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1.11.1 Introduction, Purpose,
and Scope

The crust preserves a record of the Earth’s evolution

that extends back more than 3.4Gy. The crust also

provides our natural resources, and presents social

challenges in the form of natural hazards, such as

earthquakes and volcanoes. Despite its importance,

the clear recognition of a ubiquitous crust encircling

the Earth dates back to less than 100 years

(Mohorovicic, 1910). In fact, as recently as the

1960s it was hypothesized that the ocean floor was
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composed of serpentinized peridotite (hydratated

ultramafic mantle rocks; Hess, 1962), a view that

would have restricted true crustal material (i.e.,

silica-rich rocks) to the continents and its margins.

Today it is well established that silicic material

extracted from the mantle forms an outer crust in

most regions of the Earth.

The Earth’s crust has profound implications for all

aspects of the planet’s physical state and evolution. The

process of crustal formation led to the complementary

formation of an underlying mantle lithosphere, classi-

cally referred to by seismologists as ‘the mantle lid’ due

to its finite thickness (c. 50–200 km) (Gutenberg,

1959; Oliver et al., 1959). The physical properties of

the crust plus mantle lithosphere modulate the rate at

which heat is released to the Earth’s surface, regulates

mantle convection, determines the location of earth-

quakes and volcanoes, and more generally defines the

rules for plate tectonic processes.

The foundations of seismic studies of the crust and

upper mantle were laid in the period 1909–69 when the

results of many pioneering studies provided a global

view of the structure of the Earth’s crust (Table 1).

However, most of these early studies of the crust were

hindered by technical limitations, and yielded field

observations that presented an aliased image of the

Table 1 Classical references concerning the Earth’s crust and uppermost mantle: the first 60 years: 1909–69

Year Authors Areas covered J/A/B

1910 Mohorovicic Europe B

1925 Conrad Europe J

1926 Byerly N-America J

1932 Byerly and Dyk N-America J

1932 Gutenberg N-America J

1932 Gutenberg et al. World J

1935 DeGolyer World J

1935 Heiland World J

1935 Jeffreys and Bullen World J

1936 Leet Europe J

1937 Ewing et al. Atlantic J

1938 Slichter World J

1940 Jakosky World B

1940 Jeffreys World J

1940 Jeffreys World B

1943 Woollard N-America J

1949 Mintrop World J

1951 Junger N-America J

1951 Tuve World

1951 Slichter N-America J

1952 Birch World J

1952 Hersey et al. J

1953 Tatel et al. World J

1953 Hodgson N-America J

1953 Tuve World J

1954 Ewing and Press World J

1954 Tuve et al. World J

1954 Katz N-America J

1955 Ewing et al. N-America A

1953 Tatel et al. World J

1955 Tatel and Tuve World A

1956 Press World B

1957 Oliver and Ewing World J

1958 Officer World B

1958 Oliver and Ewing World J

1959 Gutenberg World B

1959 Woollard World J

1959 Oliver et al. World J

1959 Richards and Walker N-America J

1960 Birch World J

1960 Willmore, Bancroft World J

(Continued )
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crust. It is not surprising that, with some notable excep-

tions (Meissner, 1967; Mueller, 1977), these data were

commonly interpreted in terms of two or more homo-

geneous layers, the upper layer (compressional

wave velocity, Vp=6.0 km s�1) assigned a granitic

composition, the lower layer (Vp=6.5 km s�1) a basaltic

composition (Birch, 1952; Pakiser and Steinhart, 1964).

Advances in technology have resulted in higher-

resolution data revealing a much richer and more com-

plex picture of the crust, as well as generatingmany new

Table 1 (Continued)

Year Authors Areas covered J/A/B

1960 Brune et al. World J

1961 Anderson World J

1961 Birch World J

1961 Closs and Behnke Australia J

1961 Cram N-America J

1961 Jensen World J

1961 Steinhart and Meyer World B

1962 Oliver World J

1962 Alexander N-America J

1962 Hess World A

1963 Hill Oceans A

1963 Pakiser N-America J

1963 Brune and Dorman N-America J

1963 Jackson et al. N-America J

1963 Wilson World J

1963 Raitt World A

1964 Anderson and Archambeau World J

1964 Simmons World J

1964 McEvilly World J

1964 Pakiser and Steinhart World A

1964 Press World J

1964 Crampin World J

1964 Kovach and Anderson World J

1965 Christensen World J

1965 Dix World J

1965 Kanasewich and Cumming J

1965 Jackson and Pakiser N-America J

1965 Roller N-America J

1965 Willden N-America J

1965 Wilson World J

1966 Bath and Stefánsson World J

1966 Berry and West N-America J

1966a, 1966b Christensen World J

1966 Ewing et al. N-America J

1966 James and Steinhart World A

1966 Smith et al. World J

1966 Crampin Eurasia J

1966 Woollard N-America J

1967 Anderson World J

1967 Steinhart World A

1967 Meissner World J

1967 Shor J

1968 Press Europe J

1969 Hart World B

1969 Zietz N-America J

1969 Brune World J

1969 Herrin N-America J

1957 Baranov World J

1967 Bateman and Eaton N-America J

N-America, North America.
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questions. Among the outstanding questions are the age

and physical properties of the Moho and mid-crustal

seismic discontinuities, the possible presence of deep

crustal fluids, the geometry of crustal faults at depth,

crustal modification by lateral crustal flow, and the

possible existence of pervasive crustal seismic

anisotropy.

Our understanding of the seismic structure of the

crust began to change radically with the advent of

deep seismic reflection profiling (Meissner, 1973;

Oliver et al., 1976) and the development of numerous

stand-alone, portable seismographs used for seismic

refraction/wide-angle reflection profiling (Healy

et al., 1982). These data provided an unbiased view

of the crust to frequencies of 20Hz and higher (cor-

responding to 300m and higher resolution within the

crust). These data demonstrated that the crust is

highly heterogeneous, both vertically and laterally,

in composition and physical properties (Mueller,

1977, 1978; Fountain, 1986; Holbrook et al., 1992).

By the 1970s a large body of deep seismic data had

been collected throughout the world, and the first

regional crustal thickness models were created

(Warren and Healy, 1973; Giese, 1976; Beloussov and

Pavlenkova, 1984; Prodehl, 1984). Compilations of

crustal seismic data into global models can be traced

to the global Moho map of Soller et al. (1982). This

map, while highly informative, did not easily lend itself

to use in numerical calculations that make quantitative

corrections for the crust. A major step forward was the

publication of the global 2�� 2� 3SMACmodel (Nataf

and Ricard, 1996) that for the first time permitted the

calculation of crustal corrections to seismological and

other geophysical observations. In the past decade, a

tremendous number of new seismic field observations

have beenmade, therebymaking it possible to improve

the accuracy of previous global crustal models

(Mooney et al. 1998; Pasyanos et al., 2004). In this

chapter we document these advances and summarize

the current status of global crustal models.

1.11.2 Geology, Tectonics, and Earth
History

The Earth’s lithosphere is qualitatively defined as

the cold, upper layer of the Earth and is divided

into large blocks called tectonic plates (Figure 1).

The lithosphere is on the order of 100 km thick, being

the thinnest (20–100 km) in oceanic regions and the

thickest (50–250+ km) in continental regions. The

base of the lithosphere is defined by a thermal

boundary layer ( Jordan, 1975, 1979, 1988; Artemieva

and Mooney, 2001). The base of the crust is a petro-

logic boundary between silicic and ultramafic rocks,

and may be discerned seismically as the depth within

the lithosphere where Vp increases from about

6.57.3 km s�1 (in the lower crust) to greater than

7.6 km s�1 (the uppermost mantle) ( James and

Steinhart, 1966). This boundary between the lower

crust and upper mantle is called the Mohorovicic

discontinuity (Mohorovicic, 1910; Jarchow and

Thompson, 1989) and is usually at a depth (below sea

level) of 10–14 km for oceanic crust, and 30–50 km for

continental crust. The Earth’s crust, which was origin-

ally extracted from the mantle, constitutes only about

0.7% of the total mass of the crust–mantle system

(Taylor and Mclennan, 1985). Further seismic discon-

tinuities below the crust divide the interior of the Earth

into the upper mantle, transition region, lower mantle,

outer core, and inner core. These other discontinuities

are discussed in other chapters of this volume.

As a consequence of plate tectonics (Figure 2),

oceanic crust and continental crust vary systemati-

cally in their principal physical properties, including

density, thickness, age, and composition. Continental

crust has an average thickness of 39 km, density of

2.84 g cm�3, and an average age of 1500My, while

the oceanic crust has an average thickness of about

6 km, density of 3 g cm�3 and is everywhere younger

than 200My. Oceanic crust is largely made up of

theoleiitic basalt, which has a dark, fine-grain texture

that forms from quickly cooling magma. In contrast,

continental crust has a more felsic composition than

oceanic crust and ranges in thickness from 16 to

20 km in the Afar Triangle, northeast Africa, to

75+ km in the southern Tibetan Plateau. Ninety-

five percent (by area) of the continental crust, how-

ever, is between 22 and 56 km thick.

This chapter presents a holistic view of the Earth’s

crustal structure, and summarizes the types of velocity

and density models that characterize the crust on a

global scale. In recent years, a wide variety of seismo-

logical techniques have been used to explore the crust.

These include seismic refraction/wide-angle reflec-

tion profiles, near-vertical incidence reflection

profiles, receiver functions, and local earthquake

tomographic inversions. Some of these survey techni-

ques have been in use for more than a half-century,

and the results are reported in thousands of publica-

tions. These results make it possible to provide a

comprehensive crustal model for the whole Earth, as

well as higher-resolution regional models.
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Schematic cross-section of plate tectonics
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Figure 2 A cross section of the Earth’s surface, indicating divergent (oceanic spreading ridge) and convergent (subducting

plate) plate boundaries (Simkin et al., 2006). Active magmatic arcs at convergent boundaries increase the volume of

continental crust and continental rift zones lead to crustal thinning. We summarize the deep structure of these and other

features of the Earth’s crust.
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Figure 1 The 15major tectonic plates on Earth, and the boundaries between these plates (Simkin et al., 2006). New oceanic

lithosphere is constantly being produced at mid-ocean ridges (a divergent plate boundary) and later subducted back into the

mantle at an oceanic subduction zone (a convergent plate boundary) (Figure 2). Plate motions led to the recycling of oceanic

crust, arc volcanism, and compression at convergent boundaries. This chapter describes the complex and laterally variable

deep seismic structure of the Earth’s crust.
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1.11.3 Seismic Techniques for
Determining the Structure of the Crust
and Uppermost Mantle

Seismic techniques provide the highest-resolution

geophysical measurements of the structure of the

crust and uppermost mantle. These techniques may

be divided into those using active sources versus

passive sources. Active sources are man-made seis-

mic sources such as vibrators, air guns, and borehole

explosions. Passive sources are derived from natu-

rally occurring seismicity. Both active and passive

sources generate P and S body waves, Love and

Rayleigh waves, and diffracted and scattered waves.

We discuss active and passive seismic techniques in

turn.

1.11.3.1 Active-Source Data

Active-source seismic measurements of the structure

of the crust have been conducted on a worldwide

basis (Soller et al., 1982; Meissner, 1986; Mooney

et al., 2002; Table 2a). Seismic studies of the deep

Table 2a Selected papers on data analysis methods in

crustal seismology: Active sources

References Year

Aki 1982

Aki and Lee 1976

Aki et al. 1977

Ansorge et al. 1982

Berry and West 1966

Bessonova et al. 1976

Boore 1972

Bouchon 1982

Braile and Chiang 1986

Braile et al. 1995

Chapman and Orcutt 1985

Červený 1972

Červený et al. 1977

Červený and Pšeničnı́k 1984

Chapman 1978

Claerbout 1976, 1985

Closs and Behnke 1961

Deichmann and Ansorge 1983

Dix 1965

Dobrin 1976

Dohr 1970

Ewing et al. 1957

Finlayson and Ansorge 1984

Fuchs and Mueller 1971

Gajewski and Pšeničnı́k 1987

Giese 1976

Giese et al. 1976

Haberland et al. 2003

Hajnal 1986

Hale and Thompson 1982

Heacock 1971, 1977

Hole 1992

Hole and Zelt 1995

Hole et al. 1992

Hwang and Mooney 1986

Kelley et al. 1976

Kennett 1974, 1983

Kind 1978

Klemperer and Luetgert 1987

Klemperer and Oliver 1983

Levander and Holliger 1992

Ludwig et al. 1970

Lutter et al. 1990

Mair and Lyons 1976

Makovsky et al. 1996a, 1996b

McEchan and Mooney 1980

Menke 1989

Milkereit et al. 1985

Mooney 1989

Mooney and Brocher 1987

Mooney and Meissner 1992

Mooney et al. 2002

Müller 1985

Nelson et al. 1996

Sandmeier and Wenzel 1986, 1990

Sheriff and Geldart 1982, 1983

Schilt et al. 1979

Telford et al. 1976

Willmore and Bancroft 1960

Zandt and Owens 1986

Zelt 1999

Zelt and Barton 1998

Zelt and Smith 1992

Zelt et al. 2003

Zelt et al. 1999

Table 2b Selected papers on data analysis methods in

crustal seismology: Passive sources

References Year

Aki and Richards 1980

Ammon et al. 1990

Barmin et al. 2001

Bath and Stefánsson 1966

Bessonova et al. 1974

Bijwaard et al. 1998

Boore 1972

Boschi et al. 2004

Bostock et al. 2002

Bouchon 1982

Brune 1969

Brune and Dorman 1963

Brune et al. 1960

Bruneton et al. 2004

Burdick and Langston 1977

Cassidy 1992

(Continued )
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continental crust that utilize man-made sources are

classified into two basic categories, seismic refraction

profiles and seismic reflection profiles, depending on

their field acquisition parameters. Seismic refraction

profiles provide reliable information regarding the

distribution of seismic velocities within the crust,

and are very effective in mapping crustal thickness

(Figure 3). In contrast, seismic reflection data pro-

vide an image of the crust at a finer scale (50m in the

vertical and horizontal dimensions), but with weak

constraints on deep crustal velocities. As a result,

seismic reflection and refraction data have comple-

mentary strengths: reflection data provide a detailed

structural image of the crust, whereas refraction data

provide an estimate of the seismic velocity distribu-

tion in the crust.

The most common sources used in land profiles are

chemical explosions and mechanical vibrators (vibro-

seis). Chemical explosions are generally composed of

ammonium nitrate compounds that are detonated in a

borehole at a depth of 20–50m in the ground. In

contrast, a vibrator truck weighs several tons and has

a heavy steel plate that is pressed against the ground

Table 2b (Continued)

References Year

Chapman 1978

Chen et al. 2005

Chimera et al. 2003

Crosson 1976

Curtis and Woodhouse 1997

Debayle and Lévêque 1997

Dziewonski 1989

Dziewonski and Anderson 1981

Eberhart-Phillips 1986

Ekström et al. 1997

Ewing and Press 1954

Grand et al. 1997

Hearn and Clayton 1986

Hearn and Ni 1994

Hearn et al. 1991, 2004

Hofsetter and Bock 2004

Hole et al. 2000

Huang et al. 2004

Humphreys and Clayton 1988

Humphreys et al. 1984

Iyer and Hirahara 1993

Jordan and Frazer 1975

Karagianni et al. 2005

Kennett and Engdahl 1991

Kind 1978

Knopoff 1972

Kovach 1978

Langston 1977

Langston et al. 2002

Lebedev and Nolet 2003

Lei and Zhao 2005

Levshin et al. 2005

Li and Romanowicz 1996

Liang et al. 2004

Liu et al. 2005

Maggi and Priestley 2005

Mahadeven 1994

Mandal et al. 2004

McEvilly 1964

Mitchell and Herrmann 1979

Mooney 1989

Nakamura et al. 2003

Nolet 1987b, 1990

Okabe et al. 2004

Owens and Zandt 1985

Pasyanos 2000

Pilidou et al. 2005

Priestly and Brune 1978

Ritzwoller and Lavely 1995

Ritzwoller et al. 2002a, 2002b

Savage 1999

Shapiro and Ritzwoller 2002

Su et al. 1994

Sun et al. 2004a, 2004b

Thurber 1983, 1993

Thurber and Aki 1987

Tilmann et al. 2003

Vinnik et al. 2004

Wang et al. 2003

Woodhouse and Dziewonski 1984

Worthington 1984

Yanovskaya and Kozhevnikov 2003

Yliniemi et al. 2004

Zandt and Owens 1986

Zhang and Lay 1996

Kennett 1983

Kind et al. 1995, 2002

Kissling 1998

Kissling et al. 2001

Langston 1994

Lees and Crosson 1989

Leveque et al. 1993

Levshin et al. 1989

Ma et al. 1996

Masters et al. 1996

Menke 1989

Nolet 1978, 1987a, 1987b

Owens et al. 1984

Rapine et al. 2001

Ritzwoller et al. 2002

Roecker et al. 2004

Tarantola and Nercessian 1984

Van Heijst and Woodhouse 1999

Vidale 1988, 1990

Vinnik 1977

Zhang and Thurber 2003

Zhao et al. 1992

Zhou et al. 2004, 2005
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that vibrates at increasing frequencies (5–60Hz) for up

to 30 s. The vibroseis method requires cross-correla-

tion of the recordings with the source signal in the

data-processing stage. The most common sources in

marine profiles are the air gun, in which a bubble of

very high-pressure air is released into water, and, prior

to modern environmental concerns for marine life,

explosive charges. Long-range seismic refraction data

has also been recorded from nuclear sources, particu-

larly in the former Soviet Union (Egorkin et al., 1987;

Pavlenkova, 1996). Due to the strength of these

nuclear explosions, such long-range profiles probed

not only the crust but the entire upper mantle to a

depth of 660 km (Mechie et al., 1993; Ryberg et al.,

1995, 1996; Morozov et al., 1998; Morozova et al., 1999).

1.11.3.1.1 Seismic refraction/wide-angle

reflection profiles

Seismic refraction/wide-angle reflection profiles are

recorded with relatively widely spaced (100–5000m)

geophones (typically with vertical-component seism-

ometers) and long off-sets (100–500+ km) between

sources and receivers (Figure 3). The data from these

seismic profiles commonly contain strong wide-angle

reflection phases (Figure 4) and provide excellent

constraints on seismic velocity within the lithosphere.

Profiles with sources all to one side of the receivers

are refered to as unreversed refraction profiles.

Unreversed refraction profiles record only apparent

velocities and are interpreted as if the crust was com-

posed of flat-laying, uniformly thick layers. Split

refraction profiles, with the source in the center of the

receivers, are in some ways similar to simple reversed

refraction lines, and are commonly used for studies of

the oceanic crust. Reversed refraction profiles generally

have multiple shot points that provide overlapping cov-

erage and provide the most reliable results (Figure 5).

The most effective way to determine a velocity struc-

ture from seismic refraction data is to compute detailed

2-D ray-theoretical traveltimes (Figure 5(b)) and syn-

thetic (theoretical) seismograms and compare thesewith

the observed data (Braile and Smith, 1974; Mooney,

1989; Braile et al., 1995; Chulick, 1997; Zelt and Smith,

1992; and Zelt, 1999). This modeling must take into

account (1) the source time-function, which could be

from an explosion, earthquake, air gun, or vibrator, (2)

the effects of transmission through the crust, and (3) the

response of the detection systems, which may be seism-

ometers, amplifiers, and filters. For trial-and-error

forward modeling, an initial velocity model is con-

structed, and is adjusted until the synthetic

seismograms match the recorded seismograms to the

desired degree. For inverse methods (e.g., Zelt and

Smith, 1992), seismic traveltimes are used to obtain a

best-fitting model, starting from the near-surface and

moving down through the crust.

Seismic velocities in the crust are primarily deter-

mined by five factors: mineralogical composition,
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Figure 3 Ray paths for a continental seismic refraction/wide-angle reflection profile for crust with a typical seismic velocity

structure found beneath a stable craton. The crust–mantle boundary (Moho) is a continuous feature, but intracrustal

boundaries may be discontinuous laterally and several kilometers wide vertically. Commonly, shot points are spaced 50 km
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confining pressure, temperature, anisotropy, and pore-

fluid pressure. In order to draw inferences about the

mineralogical composition of the deep crust, however,

one must first estimate the contribution of the other

four properties. Confining pressure is easily calculated

from depth of burial, and temperature can be estimated

from the surface heat flow. The quantitative effect on

measured seismic velocities due to seismic anisotropy

(Rabbel and Mooney, 1996) and pore-fluid pressure

(Hyndman, 1988) are more difficult to estimate.

1.11.3.1.2 Seismic reflection profiles

Reflection seismology provides a more detailed

image of crustal structure. Data are recorded with

closely spaced (5–100m) geophones and sources

that yield a high-resolution image of the crust, but

such data generally do not constrain seismic velo-

cities in the deeper (middle and lower) crust.

P waves from an energy source, such as a vibrator,

buried explosive, or air gun, are reflected by intra-

crustal interfaces and recorded by geophones

located close (0.1–10 km) to the source. In the

data-processing stage, the effects of the source and

receiver are removed from the recorded seismo-

grams through a process called deconvolution,

allowing for higher-resolution images of the struc-

ture. The seismic reflection data are commonly

migrated, a processing step that shifts the reflectors

into their correct spatial locations.

The seismic properties that are most readily

obtained from reflection data are reflectivity patterns,

and these correlate with distinct geologic settings. For

example, the area around the United Kingdom and

Ireland has undergone Mesozoic extension that is

evident in deep seismic reflection data as tilted

horst-and-grabens, a shallow (30 km) distinct Moho,

and a dipping shear zone (Flannan reflections) within

the upper mantle (Figure 6). When reflectivity pat-

terns are interpreted with complementary seismic

velocity and nonseismic crustal parameters (discussed

below), inferences regarding the composition and evo-

lution of the crust can be made (Clowes et al., 1987).
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velocity of 6.0 kms�1; seismic phases as defined for S waves above (Wang et al. 2003).
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The widespread observation of crustal reflectivity

suggests that common processes account for its exis-

tence. The primary cause of crustal reflectivity is

compositional and metamorphic layering within the

crust. Regional and global plate stresses act to enhance

crustal reflectivity by inducing lower crustal ductile

flow that produces subhorizontal lamination. This duc-

tile flow requires elevated temperatures, and is

therefore more common in the middle and lower

crust (e.g., Figure 6). A list of key references of active-

source seismology studies can be found in Table 2a.

1.11.3.2 Passive-Source Data

Techniques to investigate the seismic structure of the

crust and uppermost mantle using passive seismic data

have seen rapid development in the past two decades

(Table 2b). These developments can be attributed to

the increased availability of higher-quality, broadband

data from permanent seismic networks and temporary

deployments, as well as increased computer power.

Passive seismic techniques began with surface-

wave studies (Ewing and Press, 1954; Brune and

Dorman, 1963) and progressed to seismic tomography
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(Aki et al., 1977; Aki and Lee, 1976) and seismic receiver

functions (Phinney, 1964; Vinnik, 1977; Langston,

1977). We discuss each of these in turn.

1.11.3.2.1 Surface waves

An earthquake near the Earth’s surface will generate

both Rayleigh and Love seismic surface waves. The

amplitude of motion for these waves decreases expo-

nentially with depth in the earth, with longer-

wavelength waves sampling the velocity structure

to greater depth than shorter-wavelength waves.

This wavelength-depth dependence, combined with

the increase of velocity with depth in the Earth gives

rise to the dispersion of surface waves. This makes

surface waves a valuable tool for the study of the

velocity structure of the crust and mantle lithosphere

(Oliver and Ewing, 1957, 1958; Oliver, 1962; Aki and

Richards, 1980; Nolet, 1987a, 1987b; 1990; Lay and

Wallace, 1995). The analysis of seismic surface waves

for crustal and upper-mantle structure has been

applied on a global basis and is particularly effective

in determining 2-D and 3-D shear-wave structure

(Debayle and Leveque, 1997; van der Lee and

Nolet, 1997; Ritzwoller et al., 2002a, 2002b; Shapiro

and Ritzwoller, 2002; Langston et al., 2002; Lebedev

and Nolet, 2003; Chimera et al., 2003; Panza et al.,

2003; Friederich, 2003; Okabe et al., 2004; Boschi et al.,

2004; Bruneton et al., 2004; Yoshizawa and Kennet,

2004; Pilidou et al., 2004, 2005; Karagianni et al., 2005;

Levshin et al., 2005; Maggi and Priestley, 2005). Thus,

seismic surface waves provide complementary infor-

mation to seismic refraction data that often provide

information only on the compressional-wave struc-

ture of the crust. In addition, surface waves can be

used to investigate regions that are aseismic (e.g.,

much of Africa and eastern South America). Such

aseismic regions cannot be studied using other pas-

sive seismic methods. Surface-wave data can also be

used to measure seismic anisotropy within the upper-

most mantle (Huang et al., 2004).

1.11.3.2.2 Seismic tomography

Local and distant (teleseismic) earthquake data can

be used to determine crustal structure. Local seismic

tomography uses earthquake arrivals at a network of

seismic stations to determine crustal and upper-man-

tle structure by examining the arrival times of many

crisscrossing paths between the earthquakes and

seismometers. This technique, which is similar to

medical tomography, has the potential to provide a

3-D picture of the crust and uppermost mantle. Local

studies mainly provide information about the upper

and middle crust (Thurber, 1993; Mandal et al.,

2004; Lei and Zhao, 2005; Salah and Zhao, 2003;

Table 2b), whereas regional studies have better reso-

lution within the uppermost mantle, especially for Pn

velocity (Bannister et al., 1991; Hearn and Ni, 1994;

McNamara et al., 1997; Parolai et al., 1997; Mele, 1998;

Calvert et al., 2000; Sandoval et al., 2004; Ritzwoller

et al., 2002a; Chen et al., 2003; Al-Lazki et al., 2003;

2004; Sandoval et al., 2004; Hearn et al., 2004; Liang

et al., 2004). A second technique uses teleseismic data

and generally provides an image that extends to

greater depth (100+ km), but lacks high resolution

of structure within the crust (Petit et al., 1998;

Bijwaard et al., 1998; Allen et al., 2002; Benoit et al.,

2003; Lippitsch et al., 2003; Liu et al., 2005).

Tomographic studies are also effective at determin-

ing upper-mantle seismic attenuation (Gung and

Romanowicz, 2004).

1.11.3.3 Receiver Functions

Estimating seismic structure from teleseismic recei-

ver functions is a highly effective method of

exploring the crust and upper mantle since it requires

only a single broadband seismic station. Crustal

layering is determined by signal processing of a

three-component station using teleseismic P-wave

arrivals. The incident P wave will undergo multiple

conversions to S waves at seismic boundaries within

the uppermost mantle and crust. The analysis of

these converted waves yields the shear-wave velocity

structure beneath the station (Phinney, 1964; Vinnik,

1977; Burdick and Langston; 1977; Langston, 1977;

Owens et al., 1988). The method works best with

nearly horizontal layers, although forward modeling

may be applied in regions with 3-D structure. An

informative discussion of the method is given by

Cassidy (1992). While the method is highly effective

at determining seismic discontinuities in the crust

and uppermost mantle, it cannot, by itself, determine

absolute seismic velocities. One approach is to per-

form a joint inversion of receiver functions and

surface-wave dispersion observations ( Julia et al.,

2000). Numerous local and regional studies have

been reported (e.g., Owens and Zandt, 1985;

Ramesh et al., 2002), including studies of the crust of

North Africa (Sandvol et al., 1998), Spain ( Julia and

Mejia, 2004), Turkey (Angus et al., 2006), the western

USA (Zhu and Kanamori, 2000), and various studies

of the upper mantle (Kind and Vinnik, 1988; Yuan

et al., 1997; Kind et al., 2002).

372 Global Crustal Structure



Recently, the receiver function method has been

extended to consider converted, precursory P waves

that arrive just prior to the direct S wave (Li et al.,

2004; Angus et al., 2006). This is known as the S-wave

receiver function method. S-wave receiver functions

have a lower resolution than P-wave receiver func-

tions, but are effective at identifying the base of the

lithosphere (Li et al., 2004).

1.11.3.4 Laboratory Studies

1.11.3.4.1 Velocity–density relations

Seismic-wave velocities and density are fundamental

properties of Earth materials. Thousands of field and

laboratory measurements have been made for Vp, but

fewer measurements have been made of rock densi-

ties at depth, since these require a borehole.

Compressional-wave velocity and density correla-

tions are important because they allow estimates of

crustal density for surface-wave inversions and grav-

ity studies, and conversely, rock densities can be used

to estimate seismic velocities (Christensen and

Mooney, 1995). Classic studies of velocity–density

relations include the Nafe–Drake curve (Nafe and

Drake, 1957); Birch (1961) law relating velocity, den-

sity, and mean atomic weight; and linear regression

solutions for oceanic crust (Christensen and Salisbury,

1975). Figure 7 presents average velocities for 29 rock

categories at a depth of 20 km and a temperature of

309�C, corresponding to an average continental

geotherm, versus rock density (Christensen and

Mooney, 1995). Two curves are drawn in Figure 7, a

linear curve (solid line) and a nonlinear curve repre-

senting Vp–density correlations for continental crust.

The appropriate coefficients for both linear and non-

linear solutions are presented by Christensen and

Mooney (1995).

1.11.3.4.2 Vp–Vs relations and poisson’s

ratio

Seismic measurements of crustal structure more com-

monly report only Vp rather than Vp and Vs. There are

several reasons for this. First, explosive or air gun

sources generate primarily compressional-wave

energy. Second, many field observations record on

the vertical component of ground velocity. Third,

shear-wave arrivals are often either weak or obscured

by scattered seismic energy (coda). In the absence of
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Global Crustal Structure 373



measured shear-wave speeds it is necessary to estimate

its value from Vp. A direct relation between Vs and

Vp, therefore, is highly desirable for many studies.

This is accomplished by using empirically derived

Vp–Vs relations that are based on field borehole and

seismic profiling data, together with laboratory

measurements.

A recent study (Brocher, 2005) presents empirical

relations between Vp, Vs, and Poisson’s ratio that can

be used to estimate the ratio Vp/Vs, or equivalently,

Poisson’s ratio from a knowledge of Vp and rock type

(i.e., sedimentary vs crystalline rocks). The empirical

and regressional fits are defined for Vp between 1.5

and 8.5 km s�1 and fit the data remarkably well

(Figure 8).

Conversely, the mineralogy of the crust can be

estimated when both compressional (Vp) and shear-

wave (Vs) velocities are measured (Figure 9). The

ratio Vp/Vs is commonly expressed in terms of

Poisson’s ratio, which varies from 0.23 to 0.32 for

most minerals, but quartz has a value of only 0.08 at

room conditions (Christensen, 1996). Thus, the mea-

surement of Poisson’s ratio offers the means of

distinguishing between felsic (quartz-rich) and

mafic (quartz-poor) rocks.

1.11.3.4.3 Seismic anisotropy and

the uppermost mantle

Many minerals exhibit birefringence, which is a direc-

tional dependence of the speed of light through the

mineral. This phenomenon is used by petrologists to

identify minerals in a thin section (�1mm), where a

sample illuminated by polarized light is rotated under

a microscope to reveal its birefringence. Likewise,

elastic waves show a directional dependence in wave

speed in many minerals. Perhaps the most prominent

example is the mineral olivine which is a major con-

stituent of the upper mantle. The discrepancy

between Rayleigh and Love wave speeds was mea-

sured in the early 1960s (Anderson, 1961) and led to

the recognition of seismic anisotropy in the mantle lid.

At about the same time, laboratory measurements of

metamorphic rocks demonstrated significant shear-

wave anisotropy in the crust (Christensen, 1966b).

These measurements demonstrated that seismic ani-

sotropy is not confined to the upper mantle, but also

plays a prominent role in the crust (Figure 10).

Table 3 lists several key papers on the seismic proper-

ties, including anisotropy, of the uppermost mantle.

References for laboratory studies of the properties of

crustal rocks can be found in Tables 4a and 4b.

Figure 8 Poisson’s ratio as a function of Vp for common lithologies. Colored ellipses highlight measurements reported by a

single reference: bold numbers in parentheses link ellipses to results of similar studies. The thin horizontal dashed line shows

Poisson’s ratio of 0.25 (Vp/Vs=1.73) commonly assumed for the crust when the first Lame constant, �, equals the shear

modulus, �. After Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the earth’s crust. Bulletin

of the Seismological Society of America 95(6): 2081–2092.
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1.11.4 Nonseismic Constraints
on Crustal Structure

All rock types have a variety of distinct, albeit

nonunique, physical properties that include

density, magnetic susceptibility, and conductivity.

Geophysical surveying techniques to measure these

properties are highly developed, and it is possible to

make detailed maps of lateral changes in rock magnetic

properties, conductivity, and to estimate density varia-

tions. Advanced digital processing of such data

enhances the reliability of interpretations, although

resolution typically decreases with depth. Such non-

seismic geophysical studies are widely used and have

the capability to distinguish between competing geo-

logic models of the structure of the crust.

1.11.4.1 Gravity Anomalies

Gravity anomalies reveal rock density variations, with

the amplitude of the anomaly proportional to the

density contrast and thickness of the anomalous

body. Short-wavelength (<250 km) gravity anomalies

are usually correlated with crustal structures, while
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Figure 9 Variations in compressional wave velocity (Vp), shear wave velocity (Vs), and Poisson’s ratio (�) with mineral
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Research 100: 3139–3156.
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long wavelength (<1000 km) gravity anomalies are

correlated with lateral variations of mantle densities.

Kane and Godson (1989) demonstrate that long-wave-

length gravity highs are correlated with high mantle

seismic velocities, and gravity lows with low mantle

velocities. Kaban and Mooney (2001) and Kaben et al.

(2003) show that upper-mantle density variations con-

tribute long-wavelength gravity anomalies ranging

from �250MGal to +150mGal. The largest of these

positive anomalies over the continents were associated

with the Andes, the East European Platform, the

Alpin-Mediterranean fold belt, and the central south-

eastern part of North America. The largest negative

anomalies, indicating a thin lithosphere, are associated

with vast Cenozoic regions of plume–lithosphere

interaction: the East African Rift and the Basin and

Range Province of western North America.

New satellite measurements of Earth’s gravity

field were begun in April 2002. The data from the

Gravity Recovery and Climate Experiment (GRACE) satel-

lites yield a complete measurement of the gravity

field to harmonic degree 160 (300 km spatial resolu-

tion at the Earth’s surface) every 30 days. These

observations have improved the precision of the glo-

bal gravity field by two orders of magnitude (Tapley

et al., 2005) For additional references on gravity stu-

dies of the crust see Table 5a.

1.11.4.2 Aeromagnetics

High-resolution aeromagnetic surveys can be used to

define major regions of coherent structure in the

Earth’s crust (Kane and Godsen, 1989). Since rocks

commonly retain magnetism that originates from the

time of their formation, magnetic-anomaly data pro-

vide a unique opportunity to infer geological

processes not readily observed through other geo-

physical quantities. One common example of this is
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Table 3 Selected papers on the seismic properties of

the uppermost mantle

References Year

Al-Lazki et al. 2003, 2004

Allen et al. 2002

Anderson 1967

Anderson and Archambeau 1964

Artemieva and Mooney 2001

Bamford 1977

Bannister et al. 1991

Baraganzi and Ni 1982

Benoit et al. 2003

Bibee and Shor 1976

Bijwaard et al. 1998

Brocher et al. 2003

Bruneton et al. 2004

Calvert et al. 2000

Canales et al. 2000

Chen et al. 2003

DeShon and Schwartz 2004

Egorkin 2004

Egorkin et al. 1987

Enderle et al. 1996

Feng et al. 2004

Friedrich 2003

Fromm et al. 2004

Gilbert et al. 2005

Grand and Helmberger 1984

Grand et al. 1997

Gung and Romanowitz 2004

Hearn 1984, 1999

Hearn 1996

Hearn and Ni 1994

Hearn et al. 1991, 2004

Herrin 1969

Huang et al. 2004

Humphreys et al. 1984

Iyer nad Hitchcock 1989

Jordan 1975, 1979, 1988

Jordan and Frazer 1975

Kennett and Engdahl 1991

Kennett et al. 1995

Kind et al. 2002

Lei and Zhao 2005

Li and Romanowicz 1996

Liang et al. 2004

Lippitsch et al. 2003

Liu et al. 2005

Maggi and Priestly 2005

Matzel and Grand 2004

McNamara et al. 1997

Meissner et al. 2002

Mele 1998

Meyers et al. 1998

Montagner and Tanimoto 1990

Nolet 1977

Oliver 1962

Orcutt 1987

Panza et al. 2003

Pavlenkova 1996

Pilidou et al. 2004, 2005

Prodehl 1984

Rau and Wu 1995

Ringwood 1975

Ritzwoller and Levshin 1998

Ritzwoller et al. 2002a, 2002b

Romanowicz 1991, 1995

Sandoval et al. 2004

Sandvol et al. 2001

Savage 1999

Shapiro and Ritzwoller 2002

Shapiro et al. 2004

Silver 1996

Silver and Chan 1988

Sleep 2003

Song et al. 2004

Spakman et al. 1993

Trampert and Woodhouse 1995

van der Hilst et al. 1997

Van Heijst and Woodhouse 1999

Vinnik et al. 1992

Wang et al. 2002

Wortel and Spakman 2000

Yuan et al. 1997, 2000

Zhang and Lay 1996

Zhang and Tanimoto 1991

Zhang et al. 2004

Zhao and Xie 1993

Zhao et al. 1992

Table 4a Selected laboratory studies of seismic

properties of rocks

References Year

Bass 1995

Berckhemer et al. 1997

Birch 1960, 1961

Birch 1943, 1972, 1975

Carmichael 1982

Christensen 1965, 1966a, 1966b, 1971,1979,

1982, 1996

Christensen and Fountain 1975

Christensen and Mooney 1995

Christensen and Salisbury 1975

Christensen and Salisbury 1982

Clark 1966

Hamilton 1978

Jones and Nur 1983

Kern 1978

Kern et al. 1996, 2001

Nafe and Drake 1968

Simmons 1964

Usher 1962

Wepfer and Christensen 1991
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seafloor spreading, indicated by a series of magnetic

stripes, originating from the mid-ocean ridge.

Magnetization is commonly associated with

igneous rocks, but it is controlled more generally

by the thermal history of the rock. The remnant

magnetization of a mineral is fixed in the direction

of the Earth’s magnetic field when the mineral is

cooled below the Curie temperature; the remnant

Table 4b Selected laboratory studies of nonseismic

properties of rocks

References Year

Berckhemer et al. 1997

Carmichael 1982

Christensen and Salisbury 1979

Clark 1966

Duba 1972

Johnson and Olhoeft 1984

Table 5a Selected papers on crustal structure from

gravity data

References Year

Arvidson et al. 1984

Banks et al. 1977

Barton 1986

Bateman and Eaton 1967

Blakely 1995

Clowes et al. 1997

Couch and Woodcock 1981

Dehlinger 1978

Grant and West 1965

Hammer 1983

Hayford and Bowie 1912

Heiskanen and Moritz 1967

Heiskanen and Vening-Meinesz 1958

Hildenbrand et al. 1982

Hinze 1985

Kimbell et al. 2004

Lachenbruch et al. 1985

McNutt 1980

Parker 1973

Paterson and Reeves 1985

Plouff 1976

Roecker et al. 2004

Sandwell and Smith 1997

Simpson et al. 1987

Talwani and Ewing 1960

Tiberi et al. 2003

Turcotte and Schubert 2002

U.S. Department of Commerce 2001

Unsworth et al. 2000

Venisti et al. 2004

Watts 2001

Woollard 1943, 1959

Zoback and Mooney 2003

Table 5b Selected papers on crustal structure from

aeromagnetic data

References Year

Alvares et al. 1978

Baranov 1957

Blakely 1995

Blakely and Grauch 1983

Bond and Zietz 1987

Frost and Shive 1986

Grant and West 1965

Hahn et al. 1984

Hall 1974

Hemant and Maus 2005

Hinze 1985

Hinze and Zeitz 1985

Hood et al. 1985

Huestis and Parker 1977

Langel 1985

Langel et al. 1982

Mayhew and LaBrecque 1987

Mayhew et al. 1985

McEnroe et al. 2004

Parker 1971

Paterson and Reeves 1985

Plouff 1976

Purucker et al. 2002

Redford 1980

Reid 1980

Schouten 1971

Schouten and McCamy 1972

Sexton et al. 1982

Talwani 1965

USGS and Society of Exploration

Geophysics

1982

Vacquier et al. 1951

Vogt et al. 1979

Von Freese et al. 1986

Williams et al. 1985

Zietz 1969, 1982

Table 5c Selected papers on the electrical properties

of the crust

References Year

Banks 1972

Berdichevskiy and Zhadanov 1984

Booker et al. 2004

Cagniard 1953

Feldman 1976

Gough 1974

Grant and West 1965

Hyndman 1988

Korja et al. 2002

Jones 1992

Jones et al. 2001

Li et al. 2003

Wannamaker et al. 1989
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magnetization is removed when heated above this

temperature. Metamorphism can also change the

magnetization of a rock, but the magnitude of the

effect is usually small. So, in contrast to density, rock

magnetization can range through several orders of

magnitude (Kane and Godson, 1989).

Long-wavelength gravity and magnetic data are

available from space-based observations (Purucker

et al., 2002; McEnroe et al., 2004). The CHAMP

(CHAllenging Minisatellite Payload) mission, is a

German satellite designed for geoscientific and

atmospheric research and applications. CHAMP is

presently collecting precise gravity and magnetic

measurements of the Earth (Hemant and Maus,

2005). For additional references on magnetic studies

of the crust see Table 5b.

1.11.4.3 Geoelectrical Measurements

In general, the conductivity of the Earth is correlated

with salinity, composition, and temperature (Keller,

1989; Jones, 1992). At the surface, electrical conduc-

tivity depends on the amount of salinity of the

groundwater in a rock. At intermediate depths, con-

ductivity depends on water content and composition

(particularly graphite and sulfide content). At great

depths, where temperatures rise to at least 500�C,

conductivity is mainly a function of electron and

ion mobility (Keller, 1989).

Most studies of the Earth’s crust are based on

magnetotelluric (MT) data (Keller, 1989). This

method relies on measurements of five separate

components of the time-varying electromagnetic

field at the surface of the Earth. The analysis of

these time series yields 1-D and 2-D models of the

subsurface conductivity structure. When measure-

ments are made for long periods (10 000 s and

longer), estimates of the conductivity of the crust

and upper mantle to a depth of 200 km and greater

are possible ( Jones, 1999). The source for electrically

conductive material may be seen as high-density

blocks within the crust.

Electrical conductivity profiles of the crust may

be divided into marine and continental studies.

Major marine studies include the RAMESSES

marine experiment over the Reykjanes Ridge

(Sinha et al., 1997; MacGregor et al., 1998), the

Pressure, Electromagnetic, Gravity, Active Source

Underwater Survey (PEGASUS) experiment in the

north-east Pacific Ocean (Constable and Cox, 1996),

and electromagnetic studies of the axial zone of the

northern East Pacific Rise (Evans et al., 1999). On

continents, electrical conductivity structure of stable

regions, sutures and paleosubduction zones, regions

of lithospheric extension, and orogens have all been

investigated (Wannamaker et al., 1989; Jones, 1992;

Jones et al., 2001). In most cases, these studies have

been conducted in conjunction with active- and pas-

sive-source seismic profiles. Noteable results include

the correlation between low shear-wave velocity and

high electrical conductivity beneath the southern

Tibetan Plateau. This correlation has been attributed

to the presence of either partial melts or aqueous

fluids in the middle crust (Nelson et al., 1996; Li

et al., 2003). Thus, electrical studies provide an

important additional constraint on the composition

and physical state of the crust and upper mantle. For

additional references on geoelectrical studies of the

crust see Table 5c.

1.11.4.4 Heat Flow Data

Surface heat-flow data provide valuable information

on temperatures within the crust. The highest heat-

flow values are found at mid-ocean ridges and

within geothermal zones and active volcanoes.

Heat flow has been measured on a global basis

with ocean, continents and their margins (Pollack

et al., 1993). Surfical heat flow is the product

of radiogenic heat production in the crust and

heat transferred from the convecting mantle. In

order for a lithospheric geotherm to be reliably

calculated, crustal heat production and thermal

conductivity must be estimated from laboratory

measurements on typical crust rocks (Pollack and

Chapman, 1977; Chapman, 1986; Cermak, 1993;

Jaupart and Mareschal, 1999; Artemieva and

Mooney, 2001). Crustal geotherms can be

subdivided into hot, normal, and cold geotherms.

Table 5d Selected papers on crustal heat flow

References Year

Cermak 1993

Chapman 1986

Jaupart and Mareschal 1999

McKenzie et al. 2005

Parson and Sclater 1977

Pollack and Chapman 1977

Pollack et al. 1993

Scalter et al. 1980

Stein and Stein 1992

Turcotte and Schubert 2002

Zang et al. 2002
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Within continental crust these three geotherms pre-

dict temperatures at a depth of 40 km (Moho)

of about 500�C, 700�C, and 900�C, respectively.

Thermal studies of the crust have provided

valuable constraints on crustal composition and

evolution (Rudnick and Fountain, 1995; Mareschal

et al., 1999; Artemieva and Mooney, 2001; Rudnick

and Gao, 2003). For additional references on heat

flow studies of the crust, see Table 5d.

1.11.4.5 Borehole Data

Deep scientific boreholes provide exceptional data

regarding the physical properties of the upper crust.

The deepest boreholes are the 12-km Kola Superdeep

Borehole (KSDB) in Russia (Kozlovsky, 1987), the 9.1-

km Kontinentales Tiefbohrprogramm (KTB) in

Germany (Emmermann and Lauterjung, 1997), and

the 6.8-km and 6.5-km Gravberg–Stenberg boreholes

in Sweden ( Juhlin, 1988; Papasikas and Juhlin, 1997).

In addition, there are numerous scientific boreholes to

depths of 3–5 km. These boreholes provide direct

sampling of the composition of the upper crust, as

well as measurements of in situ seismic velocities,

density, temperature, state of stress, rock porosity,

and the fluid pressure (Smithson et al., 2000; Kern

et al., 2001). Evidence has also been obtained for crustal

shear zones containing electrically conductive gra-

phite and sulfides. An unexpected result is the

presence of free fluid throughout the entire depth

range of the KSDB and KTB boreholes.

1.11.4.6 Surface Geology, Exposed Deep

Crustal Sections, and Xenolith Data

Surface geology, exposed deep crustal sections, and

xenolith samples provide direct observations of the

composition and physical properties of the crust. The

composition of the upper continental crust is, by defi-

nition, evident in global geologic maps which are

dominated by felsic intrusive rocks and low-grade

metamorphic rcoks, particularly shales and sandstones

(Clarke, 1889; Clarke and Washinton, 1924). The

recognition that mountain belts provided exposures

of the deep crust can be traced to the work of Elie de

Beaumont (1847) who studied the Pyreenes. It was,

however, many years later that these observations

were systematically analyzed in terms of cross-sections

of the entire crust (Fountain and Salisbury, 1981;

Salisbury and Fountain, 1990; Percival et al., 1992).

Xenoliths are samples from the deep crust (and mantle

lithosphere) that have been carried to the surface by

volcanic activity (Kay and Kay, 1981). These samples

provide excellent constraints on lower crustal compo-

sition (Fountain et al., 1992; Rudnick and Gao, 2003).

1.11.5 Structure of Oceanic Crust
and Passive Margins

Several thousand measurements of the deep seismic

structure of the Earth’s crust have been made.

However, the geographic distribution of seismic

measurements is uneven (Figure 11), with more
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Figure 11 Locations (solid triangles) of individual seismic velocity–depth measurements made within the Earth’s crust,

1920–present. Up to 1980, the majority of these measurements were made using the seismic refraction/wide-angle reflection

technique. Since 1980 a great many determinations have been made using receiver function analysis of teleseismic arrivals

and local earthquake tomography (see text).
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results available for the Northern Hemisphere, and a

concentration of data in North America, western

Europe, and Eurasia. In the Southern Hemisphere,

Australia and New Zealand have abundant data.

Oceanic data are widely available for all oceans.

Here we summarize the principle results obtained

by these seismic data, and then present a global

model for the Earth’s crust.

1.11.5.1 Typical Oceanic Crust

The seismic velocity structure of oceanic crust was

established in the 1950s, prior to the acceptance of

plate tectonics and seafloor spreading. Oceanic crust

was found to be uniformly thinner than continental

crust. Much of the knowledge of the structure of

ocean crust has come from seismic refraction/wide-

angle reflection profiles. These seismic profiles use

air gun or explosive sources that are recorded by

either hydrophones or ocean-bottom seismometers.

Passive seismology has limited application since most

receivers are on continents or islands. However, a few

tomographic studies of crustal structure at mid-ocean

ridges have been completed (Wolfe et al., 1995).

In their pioneering studies, Hill (1957) and Raitt

(1963) divided ‘normal’ oceanic crust into separate,

uniform seismic layers, known as ‘Raitt–Hill layer-

ing.’ The basic construction is (1) 0.5 km of soft

sediments (layer 1) with a P-wave velocity of

2.0 km s�1; (2) a 2–3-km-thick upper layer (layer 2)

with a velocity of 2.5–6.4 km s�1, and (3) a 4–5-km-

thick lower crustal layer (layer 3), with a velocity of

6.5–7.3 km s�1. The total thickness of ocean crust is

6–8 km. Layer 2, consists largely of pillow lavas and

dykes, while layer 3 consists of a ‘sheeted’ dyke

complex composed of diorites and gabbros

(Figure 12). More details regarding the structure of

the crust have been obtained using modern analysis

methods. The application of synthetic seismogram

modeling to marine seismic refraction/wide-angle

reflection data indicates that the boundary between

layer 1 and layer 2 is often transitional, while the

boundary between layer 2 to layer 3 is relatively

sharp (Spudich and Orcutt, 1980).

In the late 1970s, it was proposed that layer 2 could

be further subdivided into three layers: 2A, 2B, and 2C.

According to Ewing and Houtz (1979), two distinct

layers with seismic velocities of about 3.5 km s�1

(layer 2A) and 5.2 km s�1 (layer 2B) were consistently

identified. Below layer 2B, but above layer 3, a third

layer with a seismic velocity of 6.0–6.2 km s�1 (layer

2C) was detected. Orcutt et al. (1976) and White et al.

(1992) review previous work and provide a modern

synthesis of the seismic structure of typical oceanic

crust. Layer 1 lies beneath an average 4.5 km of sea

water and is composed of sediments (pelagic sedi-

ments, silts, muds, and sand) and is approximately

0.5 km thick, with a seismic velocity of 1.5–2.0 km s�1,

increasing with depth as the sediments consolidate.

Layers 2A–C, the volcanic layer, is 2.11� 0.55 km

Layer 2

(a)

Layer 3

pillows

Unmetamorphosed

Clay mineral

Greenschist

Hornblende
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dyke
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     +
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Pyroxenite
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Figure 12 Compositional models of the oceanic crust

derived from seismic measurements and exposed crustal

sections: (a) crust model of Cann (1970); S refers to

serpentine; (b) crustal model of Vine and Moores (1972).

Traditionally, the oceanic crust is described as being

composed of three layers, termed seismic layers 1–3.

According to model (b), layer 1 is sediments; layer 2 is made

up of basaltic pillow lavas and their feeder dikes,

unmetamorphosed in their upper parts; layer 3 is composed

of sheeted dykes underlain by massive plutonic diorites and

gabbros. Seismic velocities within these layers are shown in

Figure 13(b).
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thick, with a seismic velocity of 2.5–6.6 km s�1. Layer 3,

sometimes called the oceanic layer, is 4.97� 0.90 km

thick, with a seismic velocity of 6.6–7.6 km s�1. The

upper mantle has an average seismic velocity of 7.9–

8.1 km s�1. See Table 6a for additional references on

oceanic crust studies. Table 7a lists selected papers on

the composition of oceanic crust.

Table 6a Selected papers on the seismic structure of

oceanic crust

References Year

Au and Clowes 1984

Barclay et al. 1998

Begnaud et al. 1997

Bibee and Shor 1976

Bown and White 1994

Butler 1986

Canales et al. 2000

Cann 1974

Cannat 1996

Caress et al. 1995

Carlson et al. 1980

Chapman and Orcutt 1985

Charvis et al. 1995

Chen 1992

Christensen 1972

Christeson et al. 1997

Clowes et al. 1999

Coffin and Eldholm 1994

Collier and Singh 1997, 1998

Darbyshire et al. 2000

Detrick et al. 1987, 1990, 1993

El Shazly 1982

Ewing et al. 1955

Ewing and Nafe 1982

Foulger et al. 2003

Hess 1962

Hill 1963

Hyndman 1979

Jackson and Oakey 1986

Kempner and Gettrust 1982

Laske and Masters 1997

Lindwall 1988

Mair and Forsyth 1982

Maxwell 1970a, 1970b

McKenzie and Bickle 1988

Müller et al. 1997

Mutter and Karson 1992

Mutter and Mutter 1993

Nur and Ben-Avraham 1982

Operto and Charvis 1996

Orcutt et al. 1976

Oxburg and Parmetier 1977

Peirce and Barton 1991

Purdy and Detrick 1986

Rabinowitz et al. 1988

Raitt 1963

Richardson et al. 1998

Ritzwoller and Levshin 2002

Shearer and Orcutt 1986

Shor 1967

Sinha et al. 1981

Sinha and Louden 1983

Sleep 1990

Smith and Sandwell 1997

Spudich and Orcutt 1980

Stein and Stein 1992

Su et al. 1992

Thinon et al. 2003

Toomey et al. 1990

Tucholke 1986

Tucholke and Uchupi 1989

Vera et al. 1990

Walck 1984

White et al. 1992

White et al. 1984

White and Clowes 1990

Whitmarsh et al. 1982

Whitmarsh and Calvert 1986

Wilcock et al. 1995

Table 6b Selected papers on the seismic structure of

continental margins

References Year

BABEL working group 1993

Barazangi and Brown 1986a, 1986b

Barton and White 1997

Blundell and Raynaud 1986

Brocher 1995

Chian et al. 1995, 1999

Clegg and England 2003

Clowes et al. 1999

Clowes et al. 1987

Clowes, and Hyndman 2002

Davis and Kusznir 2004

Dean et al. 2000

DeShon and Schwartz 2004

El Shazly 1982

Eldholm and Grue 1994

Eldholm et al. 2002

England 2000

Ewing et al. 1937

Ewing et al. 1966

Fernandes et al. 2004

Fowler et al. 1989

Heacock 1977

Hemant and Maus 2005

Holbrook and Keleman 1993

Horsefield et al. 1993

Jensen 1961

Klemperer and Hobbs 1991

Klemperer and Mooney 1998a, 1998b

Matthews 1986

(Continued )
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Table 6b (Continued)

References Year

Matthews and Cheadle 1986

Matthews and the BIRPS group 1987

McKenzie and Bickle 1988

O’Reilly et al. 1998

Roberts et al. 1988

Tréhu et al. 1994

Todd et al. 1988

White and McKenzie 1989

White et al. 1987a, 1987b

Table 6c Selected papers on the seismic structure of

continental crust

References Year

Barazangi and Brown 1986a, 1986b

Bartelson et al. 1982

Barton 1992

Behrendt et al. 1988

Beloussov and Pavlenkova 1984

Beloussov et al. 1991

Beloussov et al. 1988

Blundell et al. 1992

Bonini and Bonini 1979

Bourjot and Romanowicz 1992

Brown et al. 1986

Clitheroe et al. 2000

Clowes et al. 1999

Clowes et al. 1997, 1987, 1995

Curtis and Woodhouse 1997

Dahl-Jensen et al. 2003

Das and Nolet 1998

DESERT group 2004

Drewry and Mooney 1983

Fliedner and Klemperer 1999

Fountain et al. 1984

Fromm et al. 2004

Giese et al. 1976

Guterch et al. 1999

Guterch et al. 2003

Hale and Thompson 1982

Hamilton 1976

Hart 1969

Heacock 1971, 1977

Hofsetter and Bock 2004

Holbrook et al. 1992

Hole et al. 2000

James 1971

James and Steinhart 1966

Jarchow and Thompson 1989

Julià and Mejı́a 2004

Kimbell et al. 2004

Kinck et al. 1993

Kind et al. 1995

Klemperer and Mooney 1998a, 1998b

Langston et al. 2002

Laske and Masters 1997

Levshin et al. 2005

Li and Mooney 1998

Ludwig and Houtz 1979

Makovsky et al. 1996a, 1996b

Makris 1978

Mechie et al. 2004

Meissner 1973, 1986

Meissner and Bortfeld 1990

Meissner et al. 1987, 1991

Minshull 1993

Mitchell and Herrmann 1979

Mooney and Brocher 1987

Mooney and Meissner 1992

Mooney et al. 2002

Mueller 1973, 1977, 1978

Nakamura et al. 2003

Nelson et al. 1996

O’Reilly et al. 1996

Oliver et al. 1976, 1983

Olsen 1995

Orcutt 1987

Owens and Zandt 1985

Owens et al. 1984

Pakiser 1963

Pakiser and Mooney 1989

Pakiser and Steinhart 1964

Pavlenkova 1996

Petit et al. 1998

Pfiffner et al. 1997

Prodehl 1970, 1979, 1984

Rai et al. 2003

Rao et al. 1999

Rapine et al. 2001

Reddy and Vijaya Rao 2000

Reddy et al. 1999

Regnier et al. 1992

Roecker et al. 1993

Salah and Zhao 2003

Sandvol et al. 1998

Shapiro et al. 2004

Snyder et al. 1990

Steinhart 1967

Steinhart and Meyer 1961

Stern and McBride 1998

Swenson et al. 2000

Thybo et al. 2003

Tilmann et al. 2003

Wang et al. 2003

Woollard 1966

Xu et al. 2002

Yliniemi et al. 2004

Zandt et al. 1995

Zelt and Forsyth 1994

Zhao et al. 2001

Zhu and Kanamori 2000

Zorin et al. 2003
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1.11.5.2 Mid-Ocean Ridges

The concept of seafloor spreading from mid-ocean

ridges (Figure 2) was first proposed in the early

1960s by several workers, including most promi-

nently the American geologist Harry H. Hess (Hess,

1965). Its major tenets gave great support to the

theory of continental drift and provided a conceptual

base for the development of plate tectonics.

Mid-Ocean ridges can be separated into three cate-

gories: fast spreading, intermediate spreading, and

slow spreading. Fast-spreading ridges have a spreading

rate of 8–16 cmyr�1; intermediate- spreading ridges

have a spreading rate of 4–8 cmyr�1; and slow-spread-

ing ridges have a spreading rate of 1–4 cmyr�1 (Perfit

and Chadwick, 1998).

The seismic structure of a fast-spreading ridge

shows that the intrusive zone is only 2–3 km wide,

and normal oceanic crust is found 5–6 km away from

the ridge axis (Figure 13). Directly beneath the ridge

axis, an upper crustal low-velocity zone exists that

corresponds to a zone of partial melting. This seismic

structure is in contrast to the earlier hypothesis that

anomalous oceanic crust extends for tens of kilo-

meters away from the axis of a mid-ocean ridge.

1.11.5.3 Oceanic Plateaux and Volcanic

Provinces

Oceanic plateaux are one type of the Large Igneous

Provinces (LIPs) that cover portions of the oceans

and continents (i.e., flood basalt provinces; Eldholm

et al. (2002), Coffin and Eldholm (1994), Ernst and

Buchan (2003)). While continental flood basalt pro-

vinces were recognized in the early twentieth

century (Holmes, 1918), regions of unusually thick

oceanic crust were not identified until the 1970s.

Edgar et al. (1971) originally discovered an over-

thickened region within the Caribbean Plate, and

when a number of similar features were documented,

they were called ‘oceanic flood basalt provinces’

(Donnelly, 1973). The term ‘ocean plateau’ was sug-

gested by Kroenke (1974) when the Ontong Java

Plateau in the western Pacific was explored using

seismic refraction/wide-angle reflection profiles.

More than 12 oceanic plateaux have been identified

(Figure 14), and these have anomalous crustal struc-

ture in comparison with normal oceanic crust.

The crustal structure of several ocean plateaux

have been resolved using seismic and gravity data,

including recent studies on the Kerguelen and

Ontong Java Plateaux. Farnetani et al. (1996) and

Table 7a Selected papers on oceanic crustal

composition

References Year

Christensen 1972, 1996

Bown and White 1994

Cann 1974

Charvis et al. 1995

Christensen and Salisbury 1982

Condie 1989

Hess 1962

Hyndman 1979

Kempner and Gettrust 1982

Lindwall 1988

Nur and Ben-Avraham 1982

Operto and Charvis 1996

White et al. 1992

Table 7b Selected papers on continental crustal

composition

References Year

Beloussov and Pavlenkova 1984

Blundell et al. 1992

Christensen 1996

Christensen and Fountain 1975

Christensen and Mooney 1995

Christensen and Salisbury 1975

Condie 1989

Downes 1993

Durrheim and Mooney 1994

Fliedner and Klemperer 1999

Fountain 1986

Fountain et al. 1984

Fountain and Salisbury 1981

Goodwin 1991, 1996

Halliday et al. 1993

Holbrook et al. 1992

Jordan 1979

Julià and Mejı́a 2004

Kozlovsky 1987

Kusznir and Matthews 1988

Meissner et al. 2002

Meissner and Mooney 1998

Mooney and Meissner 1991

Nur and Ben-Avraham 1982

Ringwood 1975

Rudnick and Fountain 1995

Sandmeier and Wenzel 1990

Shapiro et al. 2004

Silver and Chan 1988

Sleep 2003, 2005

Smithson et al. 1987

Taylor and McLennan 1985

Upton et al. 2001

Zandt and Ammon 1995

Ziegler 1990

384 Global Crustal Structure



Gladczenko et al. (1997) present models for the

Ontong Java Plateau that show high seismic veloci-

ties (7.1 km s�1) throughout most of the crust. These

high velocities are likely due to the presence of basalt

and olivine–pyroxene cumulates, with high-velocity

garnet granulite in the lower crust. Gladczenko et al.

(1997) suggested that these garnets may have formed

from the deformation and hydrothermal alteration of

lower crustal cumulates.

More recently, measurements of upper-mantle

shear-wave splitting and shear-wave velocity have

suggested the presence of a 300 km thick, long-lived,
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rheologically strong, and chemically depleted

root beneath the Ontong Java Plateau (Klosko et al.

2001). Klosko et al. (2001) further propose that this

chemically depleted root originated from mantle

melting processes, which would contribute lower-

density material to the base of the plateau, increas-

ing the overall buoyancy of the Ontong Java

Plateau.

At the present time, the process of ocean plateau

formation is not well understood. There are a num-

ber of models for how large volumes of mafic magmas

are generated and emplaced by processes unrelated

to ‘normal’ seafloor spreading and subduction (Loper,

1983; McKenzie and Bickle, 1988; Campbell et al.,

1989; Griffiths and Campbell, 1990; Farnetani and

Richards, 1995), but it is not understood why
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these eruptions occur in such a rapid, concentrated

period of time. Most ocean plateaus were formed in a

short time, less than 2–3 My (Coffin and Eldholm,

1994, 2004), which may raise important questions

about mantle processes and source regions (Hart

et al., 1992; Stein and Hoffman, 1994). During the

most recent phase of LIP formation, in the mid-

Cretaceous, the Ontong Java, Manihiki, Hess Rise,

and Caribbean–Columbian plateaus were formed in

the Pacific, while the Kerguelen Plateau formed in

the Indian Ocean (Kerr, 2003).

If the plateaus are accreted adjacent to continental

margins or island arcs, they may eventually signifi-

cantly contribute to the growth of existing and new

continents (Abbott and Mooney, 1995; Abbott, 1996;

Albarede, 1998). Due to their increased thickness

relative to normal oceanic crust, plateaus are espe-

cially buoyant, preventing them from completely

subducting at active margins (Ben-Avraham et al.,

1981; Cloos, 1993; Kimura and Ludden, 1995), and

potentially allowing the top layers to peel off and -

merge with the continental crust (Kimura and

Ludden, 1995).

Ideas about the origin and deep mantle roots of

hot spots and mantle plumes have been debated for

some 40 years (Wilson, 1963), and the deep seismic

structure of these features remains controversial

(Ritsema and Allen, 2003; Montelli et al., 2004).

Currently, there are two different models for the

crust and upper mantle beneath Iceland, one of the

two most prominent hot spots on the planet (the

other being the Big Island of Hawaii). The ‘thin-

crust model’ is based on MT data, heat flow from

shallow wells, petrogenetic models, and seismic data.

It suggests a �10–15 km thick crust under the main

rifting axis of Iceland, with a 25 km thick, older crust

in eastern, western, and north–central regions of

the island. There is also a thin, highly conductive,

molten basaltic layer. The ‘thick-crust’ model is

based entirely on seismic data, and suggests a Moho

depth of 20–40 km. Figure 15 is a schematic cross-

section across the center of Iceland compiling all

available seismic, MT, heatflow, and viscosity data

(Bjornsson et al., 2005). A unique and prominent

feature beneath this hot spot is the continuous good

conductor above the underlying asthenosphere.

Bjornsson et al. (2005) suggest that the 20–40 km

deep discontinuous reflector does not necessarily

represent the Moho, and thus supports the ‘thin-

crust’ model. Further data are need to resolve this

controversy.

1.11.5.4 Ocean Trenches and Subduction

Zones

Geophysical studies of oceanic trenches can be traced

to gravity measurements made by Vening-Meinesz

(1887–1966) in the Indonesian Archipelago in the

1930s. These negative gravity anomalies were inter-

preted by Vening-Meinesz (1948) as being due to

pronounced downbuckling of the oceanic crust. The

detailed structure of oceanic trenches was clarified

from marine seismic profiles that were made 30

years after Vening Meinesz’s pioneering gravity mea-

surements. One of the best-studied trenches is the

Nankai Trough, eastern Japan. Two crustal models

derived from seismic refraction/wide-angle reflection

and gravity data collected across the Nankai Trough

(Figure 16) show the geometry of the subducting

oceanic crust as it descends beneath the Japan volcanic

arc (Figure 16). These models define the geometry of

the thick sedimentary basins that are located between

the Nankai Trough and continental Japan. These

results are typical of many subduction zones, including

the Cascades region of western North America. Due to

the pronounced lateral variations across oceanic

trenches and subduction zones, studies that combine

multiple seismic and nonseismic data have been the

most successful at determining the deep structure

(Wannamaker et al., 1989).
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Figure 15 Simplified cross-section showing the main

structural features of the Icelandic crust and mantle. The left

part of the figure shows a cross-section east and parallel to

the Reykjanes ridge along the seismic profile collected

during the Reykjanes Ridge Iceland Seismic Experiment.

The right part of the figure shows a profile running from

central Iceland into the Iceland-Faeroe ridge. Numbers are

P-wave velocities (normal type font) and resistivities (italic

font). After Björnsson A, Eysteinsson H, and Beblo M (2005)

Crustal formation and magma genesis beneath Iceland:

Magnetotelluric constraints. In: Foulger GR, Natland JH,

Presnall DC, Anderson DL (eds.) Geological Society of

America, Special Paper 388 Plates, Plumes, and Paradigms

pp. 665–686. Boulder, CO: Geological society of America.
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1.11.5.5 Passive Continental Margins

As the name implies, passive continental margins are

boundaries between oceanic and continental regions

where neither collisional deformation nor subduction

is taking place. Despite their present-day tectonic

quiescence, the crustal structure of passive continen-

tal margins is diverse and complex since they are

formed by continental rifting that accompanies the

breakup of a supercontinent, such as Pangea (200Ma)

or Rodinia (750Ma). Prominent examples include

the eastern seaboard of North America, the Gulf

Coast, the Atlantic coasts of Europe, the coasts of

Antarctica, and the east, west, and south coasts of

Africa. Tectonic activity is minimal and erosional

or weathering processes dominate, forming low-relief

geography and increased sedimentary debris. These

sedimentary basins are economically and scientifi-

cally valuable due to their large reservoirs of

hydrocarbon and their recorded history of the rifting

between two continents.

Passive margins are may be divided into two

primary types: volcanic margins and nonvolcanic

margins (White and McKenzie, 1989; Holbrook

and Keleman, 1993: Eldholm et al., 2002). The

North Atlantic margin, formed during early

Tertiary lithospheric extension between Europe

and Greenland, is one of the world’s largest volcanic

margins (Eldholm and Grue, 1994), as is the US

Atlantic margin (Holbrook and Keleman, 1993).
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The extensive volcanic rocks of this margin were

formed by excess melting associated within a wide,

hot zone of asthenospheric upwelling present dur-

ing rifting (McKenzie and Bickle, 1988). In many

cases a high-seismic velocity (7.3 km s�1) lower

crust is also present. Nonvolcanic passive margins

are formed where asthenospheric temperatures

remain lower during rifting. An example is the non-

volcanic margin of the Laborador Sea of

northeastern Canada.

The passive margin between continental and ocea-

nic lithosphere is sometimes characterized by a sharp

drop in elevation and 20–30 km of crustal thinning

over horizontal distances less than �30 km. The

abrupt lateral change in structure is indicated by sev-

eral interpretations of wide-angle seismic and gravity

data (Delhinger et al., 1970; Jones and Mgbatogu, 1982;

Todd et al., 1988; Faleide et al., 1990). A velocity profile

of the passive margin off the Ghana coast is shown in

Figure 17. This African ocean–continent transition

indicates the absence of underplating beneath the

continental basement, due to the lack of high velocities

in the lower crust. See Table 6b for additional refer-

ences on continental margins.

1.11.6 Structure of Continental Crust

1.11.6.1 General Features

Continental crust above sea level comprises 29% of

the Earth’s crust by area, but when submerged con-

tinental crust is taken into account, continental crust

amounts to 41% of the total crust by area. Since some

75% of continental crust is covered either by sedi-

ments or water, geophysical measurements are a very

important source of information about the properties

of the continental crust. Figure 18 shows the age of

the basement of the crust, that is the age of the

crystalline crust beneath the supracrustal sediments.

It is evident in Figure 18 that many continents are

predominentaly composed of Pre-Cambrian shield

and platforms. The deep structure of the continental

crust has been investigated for nearly 100 years,

beginning with the landmark study of Mohorovicic

(1910) that defined the crust–mantle boundary. The

locations of most of the presently available seismic

refraction/wide-angle reflection profiles on conti-

nental crust are shown in Figure 11, and amounts

to several thousand profiles. Table 6c lists many key

papers regarding continental crust studies and

Table 7b lists selected papers on the composition

of continental crust.

Studies of the continental crust using active

(explosive sources) began in earnest in the 1950s

and 1960s (Tuve, 1951; 1953; Tuve et al., 1954;

Steinhart and Meyer, 1961; James and Steinhart,

1966; see also Pavlenkova, 1973; Table 1). These

early studies provided the first clear evidence that

the seismic structure of the crust varied in a systema-

tic way with geologic setting. They also showed that

the crust can be described as consisting of several

layers that are separated by either sharp or transi-

tional boundaries. The existence of crustal layers,

which have a heterogeneous fine structure, can be

viewed as the product of igneous differentiation of

the crust, whereby silicic melts rise into the upper

and middle crust, leaving behind a mafic lower crust.

Igneous differentiation thus leads to a heteroge-

neously stratified crust, with granitic to dioritic

plutons forming the upper layer.

The evidence for distinct layers within the con-

tinental crust depends almost exclusively on the

interpretation of second-arriving phases (wide-angle

reflections). Whereas some regions display clear sec-

ondary phases, in other regions the seismic velocity

may increase gradually with depth, producing no

distinct wide-angle intracrustal reflections

(Levander and Holliger, 1992).

1.11.6.2 Principal Crustal Types

Seismic measurements of continental structure are

best described in terms of the local geologic setting.

The primary crust types are illustrated in Figure 19.

In stable regions the continental crust has an average

thickness close to 40 km, and there are typical crustal

velocities within the upper, middle and lower crust

(Figure 19). Compressional-wave seismic velocities

in the upper crust are 5.6–6.3 km s�1, corresponding

to granitic and meta-sedimentary rocks. At a depth of

10–15 km the seismic velocity commonly increases to

6.4–6.7 km s�1 (the middle crust), corresponding to

intermediate-composition plutonic rocks and amphi-

bolite-grade metamorphic rocks. When the velocity

increase is abrupt, this discontinuity is traditionally

referred to as the ‘Conrad discontinuity’ (Conrad,

1925; Table 1), a term that is now out of date, as it

came into use at a time when the crust was believed

to consist of only two layers, an upper granitic layer

and a lower basaltic layer. We now know from direct

observation of exposed crustal sections and numer-

ous seismic measurements that the crust is much

more complex than this term implies. The lowermost

crust of stable continental regions commonly has a
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seismic velocity of 6.8–7.3 km s�1. The seismic head

wave (or diving wave) that travels within the upper-

most mantle just below the Moho is known as the Pn
phase, for ‘P-wave normal phase’ (Mohorovicic,

1910). This phase has a seismic velocity of 8.1� 0.2

km s�1 in stable continental regions. A wide-angle

reflected phase from the Moho, known as PmP, is

generally clearly observed in active-source seismic

profiles due to the large seismic-velocity increase

(0.6–1.5 km s�1) at this boundary.

Seismic measurements do not have a uniform glo-

bal distribution (Figure 11) which affects attempts to

calculate average crustal properties. The proportion of

continental crustal types, by area, are 69% shield and

platform (cratons), 15% old and young orogens,

9% extended crust, 6% magmatic arc, and 1% rift

(Christensen and Mooney, 1995). Using these

statistics, we calculate a weighted average for

crustal thickness and average crustal velocity. This

procedure corrects for the overrepresentation of
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Figure 18 Basement age of the continental crust, distribution of mid-ocean ridges, oceanic crust, and continental shelf.

The crust is subdivided by age. Pre-Cambrian shields and platforms comprise 69% of the continental crust by area. Seismic

measurements cover much of the Earth’s crust, but gap in coverage still exist (cf. Figure 11). Statistical averages and their

standard deviations for crust of a specific age and tectonic setting make it possible to estimate crustal thickness and velocity

structure in unmeasured regions, as is required to make complete global crust models (Mooney et al., 1998).
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crustal measurements in regions of extended crust,

such as western Europe and the Basin and Range

Province of western North America, and the scarcity

of measurements from Africa, South America,

Greenland, and Antarctica. The weighted mean crus-

tal thickness and average crustal velocity are 41 km

(SD 6.2 km) and 6.45 km s�1 (SD 0.21 km s�1), respec-

tively, as compared with the simple arithmetic average

of 39.2 km (SD 8.5 km) and 6.45 km s�1 (SD 0.23 km s�1;

Christensen andMooney, 1995). The weighted average

is more representative of the average continental crust.

Seismic measurements of the deep crust from

around the world provide a firm basis for defining

the characteristics of primary crustal types associated

with specific geologic settings (Figure 19). The

thickest continental crust (70+ km) is found beneath

the Tibetan Plateau and the South American Andes,

both of which are young orogens. Continental crust

with an elevation above sea level has an (unweighted)

average thickness of 39 km, with a standard deviation

of 8.5 km. Thus, 95% (two standard deviations) of the

crust has a thickness of between 22 and 56 km. The

higher value of this range (56 km) is well below the

70–75 km thickness of some orogens, which indicates

that crustal thickness may not follow a strictly normal

distribution. The thickest crust is usually young

(Late Cenozoic) crust, and undergoes rapid uplift

and erosion which results in crustal thinning.

Continental crust thinner than 30 km is generally

limited to rifts and highly extended crust, including

continental margins. The process of crustal extension

rarely results in uniform stretching of the crust.

Instead, the brittle upper crust fractures and rotates

along normal faults and the middle and lower crust

undergo pure shear extension. Nonuniform crustal

extension over a large region gives rise to Moho

undulations, which in turn drive lateral lower crustal

flow (creep). Thus, tectonic processes can give
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rise to significant changes in the distribution of crustal

materials. Lower crustal flow is not limited to extend-

ing crust; the gravitational forces associated with the

high (4–5 km) topography of young orogens also

drives crustal flow. A prominent example is the

hypothesized southeast crustal flow of the northern

and central Tibetan Plateau into the adjacent conti-

nental crust (Molnar and Tapponnier, 1975).

The deep structure of orogenic crust has been stu-

died in nearly all the mountain belts of the world,

including the South American Andes, Tibetan

Plateau, Western Cordillera of North America, Urals,

and the European Alps (Figure 20). Orogenic crust is

commonly characterized by a highly thickened, low-

density, low seismic-velocity upper crust combined

with strong folding and thrusting (Figure 20). In

some cases it appears that the lower crust is being

subducted into the mantle, possibly aided by a phase

transformation of the mafic lower crust to the dense

eclogite facies (Rudnick and Gao, 2003). Due to the
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Figure 20 Synthesis of the deep structure and seismicity of the central Alps along the profile NRP-20 West (Schmidt and

Kissling 2000). (a) Location map showing the location of the seismic profile. (b) Crustal cross-section (1:1 exaggeration)
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complexity of the crustal and upper-mantle structure,

multiple seismic and nonseismic techniques are needed

to reliably determine the deep structure of orogens.

1.11.6.3 Correlation of Crustal Structure

with Tectonic Provinces

Shields and platform occupy by far the largest area

(69%) of continental crust (Figure 18). These regions

have an average crustal thickness of 41.5 km, very

close to the weighted global average continental crus-

tal thickness of 41 km. Orogens, young and old, show a

wide range of thicknesses, from 30 to 75 km. Extended

crust, as the name implies, has been thinned and shows

an average thickness of 30.5 km. Rifts, both active and

inactive, show a broad range, from 18 to 46 km.

Tectonic provinces commonly have a complex crustal

structure. For example, the Tibetan Plateau ranges in

thickness from 55 to 75 km, and the Kenya rift from 20

to 36 km. Thus, significant variations sometimes occur

within a single tectonic province. A second important

observation is that there are numerous regions with

anomalous crustal thickness. For example, southern

Finland consists of a Proterozoic shield that is nearly

at sea level. Global statistics would predict a crustal

thickness of 41.5� 6.2 km. In fact, in southern Finland

the crust reaches a maximum thickness of 65 km due

to the persistence of an ancient crust root at a

Pre-Cambrian suture zone. This example attests to

the considerable variability of continental crustal

properties.

1.11.7 Global Crustal Models

The studies of the Earth’s crust that have been sum-

marized in the previous sections are sufficient to form

the basis for a global model of the Earth’s crust. One

simple representation is a contour map of global crus-

tal thickness (Figure 21). This map shows several

interesting features. Continental interiors generally

have a crustal thickness of 35–45 km, with the thickest

values beneath the high topography of the Tibetan

Plateau and South American Andes (80 km). Most

continental margins have a thickness of close to

30 km, and the vast oceanic basin are underlain by

approximately 6–8 km-thick crust, plus the 4–5 km

thick water layer. Such a contour map, while present-

ing the main variations in crustal thickness, lacks

information regarding lateral variations in compres-

sional and shear-wave velocity, and density. These

physical properties vary strongly within the upper-

most mantle as well. For this reason, it has proved

valuable to create global crustal models that quantify

not only crustal thickness, but seismic velocities and

density for the entire crust and uppermost mantle.

Figure 21 Global contour map of crustal thickness. Red lines indicate 10 km contour intervals.
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Global models of the seismic velocity and density

structure of the crust have numerous applications in

geophysics. Such models provide regional traveltimes

to determine accurate earthquake locations, and pro-

vide crustal corrections to improve mantle seismic

tomographic models. Furthermore, lateral variations

in mantle density may be inferred from long-wave-

length gravity data if the density structure and

thickness of the overlying crust is known. In addition,

the crustal contribution to lithospheric stress and crus-

tal isostasy can be calculated from crustal thickness,

density, and topography (Mooney et al., 1998).

The earliest 3-D seismic velocity model of the

Earth’s crust dates back approximately 20 years to

Soller et al. (1982) who assembled one of the first

compilations of global Moho and upper-mantle velo-

city. A 2�� 2� cell model called 3SMAC followed

more than a decade later (Nataf and Ricard, 1996).

The 3SMAC model was derived using both seismolo-

gical data and nonseismological constraints such as

chemical composition, heat flow, and hot spot distri-

bution, from which estimates of seismic velocities and

the density in each layer were made. Two years later,

CRUST 5.1 was introduced (Mooney et al., 1998)

incorporating twice the amount of active-source seis-

mic data as 3SMAC. Statistical averages were

calculated for the different tectonic regions

(Figure 22) and these average models were used in

regions with no direct seismic measurements.

However, the 5�� 5� resolution was still too coarse

for regional studies. In 2000, CRUST 2.0 updated the

ice and sediment thickness information of CRUST 5.1

at 1�� 1� resolution, and presented crustal thickness

data onto a 2�� 2� grid (Figure 23). In addition,

several high-resolution regional compilations of

depth-to-Moho values have been developed for

Europe (Meissner et al., 1987; Geiss, 1987; Dèzes and

Ziegler, 2001; Ritzmann et al., 2007) and the Middle

East and North Africa (Seber et al., 2001).

Other published crustal models include

WINPAK3D ( Johnson and Vincent, 2002) and

WENA 1.0 (Pasyanos et al., 2004), which provide an

estimate of the velocity and density structure of the

upper lithosphere (i.e., whole crust and uppermost

mantle, Pn and Sn velocity) for specifically defined

geophysical regions. These models are based on inde-

pendent compilations of sediment, crust, and mantle

models and data previously constructed or collected

within these regions. Pasyanos et al. (2006) describe a

probabilistic inverse technique that allows for the use

of multiple data sets in regional or global model build-

ing. Complete crustal models can be used to compare a

variety of empirical observations over large geographic

areas, to test the propagation of seismic waves, and to

serve as starting models for tomographic inversion

techniques. Tables 8a and 8b list select references on

global and regional crustal models, respectively.

1.11.7.1 The Sedimentary Cover

The sedimentary cover plays an important role in

global crustal models because these materials have

low seismic velocities and low densities. Thus, the

sedimentary cover can have a large influence on

traveltimes of seismic body and surface waves, as

well as on the global gravity field.

Although sedimentary rocks cover most of the

ocean floor and nearly three-quarters of continental

surfaces, they are estimated to constitute only 5% of

the upper 16 km of the crust by volume (Rudnick and

Gao, 2003). This volumetric estimate is based on a

variety of sources: (1) direct calculation from exposed

stratigraphic sections or boreholes, (2) seismic reflec-

tion and refraction surveys, and (3) geochemical

analyses including dissolved sodium or potassium in

seawater than can be traced to total sediment-sedi-

mentary rock volume. Taylor and McLennan (1985)

and Rudnick and Gao (2003) use geologic data to

estimate the abundances of common sedimentary

rocks. The average abundances from these authors

are 75% shales, 12% carbonates (limestone and dolo-

mite), 10% sandstones, and 3% evaporates.

Sedimentary rocks, especially fine-grained shales or

mudstones, are subject to postdepositional processes

such as diagenesis, metamorphism, and alteration by

oceanic water (Rudnick and Gao, 2003). These pro-

cesses increase rock density and seismic velocity.

1.11.7.2 The Crystalline Crust

and Uppermost Mantle

A complete global P- and S-wave crustal (and upper

lithospheric) model is based on three types of infor-

mation: (1) synthesizing existing models, such as

WENA 1.0, the Barents Sea model (Ritzmann et al.,

2007), and WINPAK; (2) seismic tomography data,

and (3) an ongoing compilation of published seismic

models for the crust, based on active- and passive-

source seismology (Figure 11). Thus, in addition to

results from controlled sources, the model also incor-

porates results from receiver function analysis,

surface-wave dispersion analysis, and seismic

tomography.

Global Crustal Structure 395



After compiling all of the existing regional models,

the models are then compared and evaluated based

on their technique and data quality. Separate

databases are constructed for each technique, for

example (1) active-source models, (2) surface-wave

models, (3) seismic tomography models, and (4) recei-

ver function models. Integration of such varied models

requires some discrimination of data and model qual-

ity, and a suite of models emerges from which a ‘best

fit’ composite model is developed. Discrepancies

between input models are resolved based on the best

available data, which must occasionally be decided

subjectively.

In the 2�� 2� mode CRUST 2.0 (Figure 23), the

Earth’s crust is divided into eight layers: (1) ice, (2)

water, (3) soft sediments, (4) hard sediments, (5)

crystalline upper, (6) middle, and (7) lower crust,

and (8) uppermost mantle. Both P- and S-wave velo-

cities and estimated density are specified in each

layer.
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Figure 22 Histograms of crustal thickness for six continental tectonic provinces calculated from the individual point

measurements (Figure 11). Average and standard deviations are indicated. These histograms indicate systematic differences

among tectonic provinces, and provide a basis for extrapolating crustal thickness into unmeasured regions.
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Layers 1 and 2 are the easiest to determine. Ice is

only found near the poles, and in high regions such as

the Himalayas. Efforts to determine its thickness are

straightforward and relatively expeditious. Water

depth is also relatively easy to interpret at 2�� 2�

using the ETOPO 2 model of the National

Geophysical Data Center (2004). Both soft and hard

(unconsolidated and consolidated, respectively) sedi-

ments are determined as these represent two distinct

layers (3 and 4) in the model.

Layers 5–8 are determined from the compiled

global crustal structure database and regional models.

At present, the largest global crustal structure data-

base of active-and passive-source measurements of

the structure of the upper lithosphere includes more

than 9200 data sets (almost 10 times the number

available for CRUST 5.1). This is more than suffi-

cient to build a 2�� 2� crustal block model.

Using the criteria set forth in the construction of

CRUST 5.1 and other similar models, one of a series

of primary crustal ‘types’ is assigned to each cell.

There are approximately 400 different crustal

model ‘types’ used in the 2�� 2� global model.

Once the global crustal structure model has been

compiled, the model must be evaluated. Model test-

ing is generally based on a comparison of Pg (Sg), and

Pn (Sn) traveltime predictions, with some empirical

observations. Another useful test is a comparison with

high-frequency Love wave phase velocities. Tables

8a and 8b lists the currently available global and

regional crustal models. Updates to these models

appear on a regular basis.

1.11.8 Discussion and Conclusions

Seismological studies of the crust and uppermost

mantle began in the first decade of the twentieth

century (Mohorovicic, 1910). Over the next 60

years a wide range of studies (Table 1) defined the

gross properties of the crust. The past 35 years have

seen a pronounced increase in lithospheric studies,

with the development of such techniques as seismic
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Figure 23 Crustal thickness provided by the 2� �2� CRUST2.0 model (Bassin et al. 2000). The locations of seismic profiles

used to make this model are shown in Figure 11. Typical crustal velocity models are summarized in Figure 19. The crustal

structure is estimated in regions with no seismic measurements using the statistic averages illustrated in Figure 22. This crustal

model is useful to make crustal velocity (P- and S-wave) or density corrections in many types of geophysical models.

Table 8a Global crustal models

References Year

Bassin et al. 2000

Laske and Masters 1997

Mooney et al. 1998

Nataf and Ricard 1996

National Geophysical Data Center 2004

Soller et al. 1982

Tanimoto 1995

Table 8b Regional crustal models

References Year

Bungum et al. 2005

Mooney and Braile 1989

Pasyanos et al. 2004

Ritzmann et al. 2007

Van der Lee and Nolet 1997

Walter et al. 2000

Warren and Healy 1973

Global Crustal Structure 397



reflection studies of the deep crystalline crust,

receiver function analysis, and earthquake tomogra-

phy and high-resolution surface-wave inversions.

These advances have been matched by extensive

laboratory studies of rock velocities and densities,

and nonseismic geophysical studies using gravity,

magnetic, and geoelectrical methods. Geophysical

studies of the crust and subcrustal lithosphere have

become so numerous that it is difficult for any

individual or research group to keep abreast of all

recent results. This highlights the need for a search-

able databank of geophysical results, whereby it

would be possible to sort by technique, location,

depth of penetration, crustal age, or geologic and

tectonic setting.

The process of synthesizing global studies of

crustal structure is more than 20 years old

(Soller et al., 1982) and numerous regional and

global models have become available (Tables 8a

and 8b). Until recently these models have been

largely based on seismic measurements of compres-

sional-wave velocity (Vp), with the shear-wave

velocity (Vs) and density estimated using empirical

relations. Future models should be able to rely more

heavily on measured shear-wave velocities.

Estimating deep crustal density will continue to be

a challenge, but is greatly aided by borehole and

laboratory measurements. The use of multiple seis-

mic data sets in constructing regional and global

crustal models will be aided by the use of inverse

techniques (Pasyanos et al., 2006).

As high-resolution surface-wave models become

available, it will be possible to directly compare

regional models derived from body-wave studies

with models derived from surface waves. Likewise,

nonseismic methods are rapidly developing, includ-

ing satellite observations of long-wavelength gravity

and magnetic fields. The synthesis of all of these

methods promises to provide ever-increasing resolu-

tion on the global structure of the Earth’s crust and

subcrustal lithosphere.
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