

Il progredire di una reazione chimica può essere seguito misurando uno dei parametri chimico – fisici del sistema che si sta considerando:

- Temperatura
- pH
- · Conducibilità elettrica
- Colore (assorbimento della luce ad una determinata lunghezza d'onda)
- · Pesata di un prodotto poco solubile
- Ecc. ecc. ecc.

Calore di reazione

Reazione esotermiche

Sviluppano calore

Formazione di composti molto stabili

Es. Combustione

Reazione endotermiche

Assorbono calore

Consumo di composti molto stabili

Es. Sacchetti ghiaccio istantaneo

STECHIOMETRIA

Misura della temperatura

Avete a disposizione:

- Matraccio 50.00 o 100.00 mL
- Becker da 50 o 100 mL
- Becker da 25 mL
- Buretta
- Cilindro da 25 o 50 mL
- Termometro
 - Ca(ClO)₂ 0.5 M (già pronta)
 - $Na_2S_2O_3$ (PM = 158.11 g/mol)
 - NaOH (PM = 40.00 g/mol)

STECHIOMETRIA

- Step 1: preparazione dei reagenti
- 1. Ca(ClO)₂ 0.5 M già pronto (sotto cappa)
- 2. Na₂S₂O₃ 0.5 M + NaOH 1.1 M: da preparare per pesata in matraccio da 100 mL.

$m = V \times M \times MM$

m è la massa teorica del composto da pesare:

V è il volume di soluzione da preparare espresso in litri (L);

M è la molarità desiderata per la soluzione da preparare (mol/L); MM è la massa molecolare (in g/mol) della sostanza da pesare.

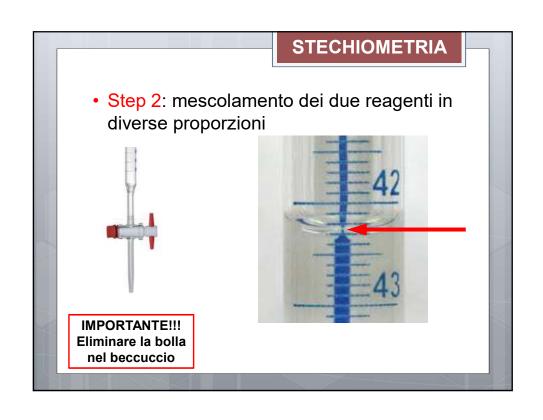
- Step 1: preparazione dei reagenti
- Calcolare le quantità teoriche dei due reagenti da mettere nello stesso matraccio (Na₂S₂O₃ + NaOH)
- 2. Pesare esattamente circa i due reagenti ponendoli in uno stesso becker da 100mL.
- 3. Aggiungere una quantità di acqua distillata corrispondente a circa il 30% del volume finale e mescolare con una bacchetta fino a completa dissoluzione dei solidi.

Dissoluzione di NaOH è fortemente esotermica!!!

Attenzione a schizzi (soluzione caustica) e raffreddare bene la soluzione prima di proseguire.

- 4. Trasferire quantitativamente la soluzione nel matraccio.
- 5. Portare a volume.
- 6. Avvisare docente o tutor prima di proseguire.


STECHIOMETRIA


 Step 2: mescolamento dei due reagenti in diverse proporzioni

> Cilindro 10 o 25/50 mL

Buretta

V Ca(CIO) ₂	V Na ₂ S ₂ O ₃ + NaOH
5.0	25.0
10.0	20.0
15.0	15.0
20.0	10.0
22.5	7.5
25.0	5.0
27.5	2.5

 Step 2: mescolamento dei due reagenti in diverse proporzioni

Per ogni mescola, mettere il reagente con volume maggiore nel becker da 50 mL e misurare la temperatura della soluzione (T_{iniziale}).

Mettere nel becker più piccolo il reagente con volume minore.

Aggiungere il secondo reagente il più velocemente possibile.

Mescolare attentamente il sistema e misurare velocemente la temperatura con il termometro.

Osservare l'andamento della temperatura e registrare il valore massimo raggiunto (T_{finale}).

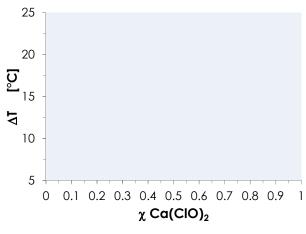
$$\Delta T = T_{\text{finale}} - T_{\text{iniziale}}$$

STECHIOMETRIA

• Step 3: Analisi dei dati

✓ Soluzione di **ipoclorito di calcio** (già pronta)

DA UTILIZZARE SOTTO CAPPA

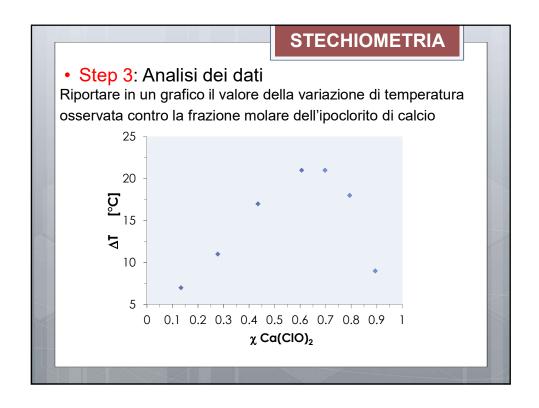

Concentrazione delle soluzioni utilizzate in laboratorio:

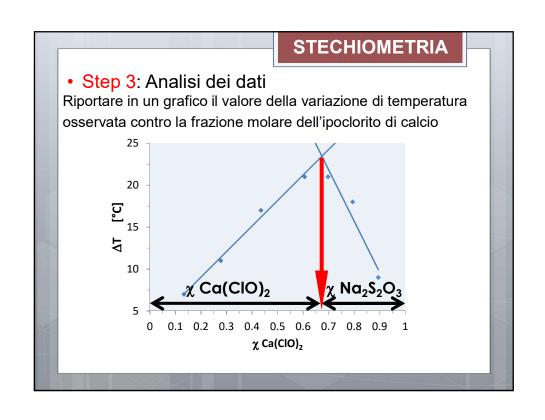
Ca(CIO)₂: 0.XXX M

Na₂S₂O₃: da calcolare

• Step 3: Analisi dei dati

Riportare in un grafico il valore della variazione di temperatura osservata contro la frazione molare dell'ipoclorito di calcio


STECHIOMETRIA


• Step 3: Analisi dei dati

Riportare in un grafico il valore della variazione di temperatura osservata contro la frazione molare dell'ipoclorito di calcio

Frazione molare = numero di moli del reagente A su numero di moli totali:

$$\chi_{A} = \frac{n_{\text{reag. A}}}{n_{\text{reag. A}} + n_{\text{reag. B}}}$$

• Step 3: analisi dei dati

mol Ca(CIO)₂: mol Na₂S₂O₃ = χ Ca(CIO)₂: χ Na₂S₂O₃

 $mol Ca(CIO)_2 : mol Na_2S_2O_3 = x : y$

 $\mathbf{x} \operatorname{Ca}(\operatorname{CIO})_2 + \mathbf{y} \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3 + \mathbf{z} \operatorname{NaOH}$

Per conoscere z bisogna bilanciare la reazione.

STECHIOMETRIA

• Step 3: analisi dei dati

Riduzione

Ossidazione

$$S_2O_3^{=} \longrightarrow SO_3^{=} / SO_4^{=} / S_4O_6^{=}$$

Bilanciare la reazione redox <u>in forma molecolare</u> per ognuno dei possibili prodotti di ossidazione e verificare quale corrisponde ai coefficienti stechiometrici osservati sperimentalmente.

- Step 3: analisi dei dati
- SO₃⁼ / SO₄⁼ / S₄O₆⁼ : ognuno di questi anioni produce un sale poco solubile in presenza di ioni Ca²⁺. Individuare quale dei prodotti di reazione è responsabile dell'opalescenza osservata.
- Per ogni mescola, individuare il reagente limitante.
- Compilare e consegnare la scheda dell'esperienza (moodle), allegando grafico, calcoli effettuati per tutti i passaggi e risposte alle domande.

STECHIOMETRIA

Smaltimento dei rifiuti

• Ca(CIO)₂ H272 Può aggravare un incendio; comburente

H302 Nocivo se ingerito.

H314 Provoca gravi ustioni cutanee e gravi lesioni oculari.

H400 Molto tossico per gli organismi acquatici.

Na₂S₂O₃ Non presenta particolari problemi di tossicità

NaOH H290 Può essere corrosivo per i metalli

H314 Provoca gravi ustioni cutanee e gravi lesioni oculari

Tutte le miscele dopo reazione e tutte le soluzioni avanzate vanno raccolte nelle bottiglie per soluzioni di metalli pesanti.