

The "Metallocene Revolution"¹

Features:

homogeneous catalysts: 100 times more active than the conventional Ziegler-Natta (300 t PE/g Zr h);

they catalyze the stereospecific polymerization of prochiral terminal alkenes;

the synthesized polyolefins are featured by a narrow molecular weight distribution: Single Site Catalysts;

Solution is branched poyolefins featured by branches of different length regularly distributed along the main chain are also obtained;

these catalysts can be heterogenized.

¹H. G. Halt et al., *Chem. Rev.* **2000**, *100*, 1205.

Metallocene Catalysts are very versatile

Reaction conditions:
$$T = 90 \degree C$$
, $P_{ethylene} = 8$ bar,
[A1]/[Zr] = 10 000,
solvent = toluene

Productivity: $5 \cdot 10^6$ g PE/g Zr \cdot h \cdot bar M_n = 122 000

T. Masuda, Catalysis in Precision Polymerisation 1997, Ed. Wiley, pg. 18.

Ethylene polymerization: Effect of the aromatic ring

Reaction conditions: T = 60 °C; solvent: *n*-pentane; $P_{ethylene} = 10.0$ bar; Cat. Prec. **1**, **2**, **4** [A1]/[Zr] = 1000; Cat. Prec. **3**, **5** [A1]/[Zr] = 2500.

Ethylene polymerization: Effect of

substituent position

substituent nature

Reaction conditions: T = 10 °C; solvent: *n*-pentane; $P_{ethylene} = 10.0$ bar; [A1]/[Zr] = 1000.

Ethylene polymerization: Effect of substituent position in ansa-metallocenes

Reaction conditions: $T = 60^{\circ}C;$ solvent: *n*-pentane; $P_{ethylene} = 10.0 \text{ bar};$ [A1]/[Zr] = 20000.

Frontier orbitals in [Zr(Cp)₂]²⁺

Frontier orbitals in [Zr(Cp)₂R]⁺

 d_{σ} acceptor orbital for alkene binding

Orbital of d_{π} symmetry. Absence of back-bonding for d^0 systems

coordination gap aperture, α , and characteristic angles in *ansa*-metallocenes

Ethylene polymerization: Effect of ligand bite angle

Reaction conditions: $T = 60 \degree C$; solvent: *n*-pentane; $P_{ethylene} = 10.0$ bar; [A1]/[Zr] = 20000.

The "TOP FOUR" Catalysts¹

¹H. G. Alt et al., *Chem. Rev.* **2000**, *100*, 1205.

Methylalumoxane: MAO¹

¹T. J. Marks et al., *Chem. Rev.* **2000**, *100*, 1391.

MAO¹: structural features

$$-Al(Me) - O -]_n \quad n = 5 - 20$$

$$H_3C$$
 H_3C
 H_3C

Multiple equilibria:

 $+AI(Me)O_{n}^{+} \cdot x AIMe_{3} \longrightarrow +AI(Me)O_{n}^{+} \cdot (x-y) AIMe_{3} + y AIMe_{3}$ "associated" "free"

¹T. J. Marks et al., *Chem. Rev.* **2000**, *100*, 1391.

MAO¹: the activation process $Cp_2ZrCl_2 + MAO \implies Cp_2ZrCl_2 MAO$ *Complexation* $Cp_2ZrCl_2 \cdot MAO \longrightarrow Cp_2Zr(CH_3)Cl + Al - 0$ Alkylation Abstraction $Cp_2Zr(CH_3)Cl + MAO \implies Cp_2Zr(CH_3)Cl \cdot MAO$ $[A1]/[Zr] \ge 1000$ $\left[Cp_2Zr(CH_3)\right]^+$ $\left[Cl-MAO\right]^ Cp_2ZrMe_2 + Me_3Al$ Cp₂ZrMe⁺AIMe₄⁻

¹T. J. Marks et al., *Chem. Rev.* **2000**, *100*, 1391.

Lewis acids as activators: Perfluoroaryl boranes

THE ION PAIR¹

¹A. Macchioni *Chem. Rev.* **2006**, *105*, 2039.

OSIP = OUTER-SPHERE ION PAIR

ISIP = INNER-SPHERE ION PAIR

Possible ion pairs in polymerization reactions

Experimental evidences for the ione pair formation NMR Spectroscopy in solution

Accepted mechanism for the growth of polymer chain

Overall mechanism for catalyst activation and growth of polymer chain

Activation process: a comparison

MAO as activation agent

Boranes as activation agents

Ion pair effect in polymerization reactions

the catalytic system is a two component system: the precatalyst that is a metallocene organometallic species and the catalyst activator that is an organometallic compound based on Al or on B;

the two components react each other leading to the ion pair:

It is the catalyst *resting state*.

ISIP

Effect of the anion in polymerization reactions

Catalytic activity increases on decreasing the coordination capability of the anion.

[(CGC)M(Me)][X]

When $X^- = MeB(C_6F_5)_3^-$

when M = Zr: inactive system

when M = Ti: slightly active system

When $X^- = MePBB^-$

when M = Zr: active system: $v = 10^5$

when M = Ti: the system is 70 times more active than the previous one

Drawbacks of metallocene catalysts¹

They are easily poisoned by compounds containing heteroatoms;

they are very expensive and are synthesized according to a multistep process;

***** the use of **MAO**:

- i. in large excess with respect to the metal;
- ii. it has a relatively high cost, due to the high cost of $AIMe_3$;
- iii. high residual content of alumina in the final product;
- iv. intrinsic danger due to the use of extrimely pyrophoric $AlMe_3$.

¹P. Chen et al., *Helv. Chim. Acta* **2002**, *85*, 4337.