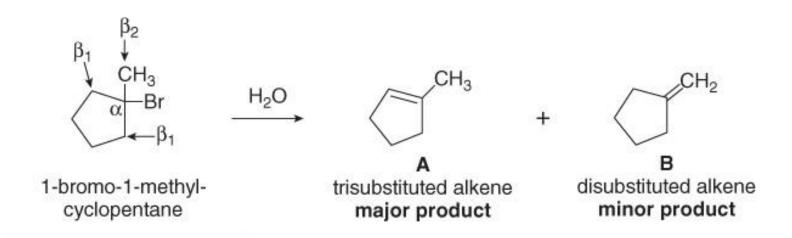


 Heterolysis of the C-I bond forms an intermediate carbocation. This is the same first step as the S_N1 mechanism. It is responsible for the first-order kinetics because it is rate-determining.

Step [2] A C-H bond is cleaved and the π bond is formed.


- A base (such as H₂O or Γ) removes a proton from a carbon adjacent to the carbocation (a β carbon). The electron pair in the C-H bond is used to form the new π bond.
- E1 reactions exhibit first-order kinetics: $v = k[(CH_3)_3I]$
- E1 reactions frequently accompany Sn1 reactions

$$(CH_3)_3CI + H_2O \rightarrow (CH_3)_2C = CH_2 + H_3O^+ + I^-$$



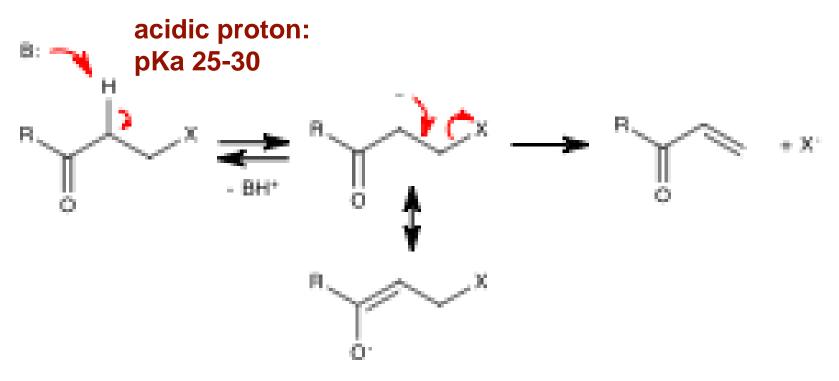
Reaction coordinate

 The rate of an E1 reaction increases as the number of R groups on the carbon with the leaving group increases.

 E1 reactions are regioselective, favoring formation of the more substituted, more stable alkene (Zaitsev's rule)

	E2	E1
Mechanism	One step	Two steps
Kinetics	Second order	First order
Substrate	1ry, 2ry and 3ry halides	3ry and 2ry halides
Leaving group	Favored by good leaving groups	Favored by good leaving groups
Base	Favored by strong bases	Favored by weak bases (H ₂ O, ROH)
Stereochemistry	Antiperiplanar- stereoselective	Favors the most stable alkene
Solvent	Favored by dipolar aprotic solvents	Favored by polar protic solvents.

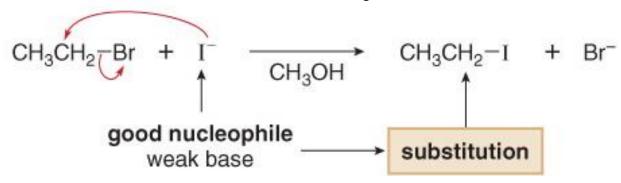
When is the Mechanism E1 or E2?


E2 conditions: 1M NaOEt, EtOH, 100 °C

E1 conditions: 0.01M NaOEt, 80% EtOH, 160 °C

$$\bigcirc C_{CH_3} - \bigcirc C_{CH_3} \longrightarrow \bigcirc C_{H_3} + \bigcirc$$

When is the Mechanism E1 or E2?


Figura 11.22 Reazioni di eliminazione del mentile cloruro. Condizioni E2 (1), base forte in etanolo 100%) portano al 2-mentene tramite un'eliminazione anti—periplanare, mentre condizioni E1 (2) base molto diluita in etanolo acquoso 80%) portano ad una miscela di 2-mentene e 3-mentene.

carbanion stabilized by delocalization

Substitution vs Elimination

Good nucleophiles that are weak bases favor substitution over elimination.
 These include I⁻, Br⁻, HS⁻, CN, and CH₃COO⁻.

 Bulky nonnucleophilic bases (KOC(CH₃)₃) favor elimination over substitution.

$$H - C - CH_2 - Br$$
 \longrightarrow $CH_2 = CH_2$ + $(CH_3)_3 COH$ + KBr
 $K^+ - OC(CH_3)_3$
strong, nonnucleophilic base \longrightarrow elimination

Substitution and Elimination

Alkyl halide	S _N 2	S _N 1	E2	E1	E1cb
methyl	yes				
primary	with good, weakly basic nucleophiles		with strong, non- nucleophilic bases		yes
secondary allylic benzylic	with good nucleophiles in polar aprotic solvents	with weak nucleophiles in protic solvents	with strong bases in aprotic solvents	with weak bases in protic solvents	yes
tertiary		with non basic nucleophiles	with strong bases	with weak bases	yes

Reverse of Polarity. Organometallic Compounds

Examples:

Reverse of Polarity. Organometallic Compounds

strong bases:

strong nucleophiles: