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CHAPTER5

In 1924, a French graduate student, Louis de Broglie,1 proposed in his doctoral disser-
tation that the dual—i.e., wave-particle—behavior that was by then known to exist for

radiation was also a characteristic of matter, in particular, electrons. This suggestion was
highly speculative, since there was yet no experimental evidence whatsoever for any
wave aspects of electrons or any other particles. What had led him to this seemingly
strange idea? It was a “bolt out of the blue,” like Einstein’s “happy thought” that led to
the principle of equivalence (see Chapter 2). De Broglie described it with these words:

After the end of World War I, I gave a great deal of thought to the theory of

quanta and to the wave-particle dualism. . . . It was then that I had a sudden

inspiration. Einstein’s wave-particle dualism was an absolutely general phe-

nomenon extending to all physical nature.2

Since the visible universe consists entirely of matter and radiation, de Broglie’s
hypothesis is a fundamental statement about the grand symmetry of nature. (There
is currently strong observational evidence that ordinary matter makes up only about
4 percent of the visible universe. About 22 percent is some unknown form of invisible
“dark matter,” and approximately 74 percent consists of some sort of equally myste-
rious “dark energy.” See Chapter 13.)

5-1 The de Broglie Hypothesis
De Broglie stated his proposal mathematically with the following equations for
the frequency and wavelength of the electron waves, which are referred to as the
de Broglie relations:

5-1

5-2

where E is the total energy, p is the momentum, and is called the de Broglie wave-
length of the particle. For photons, these same equations result directly from
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λ

Figure 5-1 Standing waves
around the circumference of a
circle. In this case the circle
is in circumference. If the
vibrator were, for example, a
steel ring that had been
suitably tapped with a
hammer, the shape of the ring
would oscillate between the
extreme positions represented
by the solid and broken lines.
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Einstein’s quantization of radiation E � hƒ and Equation 2-31 for a particle of zero
rest energy E � pc as follows:

By a more indirect approach using relativistic mechanics, de Broglie was able to
demonstrate that Equations 5-1 and 5-2 also apply to particles with mass. He then
pointed out that these equations lead to a physical interpretation of Bohr’s quantiza-
tion of the angular momentum of the electron in hydrogenlike atoms, namely, that the
quantization is equivalent to a standing-wave condition. (See Figure 5-1.) We have

5-3

The idea of explaining discrete energy states in matter by standing waves thus seemed
quite promising.

De Broglie’s ideas were expanded and developed into a complete theory by
Erwin Schrödinger late in 1925. In 1927, C. J. Davisson and L. H. Germer verified
the de Broglie hypothesis directly by observing interference patterns, a characteristic
of waves, with electron beams. We will discuss both Schrödinger’s theory and the
Davisson-Germer experiment in later sections, but first we have to ask ourselves why
wavelike behavior of matter had not been observed before de Broglie’s work. We can
understand why if we first recall that the wave properties of light were not noticed
either until apertures or slits with dimensions of the order of the wavelength of light
could be obtained. This is because the wave nature of light is not evident in experi-
ments where the primary dimensions of the apparatus are large compared with the
wavelength of the light used. For example, if A represents the diameter of a lens
or the width of a slit, then diffraction effects3 (a manifestation of wave properties)
are limited to angles around the forward direction ( ) where In
geometric (ray) optics so too. However, if a characteristic� � sin � S 0,
>AS 0,

sin � � 
>A.� � 0°�

2�r �
nh
mv

�
nh
p

� n
 � circumference of orbit

mvr � nU �
nh

2�
  for  n � integer

E � pc � hf �
hc




Louis V. de Broglie,
who first suggested
that electrons might
have wave properties.
[Courtesy of
Culver Pictures.]
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dimension of the apparatus becomes of the order of (or smaller than) the wavelength
of light passing through the system, then In that event is readily
observable, and the wavelike properties of light become apparent. Because Planck’s
constant is so small, the wavelength given by Equation 5-2 is extremely small for any
macroscopic object. This point is among those illustrated in the following section.

5-2 Measurements of Particle Wavelengths
Although we now have diffraction systems of nuclear dimensions, the smallest-scale
systems to which de Broglie’s contemporaries had access were the spacings between
the planes of atoms in crystalline solids, about 0.1 nm. This means that even for an ex-
tremely small macroscopic particle, such as a grain of dust ( ) moving
through air with the average kinetic energy of the atmospheric gas molecules, the small-
est diffraction systems available would have resulted in diffraction angles only of the
order of 10�10 radian, far below the limit of experimental detectability. The small mag-
nitude of Planck’s constant ensures that will be smaller than any readily accessible
aperture, placing diffraction beyond the limits of experimental observation. For objects
whose momenta are larger than that of the dust particle, the possibility of observing
particle, or matter waves, is even less, as the following example illustrates.

EXAMPLE 5-1 De Broglie Wavelength of a Ping-Pong Ball What is the de Broglie
wavelength of a Ping-Pong ball of mass 2.0 g after it is slammed across the table
with speed 5 m s?

SOLUTION

This is 17 orders of magnitude smaller than typical nuclear dimensions, far below
the dimensions of any possible aperture.

The case is different for low-energy electrons, as de Broglie himself realized.
At his soutenance de thèse (defense of the thesis), de Broglie was asked by Perrin4

how his hypothesis could be verified, to which he replied that perhaps passing
particles, such as electrons, through very small slits would reveal the waves.
Consider an electron that has been accelerated through V0 volts. Its kinetic energy
(nonrelativistic) is then

Solving for p and substituting into Equation 5-2,

Using and mc2 � 0.511 � 106 eV, we obtain

5-4

The following example computes an electron de Broglie wavelength, giving a measure
of just how small the slit must be.
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Electron gun

Ni crystal

Ionization
chamber

Figure 5-2 The Davisson-
Germer experiment. 
Low-energy electrons
scattered at angle from
a nickel crystal are detected
in an ionization chamber.
The kinetic energy of the
electrons could be varied by
changing the accelerating
voltage on the electron gun. 

#

EXAMPLE 5-2 De Broglie Wavelength of a Slow Electron Compute the de Broglie
wavelength of an electron whose kinetic energy is 10 eV.

SOLUTION

1. The de Broglie wavelength is given by Equation 5-2:

2. Method 1: Since a 10-eV electron is nonrelativistic, we can use the classical
relation connecting the momentum and the kinetic energy:

or

3. Substituting this result into Equation 5-2:

4. Method 2: The electron’s wavelength can also be computed from Equation 5-4
with V0 � 10 V:

Remarks: Though this wavelength is small, it is just the order of magnitude of the
size of an atom and of the spacing of atoms in a crystal.

The Davisson-Germer Experiment

In a brief note in the August 14, 1925, issue of the journal Naturwissenschaften,
Walter Elsasser, at the time a student of J. Franck’s (of the Franck-Hertz experiment),
proposed that the wave effects of low-velocity electrons might be detected by scatter-
ing them from single crystals. The first such measurements of the wavelengths of elec-
trons were made in 1927 by C. J. Davisson5 and L. H. Germer, who were studying
electron reflection from a nickel target at Bell Telephone Laboratories, unaware of
either Elsasser’s suggestion or de Broglie’s work. After heating their target to remove
an oxide coating that had accumulated during an accidental break in their vacuum
system, they found that the scattered electron intensity as a function of the scattering
angle showed maxima and minima. The surface atoms of their nickel target had, in
the process of cooling, formed relatively large single crystals, and they were obser-
ving electron diffraction. Recognizing the importance of their accidental discovery,
they then prepared a target consisting of a single crystal of nickel and extensively
investigated the scattering of electrons from it. Figure 5-2 illustrates their experi-
mental arrangement. Their data for 54-eV electrons, shown in Figure 5-3, indicate a
strong maximum of scattering at Consider the scattering from a set of Bragg# � 50°.

� 0.39 nm
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Figure 5-3 Scattered intensity vs. detector angle for 54-eV electrons. (a) Polar plot of the
data. The intensity at each angle is indicated by the distance of the point from the origin.
Scattering angle is plotted clockwise starting at the vertical axes. (b) The same data plotted
on a Cartesian graph. The intensity scales are arbitrary but the same on both graphs. In each
plot there is maximum intensity at as predicted for Bragg scattering of waves having
wavelength [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier,
© Nobel Foundation, 1964).]
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Figure 5-4 Scattering of
electrons by a crystal.
Electron waves are strongly
scattered if the Bragg
condition is
met. This is equivalent to
the condition n
 � D sin#.

n
 � 2d sin�

planes, as shown in Figure 5-4. The Bragg condition for constructive interference is
The spacing of the Bragg planes d is related to the spacing

of the atoms D by thus

or
5-5

where is the scattering angle.
The spacing D for Ni is known from x-ray diffraction to be 0.215 nm. The wave-

length calculated from Equation 5-5 for the peak observed at by Davisson
and Germer is, for n � 1,

The value calculated from the de Broglie relation for 54-eV electrons is


 �
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(54)1>2 � 0.167 nm


 � 0.215 sin 50° � 0.165 nm
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# � 2�

n
 � D sin#

n
 � 2D sin� cos� � D sin2�

d � D sin �;
n
 � 2d sin� � 2d cos�.



The agreement with the experimental observation is excel-
lent! With this spectacular result Davisson and Germer then
conducted a systematic study to test the de Broglie relation
using electrons up to about 400 eV and various experimen-
tal arrangements. Figure 5-5 shows a plot of measured
wavelengths versus The wavelengths measured by
diffraction are slightly lower than the theoretical predictions
because the refraction of the electron waves at the crystal
surface has been neglected. We have seen from the photo-
electric effect that it takes work of the order of several eV
to remove an electron from a metal. Electrons entering a
metal thus gain kinetic energy; therefore, their de Broglie
wavelength is slightly less inside the crystal.6

A subtle point must be made here. Notice that the
wavelength in Equation 5-5 depends only on D, the inter-
atomic spacing of the crystal, whereas our derivation of
that equation included the interplane spacing as well. The
fact that the structure of the crystal really is essential
shows up when the energy is varied, as was done in col-
lecting the data for Figure 5-5. Equation 5-5 suggests that
a change in resulting from a change in the energy, would
mean only that the diffraction maximum would occur at
some other value of such that the equation remains
satisfied. However, as can be seen from examination of
Figure 5-4, the value of is determined by the angle

of the planes determined by the crystal structure. Thus, if there are no crystal planes
making an angle with the surface, then setting the detector at 
will not result in constructive interference and strong reflection for that value of even
though Equation 5-5 is satisfied. This is neatly illustrated by Figure 5-6, which shows
a series of polar graphs (like Figure 5-3a) for electrons of energies from 36 eV through
68 eV. The building to a strong reflection at is evident for V0 � 54 V, as we
have already seen. But Equation 5-5 by itself would also lead us to expect, for exam-
ple, a strong reflection at when V0 � 40 V, which obviously does not occur.# � 64°

# � 50°


,
# � sin�1(
>D)� � #>2 �,#

#


,

V�1>2
0 .
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40 V 48 V44 V 54 V 60 V 64 V 68 V

Figure 5-6 A series of
polar graphs of Davisson and
Germer’s data at electron
accelerating potentials from
36 V to 68 V. Note the
development of the peak at

to a maximum
when V0 � 54 V.
# � 50°
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Figure 5-5 Test of the de Broglie formula The
wavelength is computed from a plot of the diffraction
data plotted against where V0 is the accelerating
voltage. The straight line is as predicted
from These are the data referred to in
the quotation from Davisson’s Nobel lecture. (� From
observations with diffraction apparatus; same,
particularly reliable; same, grazing beams. From
observations with reflection apparatus.) [From Nobel Prize
Lectures: Physics (Amsterdam and New York: Elsevier,
© Nobel Foundation, 1964).]
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In order to show the dependence of the diffraction on the inner atomic layers,
Davisson and Germer kept the detector angle fixed and varied the accelerating voltage
rather than search for the correct angle for a given Writing Equation 5-5 as

5-6

and noting that a graph of intensity versus for a given angle 
should yield (1) a series of equally spaced peaks corresponding to successive values
of the integer n, if is an existing angle for atomic planes, or (2) no diffraction
peaks if is not such an angle. Their measurements verified the dependence upon
the interplane spacing, the agreement with the prediction being about percent.
Figure 5-7 illustrates the results for Thus, Davisson and Germer showed con-
clusively that particles with mass moving at speeds do indeed have wavelike
properties, as de Broglie had proposed.
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The diffraction pattern

formed by high-energy

electron waves scattered

from nuclei provides a means

by which nuclear radii and

the internal distribution of

the nuclear charge (the

protons) are measured.

See Chapter 11.

Figure 5-7 Variation of the
scattered electron intensity
with wavelength for
constant #. The incident
beam in this case was 10°
from the normal, the resulting
refraction causing the
measured peaks to be slightly
shifted from the positions
computed from Equation 5-5,
as explained in note 6.
[After C. J. Davisson and 
L. H. Germer, Proceedings of
the National Academy of
Sciences, 14, 619 (1928).]

Clinton J. Davisson (left) and Lester 
H. Germer at Bell Laboratories,
where electron diffraction was first observed.
[Bell Telephone Laboratories, Inc.]



192 Chapter 5 The Wavelike Properties of Particles

Here is Davisson’s account of the connection between de Broglie’s predictions
and their experimental verification:

Perhaps no idea in physics has received so rapid or so intensive development

as this one. De Broglie himself was in the van of this development, but the

chief contributions were made by the older and more experienced

Schrödinger. It would be pleasant to tell you that no sooner had Elsasser’s

suggestion appeared than the experiments were begun in New York which

resulted in a demonstration of electron diffraction — pleasanter still to say

that the work was begun the day after copies of de Broglie’s thesis reached

America. The true story contains less of perspicacity and more of chance. . .

It was discovered, purely by accident, that the intensity of elastic scattering

[of electrons] varies with the orientations of the scattering crystals. Out of

this grew, quite naturally, an investigation of elastic scattering by a single

crystal of predetermined orientation. . . Thus the New York experiment was

not, at its inception, a test of wave theory. Only in the summer of 1926, after

I had discussed the investigation in England with Richardson, Born, Franck

and others, did it take on this character.7

A demonstration of the wave nature of relativistic electrons was provided in the
same year by G. P. Thomson, who observed the transmission of electrons with ener-
gies in the range of 10 to 40 keV through thin metallic foils (G. P. Thomson, the son
of J. J. Thomson, shared the Nobel Prize in 1937 with Davisson). The experimental
arrangement (Figure 5-8a) was similar to that used to obtain Laue patterns with x rays
(see Figure 3-11). Because the metal foil consists of many tiny crystals randomly ori-
ented, the diffraction pattern consists of concentric rings. If a crystal is oriented at an
angle with the incident beam, where satisfies the Bragg condition, this crystal will
strongly scatter at an equal angle thus there will be a scattered beam making an
angle with the incident beam. Figure 5-8b and c show the similarities in patterns
produced by x rays and electron waves.

2�
�;

��

Incident
beam

Circular
diffraction
ring

(x rays or
electrons)

Al foil
target

Screen or
film

θ

θ

Figure 5-8 (a) Schematic
arrangement used for
producing a diffraction
pattern from a polycrystalline
aluminum target. 
(b) Diffraction pattern
produced by x rays of
wavelength 0.071 nm and
an aluminum foil target.
(c) Diffraction pattern
produced by 600-eV electrons
(de Broglie wavelength of
about 0.05 nm) and an alumi-
num foil target. The pattern
has been enlarged
by 1.6 times to facilitate com-
parison with (b). [Courtesy of
Film Studio, Education
Development Center.]
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(b)

(c)



The diffraction patterns

formed by helium atom

waves are used to study

impurities and defects on the

surfaces of crystals. Being a

noble gas, helium does not

react chemically with

molecules on the surface nor

“stick” to the surface.
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Diffraction of Other Particles

The wave properties of neutral atoms and molecules were first demonstrated by 
O. Stern and I. Estermann in 1930 with beams of helium atoms and hydrogen molecules
diffracted from a lithium fluoride crystal. Since the particles are neutral, there is no pos-
sibility of accelerating them with electrostatic potentials. The energy of the molecules
was that of their average thermal motion, about 0.03 eV, which implies a de Broglie
wavelength of about 0.10 nm for these molecules, according to Equation 5-2. Because
of their low energy, the scattering occurs just from the array of atoms on the surface of
the crystal, in contrast to Davisson and Germer’s experiment. Figure 5-9 illustrates the
geometry of the surface scattering, the experimental arrangement, and the results.
Figure 5-9c indicates clearly the diffraction of He atom waves.

Since then, diffraction of other atoms, of protons, and of neutrons has been ob-
served (see Figures 5-10, 5-11, and 5-12 on page 194). In all cases the measured wave-
lengths agree with de Broglie’s prediction. There is thus no doubt that all matter has
wavelike, as well as particlelike, properties, in symmetry with electromagnetic radiation.
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Figure 5-9 (a) He atoms impinge upon the surface of the LiF crystal at angle 
in Estermann and Stern’s experiment). The reflected beam also makes the same angle with
the surface but is also scattered at azimuthal angles relative to an axis perpendicular to
the surface. (b) The detector views the surface at angle but can scan through the angle 
(c) At angle where the path difference ( ) between adjacent “rays” is constructive
interference, i.e., a diffraction peak, occurs. The n � 1 peaks occur on either side of the 
n � 0 maximum.
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Figure 5-10 Diffraction pattern produced by 0.0568-eV
neutrons (de Broglie wavelength of 0.120 nm) and a
target of polycrystalline copper. Note the similarity in the
patterns produced by x rays, electrons, and neutrons.
[Courtesy of C. G. Shull.]

Figure 5-11 Neutron Laue pattern of NaCl. Compare this
with the x-ray Laue pattern in Figure 3-14. [Courtesy of 
E. O. Wollan and C. G. Shull.]
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Figure 5-12 Nuclei
provide scatterers whose
dimensions are of the order
of 10�15 m. Here the
diffraction of 1-GeV
protons from oxygen nuclei
result in a pattern similar to
that of a single slit.

An Easy Way to Determine de Broglie Wavelengths

It is frequently helpful to know the de Broglie wavelength for particles with a specific
kinetic energy. For low energies where relativistic effects can be ignored, the equation
leading to Equation 5-4 can be rewritten in terms of the kinetic energy as follows:

5-7
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To find the equivalent expression that covers both relativistic and
nonrelativistic speeds, we begin with the relativistic equation relating
the total energy to the momentum:

2-31

Writing E0 for the rest energy mc2 of the particle for convenience,
this becomes

5-8

Since the total energy Equation 5-8 becomes

that, when solved for p, yields

from which Equation 5-2 gives

5-9

This can be written in a particularly useful way applicable to any
particle of any energy by dividing the numerator and denominator by
the rest energy as follows:

Recognizing h mc as the Compton wavelength of the particle of
mass m (see Section 3-4), we have that, for any particle,

5-10

A log-log graph of versus is shown in Figure 5-13. It has two sections of
nearly constant slope, one for and the other for connected by
a curved portion lying roughly between 0.1 � � 10. The following example
illustrates the use of Figure 5-13.

EXAMPLE 5-3 The de Broglie Wavelength of a Cosmic Ray Proton Detectors on
board a satellite measure the kinetic energy of a cosmic ray proton to be 150 GeV.
What is the proton’s de Broglie wavelength, as read from Figure 5-13?

SOLUTION

The rest energy of the proton is mc2 � 0.938 GeV and the proton’s mass is
1.67 � 10�27 kg. Thus, the ratio is

Ek
E0

�
150 GeV

0.938 GeV
� 160

Ek>E0

Ek>E0

Ek W mc2,Ek V mc2
Ek>E0
>
c


>
c �
1

[2(Ek>E0) � (Ek>E0)
2]1>2


c>

 �

hc>mc2

(2E0Ek � E2
k)

1>2>E0

�
h>mc

[2(Ek>E0) � (Ek>E0)
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E0 � mc2
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hc

(2E0Ek � E2
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p �
(2E0Ek � E2
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c

(E0 � Ek)
2 � (pc)2 � E2

0

E � E0 � Ek,

E2 � (pc)2 � E2
0

E2 � (pc)2 � (mc2)2
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Figure 5-13 The de Broglie wavelength 
expressed in units of the Compton wavelength 
for a particle of mass m versus the kinetic energy
of the particle Ek expressed in units of its
rest energy E0 � mc2. For protons and neutrons
E0 � 0.938 GeV and For electrons
E0 � 0.511 MeV and 
c � 0.00234 nm.


c � 1.32 fm.
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