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Course Outline:

Thermo-physical structure of the continental and oceanic crust
Thermo-physical structure of the continental lithosphere
Thermo-physical structure of the oceanic lithosphere and oceanic ridges
Rheology and mechanics of the lithosphere

Plate tectonics and boundary forces

Hot spots, plumes, and convection

Subduction zones systems

Orogens formation and evolution

Sedimentary basins formation and evolution
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Convection and Conduction

Conduction Convection
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Convection and Conduction
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Convection

Convection: fluid flow driven by internal buoyancy (B)
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Am = mass anomaly due to a volume V with a density difference induced by temperature, p = p,[1-a(T-T,)], and/or composition

 Mantle is sufficiently compressible to originate adiabatic temperature gradients. Olivine—spinel and spinel—post-
spinel transitions provided the benchmark temperatures of 1600°C at 400 km and 1700°C at 670 km.

(dT/dZ), = Tag/C, ~ 0.5 — 0.6°C/km



Thermal regime of the deep interior
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e Factors that could inhibit a mantle-wide convection are (1) a viscosity increase with depth, (2) a phase change with
an inclination of the Clapeyron curve sufficiently negative and (3) the lack of mixing between chemically different
layers.

* Phase changes are not an obstacle to convection, since Claperyon curve is positive for the transition olivine-spinel
(dP/dT= 3MPaK1) and slightly negative for the transition spinel-perovskite (dP/dT= -2MPaK1) .



Convection model

Balance between buoyancy forces (B) and viscous resistance (R):

Motion of the plate (subducting slab) is resisted by the viscous stresses (proportional to velocity) accompanying mantle flow
Buoyancy B = -gDd paAT

with AT the average difference in temperature between the descending lithosphere and fluid interior (T) ~T/2 (B = -gDdpaT/2)
and d, thickness of the subducting lithosphere (of the layer that diffused), depending on time (t) spent at the surface t = D/v:
d = (xt) Y2 = (xkD/v)*/?, with xthermal diffusivity.

@ _ _T=0
The resisting viscous stress oacting on the side of the descending slab is estimated 2 R T — i\“{ —_—
from a characteristic velocity gradient (2v/D): c=u2v/D B “‘"“::\\T \ f‘_//’ N
e
Viscous resistance R (per unit length)= D2 uv/D= 2 uv A
N
Balance between two forces: B+R=0 if v =-gDdpaT/4u D
v=D(gpaT(k)¥%/4 )% ) T=0
d
H
For D= 3000 km, p= 4000 kg/m3, o =2 x 10°/°C, T = 1400 °C, k=10°m?/s and u=10??Pa s v
v =2.8x10°m/s =90 mm/yr (close to velocity of plate motion)
Tz T u ‘i
The onset of convection is given by the Rayleigh Number: D
Rayleigh Number: R, =gpaTD3/xp For the mantle R, = 3 x 106
(4
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Heating modes

>  Active upwelling: heat enters from below and there is no heat generated

within.

Passive upwelling: a fluid layer is heated from within by radioactivity and the
cool fluid sinking form the top boundary layer drives circulation. In this
condition, upwellings would be a passive response rather than involving
positively buoyant material.

Active and passive upwelling: the heat input to the fluid layer might be a
combination of heat entering from below and heat generated within.

The upper thermal boundary layer conducts outward both the basal and
internal heat and thus develops a greater temperature drop than the basal
boundary (no symmetry between upwellings and downwellings).

If the layer covects more vigorously, the thickness of the layer having homogeneous T will increase, the thermal boundary layers will be
thinner and the temperature gradients through them will be higher, driving larger heat fluxes.



Convection and plate tectonics

. Cold, stiff, brittle A
Convection mode depends mostly on:
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Internal
* The presence of cold high viscous lithospheric plates (plate-scale flow) heating
* The viscosity variations in the mantle

* The presence of transformation phases in the mantle

Weak heating, low viscosity

Tensile stresses in the interior of supercontinents depend on the size of the plate, the Rayleigh number of mantle convection,
the viscosity profile of the mantle, and the amount of radioactive heat present.

o The plates are an integral part of a convection system: stresses are transmitted through the viscous mantle as well as
through the elastic plates.

o Evidence from seismic tomography and the gravity field supports the possibility that there is a large mass flow through the
mantle transition zone, and that mantle convection occurs as a single layer rather than two.

Several mechanisms produce convection patterns that promote the growth and dispersal of supercontinent:

* The insulating properties of large masses of continental lithosphere create mantle upwelling beneath their interiors.

e Large plates also prevent the mantle beneath them from being cooled by subduction, which further promotes upwelling.

* Sites of downwelling may be controlled by the intrinsic buoyancy of continental lithosphere, which tends to concentrate
subduction zones along continental margins.



Convection and plate tectonics

Cold, stiff, brittle

Internal
heating

Weak heating, low viscosity

Role of internal heating:

Due to internal heating, plate motion is characterized by episodic reversals in direction as mantle circulation patterns change from clockwise
to counterclockwise and vice versa (plates suddenly change direction on timescales of some 300 Myr):

 The downwelling of cold material at one edge of a plate can entrain hot material that is trapped below the plate and drag it into the lower
mantle. The hot, buoyant material then begins to ascend as the drag of the cold downwelling wanes.

O The ascent of hot material pushes the plate laterally and induces new cold downwelling on the other side of the plate, beginning a new
cycle of upwelling and plate motion in the opposite direction.



Convection and plate tectonics
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A wide insulating lid (during supercontinent assembly) warms the mantle beneath it and the entire interior of the Earth:

* It may cause plumes localization and would explain the flood basalts with supercontinental break-up.

* Presence of the lid prevents the heat from escaping to the surface (as under the oceans).

* It makes the cooling effect of subduction absent.

* It influences the formation of elongated large-scale cells with a size dependent on the width of the insulating lid (it increases the mean
temperatures of the convective fluid layer).

Very large continent can cause drip-type instabilities associated to small-scale convention cells (L < 1000 km) and thus form intracratonic
basins depocenters.



Hot Spot, mantle plumes, and Large Igneous Provinces (LIPSs)
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Plumes
Hot mantle rocks (200-300°C higher than surrounding
mantle), not molten, because of the high pressure, arising
from the base of the lower mantle (D"’ Layer) or shallower
depths.

 Depth formation of mantle plumes is imaged by the
seismic tomography and reflected by the geochemistry.

* Hot spot lifetime is about 100 Myr.

 The influence on the Earth energy budget of the heat flux
carried by mantle plumes is of = 2-4 TW < 10% of the
global heat flow.



Nature of layer D”’

* The upper boundary of the layer D” is characterized by a velocity discontinuity, below which there may be an increase (e.g., beneath regions

where there are subducting slabs) or decrease in the seismic velocities.

* Mineralogical explanations of the D” discontinuity focuses on the transformation from perowskite to the postperowskite phase.
* In a5 to 50-km-thick layer immediately above the core—mantle boundary there is often a zone of ultra-low seismic velocities, with decreases
in the shear wave velocity of 10-50% (most extensively developed beneath major hotspots). This implies partial melting with more than 15%

melt.

* Lateral and vertical variations within layer D” may be caused by variations in chemical composition, mineralogic phase changes (due to the
mixing of molten iron from the core with the perovskite of the mantle to form new high-pressure minerals) and/or varying degrees of partial
melting and T differences. The result would be a chemically distinct, high-density layer but with a low viscosity.
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Hot Spot and geoid anomalies

* Hot spot are concentrated in correspondence of geoid bulges

* Oceanic hot spot are rich of incompatible elements and high
isotopic ratio of 87/Sr/20Sr, 18/0s/1880s, and 3He/*He indicating the
influence of a lower mantle source.
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Superswells

Superswells represent clusters of hot spots in a restricted geographical region of anomalously high elevation, extending several hundred km
beyond the area of excess volcanism, which cannot be explained by crustal thickening, examples are the Africa and the South Pacific,
characterized by slow seismic velocities both in the upper and lower mantle, related to the anmalous high temperatures.

The hot spot in the south Pacific have anomalously low seismic wave speeds in the mantle, suggesting an origin involving anomalously low
densities but without substantially thinned lithosphere. The African Superswell, on the other hand, does not show a seismic anomaly in the
upper mantle but rather a broad columnar zone of slow velocities in the lower mantle, both of compositional and thermal origin.

In general, if a swell forms at a hot spot, it decreases in height with time and can no longer be detected when reaches an age of 80 Myr, (or
even <50 Myr). On the other hand, the young Madeira and Canary hot spots do not show any swell.

Global seismic tomographic image of shear-wave velocities
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Ultra Low Velocity Zones (ULVZ)

y SW Offset . . . .
' Hawailan e ULVZ have a variable topography: 5-25 km, which result in different
Plume magnitudes of velocity anomalies, related to temperature or
| composition (increase of iron).

* Hot anomalies are shaped by lower mantle processes.




ULVZ Location

= JLVZ detected
= no ULVZ detected
maybe ULVZ

Yu and Garnero, 2018, G3, 19.



ULVZ Origins
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Outer Core Yu and Garnero, 2018, G3, 19.

a) ULVZs have been reported to exist beneath surface hot spots, associated with mantle plumes. (b) Compositionally distinct ULVZs advect to
the margins of thermochemical piles (c) ULVZs in relatively cold regions might be due to deeply subducted oceanic crust, or possible
accumulated products of chemical reactions between the core and mantle.(d) The possibility of widespread thin ULVZs.



Geophysical characteristics of hot spots
Orientation and Age

* Hot spots erupting on the Pacific Plate tend to form linear chains of volcanoes, often having a monotonic age progression. In some cases the
most common age pattern is nearly synchronous volcanism at several volcanic centers along the chain, with short age progressions. However,
the sequence of hot-spot eruptions is not completely random in space or time.

* Long-lived (>50My) age-progressive volcanism occurs in 13 hot spots, defining a kinematic reference frame that is deforming at rates lower
than average plate velocities. Over geologic time there has been significant motion between the Indo-Atlantic hot spots, the Pacific hot spots,
and Iceland. Short-lived (<22My) age progressions occur in at least 8 volcano chains.

* The Yellowstone hot spot is the only continental hot spot showing a clear age progression. The effective speed of the hot-spot track is 4.5 cm
yr1, which is interpreted to include a component of the present-day plate motion (2.5 cmyr?) and a component caused by the Basin and
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Geophysical characteristics of hot spots

Heat Flow
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There are modest (10-25%) heat flow anomalies associated with hot spots,
suggesting that the low-density material is at least partially thermal in origin.
However, the effects of near-surface fluid circulation effectively mask much of the
spatial and temporal pattern of any thermal disturbance.

Heat flow variations over Hawaiian swell controlled by near-surface processes, not
plume properties: areas of high conductivity act as radiators while areas of low
conductivity act as insulators, producing nonuniform conduction of heat to the
seafloor that is controlled by variations in thermal conductivity.

Lines on the upper panels show the theoretical variations in heat flow expected if the hot spot
reheated the lower lithosphere to asthenospheric values (1350°C) as it passed over the thermal
source. The amount of thinning assumed is 60km (solid line), 50km (dotted line), and 40km
(dashed line).



Geophysical characteristics of hot spots
Magmatic Underplating

VE=1:5
R
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e * Intrusive volcanism and underplating are characteristic for most of the

= volcanic provinces, which were located above a hot spot at the time of
their formation.

* The seismic velocity of the underplated material suggests that the hot
spot produced melt buoyant enough to rise through the upper mantle
to the base of the crust, but not sufficiently buoyant to rise above the
crust—mantle boundary.

* Underplating may be associated with later stages of hot-spot volcanism

(Canary HS) (e.g., Hawaai and Ninetyeast Ridge), but the existence of underplating

el beneath the currently volcanically active La Reunion demonstrates that

subcrustal intrusions can occur during the primary edifice building
stage of hot-spot volcanism.

Josephine Smt.
204 Hawaii Peirce and Barton, 1991
Lindwall, 1988

Gran Canaria
(Canary HS)

Yeetal, 1999

upper crust
B lower crust
I underplating

OO ? underplating ?
Ninetyeast Ridge

% Great Meteor Smt.
Weigel and Grevemeyer, 1999
(Kerguelan HS)

T McNutt and Caress, 2007, Treatise ofGeophysics, vol. 1

Marquesas Isl.
Caress et al., 1995




Seismic Velocities

P-wave tomographic images in map view around the Hawaiian hot spot

Depth (km)

Geophysical characteristics of hot spots

* A hot spot having a plume origin must show continuous low shear velocity in the underlying upper and lower

mantle.

* There are only a few hot spots that match this criterion (Afar, Bowie, Easter, Hawaii, Iceland, Louisville,
McDonald, and Samoa), out of the 37 considered.
* In several cases, the anomalous seismic structure extends well below 410 km producing a deepening of the
discontinuity defining the top of the transizion zone, but not the updoming of the discontinuity of defining its

bottom.

* Using broader criteria based on seismological, other geophysical, and helium isotope data, Afar, Easter,
Hawaii, Reunion, Samoa, Louisville, Iceland, and Tristan are likely to be of plume origin.
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Plume generation
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(a) The buoyant fluid is hot, and the plume viscosity is about 1/300 times that of the surrounding fluid (the column has a large, nearly spherical
head at the top with a very thin conduit or tail connecting it to source).

(b) The injected fluid is cooler and thus denser and more viscous than the ambient fluid (the diameter of the buoyant columns is fairly uniform
over its height).



Plume generation

* Plume’s diameter depends on (1) the volume flux and temperature excess of the source (2) thermal and viscosity
properties of the lower mantle into which plume starts to ascend.

* Plume’s head grows by entrainment as it ascends through the mantle (then as a function of distance travelled).

Plume heads slow down by the viscosity of the surrounding mantle:
* Expansion of the head (slower upward motion compensated by the faster tail)

E +pv oceanic crust 2 s=1000km
=dceX —
u=viscosity asthenosphere
a=constant hesd
P=pressure plume head
V=activation volume /
E=activation energy deeper
mantle
A
Activation enthalpy: H=E+PV \
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Plume generation

Plume tails become thinner by decreasing plume’s viscosity

1/1

4 Ma 43 Ma

0 Temperature (°C) 1846

0 Temperature (°C) 1700

Plume heads have a larger buoyancy which is more capable of penetrating resistance than a narrow column.



Plume generation

Effects of depth dependence of viscosity and a phase transformation on the plume

78Ma 94Ma 98Ma 106Ma 114 Ma 137 Ma

I
0 Temperature (°C) 1846

* The viscosity increases by a factor of 20 at 700 km and exponentially by a factor of 10 below.
* The effect of a phase transformation at 700 km depth is simulated with a moderately negative Clapeyron slope of -2MPa/K.



Plume generation
Effects of depth dependence of viscosity and a phase transformation on the plume

B= 0P /0T > () « A poitive Clapeyron slope causes a negative buoyancy force (broad arrow) that
would add to the negative thermal buoyancy of the cold slab, aiding its descent.

* A negative Clapeyron slope delays the transformation to greater pressure and
depth within a descending slab, producing a positive buoyancy that would oppose
the slab's descent.

* In cold subducted lithosphere T may be too low for the thermally activated
reactions to occur. Thus, the phase would persist metastably, producing a positive
buoyancy that would always oppose the descent of the slab.

* The mechanical strength of subducted lithosphere may be sufficient for stresses
from 410 km to be transmitted to 660 km, so the opposing buoyancies from the
different depths will also tend to cancel.

-1.0 Log Viscosity 3.0 0.0 Temperature (°C) 1800

* In a hot rising column of mantle a positive Clapeyron slope would cause the transformation at a greater depth, yielding a
positive buoyancy that would enhance the column's rise, while a negative Clapeyron slope would inhibit its rise.



Phase Transformations and Clapeyron Slope
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* Olivine -> wadsleyite reaction has a positive Clapeyron slope of ~3 MPa/K (esothermic reaction)
* Pyroxene -> majorite transformation may have a strongly negative slope (net effect unclear).

800

o Mg-perovskite Phases transformation at 660 km:
Ca-

- o Ringwoodite -> perovskite + magnesiowiistite transformation has a negative Clapeyron slope of ~ -2
p| MPa/K (endothermic reaction).

1000 : : ' : * Garnet -> perovskite transformation may have a strongly positive Clapeyron slope (about 4 MPa/K)

and a substantial density increase, yielding a negative buoyancy in opposition to the transformation

of the ringwoodite component (net effect unclear).

The effect of a phase transformation may be significant in 2D, constant viscosity model, but less significant in 3D and with T
dependent viscosity.



Hot spot tracks

Hot spots form tracks on the ocean floor in response to the motion of the ocean plate

Pacific Plate drifts over the plume at a rate of ca. 100 km in 1Myr

Hawaai (6000 km-long track) India

Maldives Ridge and the Ninetyeast
Ridge were generated by the hot
spots of Réunion and the Kergueles.
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Hot spot tracks
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* The plate boundary shifted 30 Ma, and the hot
spot Tristan da Cunha tracked across only the
African Plate.

The hot spot of Trindade in the South
Atlantic left a track during the
Cretaceous when the Brazilian Shield
drifted over the hot spot.

As North America moved across the
hot spot for 100 Myr during the
Jurassic and Early Cretaceous, a 4000
km-long track was formed that extends
from Hudson Bay to New England.



Iceland hot spot

Iceland is a product of the activity of a mantle plume, which ca. 80 Myr (Late Cretaceous) was located below Western
Greenland and the Canadian Arctic.
The young mid-ocean ridge came under the influence of the mantle plume in the Eocene ca. 30-40 Myr.

Greenland Iume tracks
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Symmetric and Asymmetric Plumes

’QA/ plumes 0 Plumes rising from the edges Plumes rising from the center
A A
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* If the density anomaly has steep edges, the
plumes will rise preferentially near the edges.

* The mantle flow and the subducting slabs
influence the symmetry of the pumes.
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Azores: hot or cold spot?
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Basalts of the Azores contain three to four times the amount of water as normal basalts of mid-ocean ridges indicating

a “wet” melting region.



formation of large basalt plateaus
= 2 zndwpi‘

formaticn rate of cczanic crust [km*/year]

— |30

— |20

total world

surface temp

— |20

— |200

— |100

at ighll

elevation of sea level [m]

reversaks of the Earth’s magnetic fisld (magnetization noemal

Ma| 140

Jur,

120 100

Crataceous

60

— |10 cezanic plateaus and volzano chains
-___I—_|... =

to present ['C)

.......

| reverse [])

40 20

Terthary

{(a]

10°Mg Ma™

(d)

10 km*Ma™'

-
(LN

Reversals Ma ™'

Cretaceous Superplume event

High-latitude surface

temperature

Superplume

SRS, S

I
L
|
|
|
|
I
|
|
|
}

1
: -l
|

N

| B

( N\L

)

150

Sea level
: ~

N

s

¢

-
w
o

Black

Shales

o s ' s et e - e il .
B

f

Oceanic crust
~production

% Reversal rate

W

N,

\\.

S s

50

100
Age (Ma)

150

Cenozoic

Cretaceous

The Cretaceous from ca. 125 Myr to 85 Myr was a time of extremes:
extreme conditions were caused by the exceptionally high activity of
mantle plumes that resulted in many large and unusually productive
hot spots on the surface.

The total production of oceanic crust increased, within a time interval
of only a few million years, from around 20 km3/yr to ~35 km3/yr.

At the high latitudes the surface T of the Earth increased by about
10°C (as shown by oxygen isotope measurements). This effect was
probably caused by the release of large amounts of CO, during the
volcanic eruptions, which created an enhanced “greenhouse”.

The rates of carbon and carbonate sequestration in organisms
increased due to the larger area of shallow seas and the increased T.
Alternatively these processes can be ascribed to a general
reorganization of plates on a global scale associated with the break-up
of Pangea and reorganization of the Pacific plate, which determined a
passive upwelling of the asthenosphere.



Other possible mechanisms for intraplate volcanism

Fixed hot-spot model fails to explain:

(1)

(2)
(3)
(4)

Observed departures from linearity of individual volcanic chains and inconsistent orientations among multiple chains which lie on the same
plate;

Short-lived chains and ones which fluctuate in size;

Violations of predicted along-chain age versus distance behavior;

Some linear volcanic ridges in the Pacific form much more rapidly than would be predicted by fixed hot-spot model and display
intermittent volcanic activity with longevities shorter than 40 Myr.

Other Hypotheses:

Diffuse plate extension has been thought as a possible mechanism of intraplate volcanism or as alternative (1) cracking of the lithosphere
under the action of thermal contraction (inconsistent with low seismic velocities beneath the volcanoes), (2) decompression melting in
small-scale convective upwellings.

In oceanic lithosphere, decompression melting may be possible only in regions where a large-scale mantle upwelling can counteract
conductive cooling, keeping the mantle at its solidus temperature over some depth range.

In the absence of a large-scale upwelling, buoyant melting may not occur spontaneously but may be triggered by some initial upwelling due
to relief on the bottom of the lithosphere.

Melting beneath spreading centers should produce a compositional lithospheric layer that is both more viscous (because of de-hydratation)
and compositionally buoyant of a thickness comparable to the maximum depth of melting beneath a spreading center.



Melt generation during continental extension

* Amount of melt generated during the lithospheric stretching depends on the T, of the asthenosphere (T that the
asthenosphere would have if brought to the surface adiabatically without melting) and amount of stretching.
* Llarge T, increases the amount of MgO and decreases NA,O (from alkali basalts to tholeites)

For =2, T,= 1400°C (due to plume activity), and L= 100 km, Thick;,= 2 km
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Melt generation during continental extension
* For a thermally normal asthenosphere (T, = 1300°C), no melting occurs unless stretching exceeds values of 2.0.

 The contribution of heat flow from melt lasts several years after the rift episode and even for larger periods than the
characteristic thermal time or the solidification time of the melt layers.

20 =

Partial melting (%)
o
|

Depth (km)

Partial melting as a function of depth at various amounts of extension g (1.5, 2.0, 2.5, 3.0, 4.0 and 5.0) and for
asthenosphere T, (1300, 1350, and 1400 °C).



Dynamic topography

Vertical displacement of the Earth’s surface generated in response to flow within the mantle

VISCOSITY DYNAMICAL CONSEQUENCES . . . .
STRUCTURE —— * Dynamic topography is transient and is usually of the order of few hundred meters

Hotspots Ridge
(300-500 m).
* Response time of the mantle to a disturbance depends on its viscosity and
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— é wavelengths of the anomalous body (e.g., A 1-3 x 102 km, t= 10 yr).
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Dynamic topography

Buoyancy in a fluid layer deflects both the top and the bottom surfaces of the fluid and the combined weight of the

topographies balances the internal buoyancy.
The amount of deflection of each surface depends on the magnitude of the viscous stresses transmitted to each surface,

which depends on the distance from the buoyancy to the surface and viscosity.

Dynamic topography P1 ATMOSPHERE/OCEAN

-_____; _ —




Dynamic topography
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Surface is weekly uplifted if the plume head is within the lower mantle (-25 Myr).

Surface uplift takes place rapidly when the head’s plume reaches the asthenosphere.

Maximum uplift depends on (1) penetration of the hot plume into the cold lithosphere (2) a volume increase caused by
melting (when it reaches shallow depths).



Plume and topography

Viscous plume and Non-Newtonian plume and
a mono-layer viscous lithosphere a multi-layer
Hawaiian Ridge brittle-elastic-ductile lithosphere
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Burov and Cloetingh, 2009, Geophys. J. Int., 178

The conventional models predict only long-wavelength (controlled by the plume head size) isostatic topography due to
plume impact.
Accounting for plate rheology and multilayer lithosphere structure yields a more complex response, with several short-

wavelengths generated by intraplate deformation, tectonic-style deformation at surface and strong lithospheric mantle
erosion at depth.



Plume beneath a craton
(Tanzania Craton)
-

T —————— = < ——— * The Tanzanian craton is surrounded on both sides by
A ! active rift branches: (1) the magma-poor western rift
------- ? exhibits low-volume volcanic activity, large (M>6.5)
e magnitude earthquakes, and hypocentre depths
reaching 30—40 km, and (2) the magma-rich eastern rift
is characterized by a broad zone of shallow (5—-15 km)
and lower magnitude seismicity, but voluminous
Cenozoic volcanism.
e Surface topography first reacts by domal uplift, soon
after (<1Myr) replaced by subsidence and coeval
Distance (k) After 10 myr l initiation of long and narrow rifted basins on either side
. of the craton.

e These basins form above a thinning lithosphere,
creating channels for the subsequent migration of

s | mantle plume material.
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Koptev et al., 2014, Nature Geoscience

Width (km)

The plume is deflected by the cratonic keel and preferentially channelled along one of its sides, leading to the coeval
development of magma-rich and magma-poor rifts along opposite craton sides, fed by melt from a single mantle source.



Plume and topography

Burov and Cloetingh, 2009, GJI, 178 Young lithosphere (60 Myr old)
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blue — upper and lower crust; purple — lithosphere mantle; green — sublithosphere mantle; yellow — plume; orange — marker layer at the bottom of the mantle.

* The ascending plume head first (<1 Myr) produces large scale (A>1000 km) relatively small amplitude a (h <1 km) uplift superimposed by
short-wavelength tensional and locally compressional crustal instabilities (A<50 km, h <100 m). This deformation is soon followed (after 1
Myr) by a higher amplitude tectonic scale uplift (A=250-300 km, h ~2 km), superimposed by amplified short-wavelength crustal
deformation (A <50 km, h ~ 300 m).

* To preserve high topography, the effective viscosity u of the sub-brittle lithospheric layers should be high enough (e.g. >10%3 Pa s),
differently the topography would flatten by gravity driven flow in less than 1-2 Myr.



Plume and topography

Burov and Cloetingh, 2009, GJI, 178 Old lithosphere (150 Myr)
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The plume head intrudes at a large scale in the lithosphere and produces rifting with flexural-scale rift shoulders.

The topography has a large-scale uplift of 600 km wide, with amplitude of up to 3—4 km, with inside a 2 km deep rift basin of 250-300 km
width.

The plume continued spreading at 5.6—6 Myr, moving further toward the surface and producing a subduction-like down thrusting of the
mantle lithosphere to 400 km depth and a large wavelength uplift in an area of >1000 km wide, with a vertical amplitude of 3 km,
overprinted by a 300 km wide rift-type basin with a depth of about 2 km.



Plume and topography

Final surface wavelengths are controlled by the mechanical properties of the lithosphere
Burov and Cloetingh, 2009, GJI, 178 Very old lithosphere: 1000 Myr
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* As the age of the lithosphere increases, the mantle-downthrusting produced by the plume head remains very significant but the
amplitude of the surface expression is smaller (0.5 km), while its wavelength is larger (>600 km).
* Periodic surface undulations with a wavelength of 300 km (produced by very strong crust) are also observed.



Can a mantle plume induce subduction?

(a) Oceanic lithosphere Intermediate downthrusting
a1l «Young» (30 Ma) Shallow downthrusting a2 «Old» (80 Ma) and proto-slab break-off
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(b) Continental lithosphere
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Cloetingh et al., 2021, G3, 22
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Mantle downthrusting and foundering of old continental lithosphere can be reproduced with thermal anomalies of moderated size (initial
radius of 100 km) and moderate temperature contrasts (+250-350°C) and in the absence of a compositional stratification of lithospheric
mantle.

It does not require excessive density contrasts between plume and lithosphere nor significant weakening of the overlying plate, which favour
vertical ascendance of plume material to the surface.



Can a mantle plume induce subduction?
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Subduction initiation induced by a mantle plume is favored by:

(1) Old age (>40 Myr) and hence large negative buoyancy of the precursor
oceanic lithosphere.

(2) Longevity of plume-lithosphere interaction (duration of at least 56 Myr).

(3) Very high plume temperature (up to 1,620 °C).

Plume interaction with young lithosphere results in oceanic plateau formation
followed by nearly circular sheet-like lithospheric ‘drips’ that are driven by
thickened lower-crust eclogitization and are terminated by shallow break-off
of the descending oceanic lithosphere.

Eclogite dripping is short-lived and does not create coherent retreating slabs.
Repetitive drips quickly remove pre-existing mantle lithosphere, so that
thickened, hot mafic crust comes to overlie convecting asthenosphere.

Gerya et al., 2015, Nature, 527

a Failed subduction initiation caused by insufficient magmatism induced weakening of the plate. b Influence of a long-lived plume with a conduit providing
additional heat and mass supply through time. ¢ Influence of increased plume size and temperature.



Can a mantle plume induce subduction?

Topography (km) Temperature (K)
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Gerya et al., 2015, Nature, 527

Plume interaction with old lithosphere results in self sustained
subduction, which is further assisted by strong densification of
thick oceanic crust, owing to its eclogitization.

Compositional buoyancy of the depleted Archaean oceanic
lithosphere with thick crust does not preclude subduction, but
requires greater cooling ages (>60-70 Myr) for plate
subductability compared to present-day mantle temperature
conditions (> 30 Myr).

a Development of plume-induced lithospheric drips for 20 Myr old oceanic plate with 30 km thick crust. b, Development of plume-induced self-sustaining

subduction for 80 Myr old oceanic plate with 20 km thick crust.



Response of the lithosphere to plume-lithosphere interaction

Parameters to investigate for different oceanic lithospheric age:

(1) effect of thickness of the crust, (2) mantle temperature, (3) extension rate, and plume tail.

Initial Model Setup
Temprature (° K)
T v T
273 636 999 1362 1726 Four distinctly different lithospheric deformation

1212 km patterns:

A ———————————————————————

(@) multi-slab subduction initiation, (b) single-slab subduction
initiation, (c) plateau formation without subduction initiation,
and (d) episodic short-lived circular subduction initiation.

296 km

St Baes et al., 2020, G3, 21

(upper crust)



Crustal Thickness Effect

Multi-slab subduction initiation Single-slab subduction
Thin crust (8 km) and young oceanic lithosphere (age of 20 Myr) Thicker crust (12 km) and older oceanic lithosphere (age of 40 Myr)
F l Sig'ma (1) (F;a) F ’ Sig'ma (11 (F"Ta)
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Baes et al., 2020, G3, 21
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Crustal Thickness Effect

Plateau without subduction initiation
Thicker crust (> 12 km) and older oceanic lithosphere (age > 50 Myr)
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Baes et al., 2020, G3, 21

* With the thickening of the crust and age of the lithosphere, the resistance of the lithosphere to descending increases, and
thus the deformation regime, following plume-lithosphere interaction, changes progressively from multi-slab subduction
initiation to plateau formation without subduction initiation.



Extensional Regime Effect

Plateau without subduction initiation

Thicker crust (20 km), young oceanic lithosphere

Sigma (I1) (Pa) (age 20 Myr), and low extensional rate (0.5 cm/yr).
: I r

Single-slab subduction
Thin crust (8 km), old oceanic lithosphere (age
of 50 Myr), and high extensional rate (1 cm/yr). -
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T=11.948 Myr

(b)
- - - Baes et al., 2020, G3, 21
e T
crust

In a low-rate extensional regime (0.5 cm/yr) single-slab subduction of a lithosphere with a typical crustal thickness of 8 km occurs only if the

age of lithosphere is less than 50 Myr.
Single-slab subduction of lithospheres with thick plateau of 20 km is possible when the age of lithosphere is between 30 and 40 Myr.

Higher extensional regimes facilitate subduction of older lithospheres.




Mantle Temperature Effect

Multi-slab subduction initiation

Thick crust (20-30 km), old oceanic lithosphere (age > 50

Myr), > 200 K hotter mantle (Archean conditions)
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Baes et al., 2020, G3, 21

Short-lived circular subdution zone
Thick crust (20-30 km), young oceanic lithosphere (age <
50 Myr), > 200 K hotter mantle (Archean conditions)
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Uprising of Hot Mantle Material

Multi-slab subduction initiation

(Plume with a Tail)

Thin crust (8 km), young oceanic lithosphere (age: 20 Myr),
and 200 K higher temperature at the lower model boundary.
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Outcomes of experiments with different lithospheric age, extension rate, and
thickness of the crust, show that continuous rising of hot mantle materials
towards the surface facilitates subduction initiation, especially when a mantle
plume interacts with a lithosphere containing a thick plateau.

Breaking of the lithosphere depends on several parameters such as plume
volume, plume buoyancy and lithospheric thickness.

Subductability of the lithosphere is related to the strength and buoyancy of the
lithosphere: lowering the strength of the lithosphere can facilitate subduction
initiation. Negative buoyancy of the lithosphere increases with decreasing of the
crustal thickness and increasing of the lithospheric age.

Plume-lithosphere interaction may lead to formation of plateau without
subduction initiation if the lithosphere is older than 50.

This indicates that although the aging of the lithosphere increases the negative
buoyancy of the plate, its strength growth acts as a resistive force in subduction
initiation process.

The formation of single-slab or multi-slab subduction depends on the strength of
the lithosphere.

During Archean times, multi-slab subduction initiation could occur if the
lithosphere is older than 50 Myr, while at the present-day, Earth, it can occur only
if a plume interacts with a relatively young oceanic lithosphere.
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Baby Plumes Models

Cloetingh et al., 2022, EPSL, 597



Baby Plumes Models
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Temporal evolution of plumes for three modes of interaction with the overlying continental lithosphere: a-c) “mushroom” mode: p,= 50 kg
m3, W,,,= 50 km; d-f) “arrow” mode: p,= 100 kg m=3, W,,,= 200 km; and g-i) “finger” mode: p,= 150 kg m=3, W,, = 200 km.



Baby Plumes Models
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Modelled viscosity distributions for the experiments with different combinations of chemical density contrasts (p,) and widths of the weak
zone (W,,,).
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a Penetration of the “arrow”-shaped plume into the lithosphere
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Radial viscous fingering generated by plumes
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Schoonman et al., 2017, EPSL 468

There are narrow, slow velocity fingers (low velocity anomaly > 2%) that protrude beneath the fringing continental margins
(British Isles and western Norway)



Radial viscous fingering generated by plumes
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Radial viscous fingering generated by plumes

Q=volume flux (m3/s)

b ro=radius of central portion of plume
b=thickness of the layer (~100 km)
k=thermal diffusivity (m?/s)

Schoonman et al., 2017, EPSL 468

Radial fingers are generated by a phenomenon known as the Saffman-Taylor instability

 Wavelength and number of fingers are controlled by the mobility ratio (i.e. the ratio of viscosities nm/np), by the Péclet
number (i.e. the ratio of convective and diffusive transport rates ~R,?3), and by the thickness of the horizontal layer into
which fluid is injected (b~100 km).

e Iceland plume has an irregular planform due to small-scale convective circulation (radial fingers) that can generate and
maintain surface deformation on short length scales.



Radial viscous fingering generated by plumes

(experimental analysis)
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Absence of fingering is principally a consequence of smaller buoyancy fluxes (Hawaiian and Cape Verde plumes ).

Yellowstone plume has likely a high mobility because of the presence of minor fractions of hydrous melt (this plume has
an excess asthenospheric T of not more than 55-80°C ).
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Larger flux concentrations tend to occur on faster moving plates.
The Pacific plate dominates the global budget since it has both the largest plate area and the fastest average velocity.
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LIPs (Large igneous provinces): Large Magma Volume in few Myr

Possible origin: higher basaltic composition in the plume head from subducted oceanic slab

Eurasia \..Cd;‘:?"

: Padific Atlantic
Deccan -‘.“ Ocean Ocean

L Caribbean

i 3 RN B PR
> W cntong 1
Jya
. South A maenca
‘?“’2 indlan Ocean - Ll
l;‘ Australia f
' Eroken RMge
PN

North Amarka

-

Antarctk

They extend up to 2000 km across, several km thick, 10 million km3 of volcanic products

*  Siberian Flood Basalts > 4 min. km?3
Deccan Traps ~2 min. km3

*  North Atlantic Province >2-4 mln.km3

. Columbia River Province ~ 0.3 min. km?3
*  Onthong-Java Plateau > 40min. km3



LIPs (Large igneous provinces)

Rates of magma generation, /, for a plume head that includes 15% additional basaltic component
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LIPs often predate continental break-up




LIPs often predate con

tinental brea




Connection of LIPs to mantle plume
Flood

basalt Hotspot track

At least six examples have strong geographical, geochronological, and geochemical
connections between hot-spot volcanism and flood basalt provinces: (1) Iceland and
the North Atlantic Volcanic Province; (2) Kerguelen, and Bunbury, Naturaliste,
Rajmahal (E. India), Broken Ridge, and Ninetyeast Ridge; (3) Reunion and Deccan, W.
Indian, Chagos—Laccadive, Mascarenas, Mauritius; (4) Marion and Madagascar (Storey
et al., 1997); (5) Tristan da Cunha and Parana, Etendeka, Rio Grande, Walvis Ridge; (6)
Galapagos and Caribbean.

Plume head

Plume
tail

The observation of large plume heads followed by thin tails in fluid dynamical experiments has traditionally been used to explain the LIP-hotspot
connection: the hottest material of rising plume heads will erupt first, which explains high MgO basalts early in the LIP record. Furthermore, the
arrival of the plume at the surface will lead to uplift and extension, often observed in the geological record of LIPs.

The viscosity change can also completely break apart a starting mantle-plume head into multiple plumes, perhaps contributing to multiple flood
basalt episodes.

Alternative hypothesis to the plume origin of the LIPs:

(1)

(2)
(3)
(4)
(5)

Excess heat can build below continents during tectonic quiescence and/or supercontinent formation, causing the massive eruptions during
continental breakup (it addresses the correlation between LIPs and continental breakup and the lack of connection of some continental LIPs to hot-
spot trails).

Delamination of continental lithosphere and secondary convection at rifted margins have been forwarded to generate LIPs near continents (it
addresses the lack of connection of some continental LIPs to hot-spot trails).

Compositional, rather than thermal effects cause excess melting, for example, more fertile mantle such as eclogite and/or water in the source (it
addresses the lack of uplift of some LIPs, like OJP and the lack of connection of some continental LIPs to hot-spot trails).

Meteorite impact could be responsible for the emplacement of LIPs, since the decompression of mantle following impact may generate extensive
melting with less uplift than expected from a hot plume head and without a connection to a hot-spot track (but no evidence).

Oscillatory instabilities in starting plumes can be caused by the competing effects of thermal and chemical buoyancy.



Oceanic Plateau of the Hawaiian Mantle Plume

TX2019slab

1500 km

B Density & Velocity

 The observed 810-km reflector very likely indicates a thickened
crust subducted to the lower mantle, related to the oceanic
plateau associated with the head of the Hawaiian mantle plume.

* The plateau subduction could locally alter the slab buoyancy, due
to the to enrichment of basalt, slowing down subduction,
favouring the flattening of slabs above the 660-km discontinuity.

* The oceanic plateau, considering a constant subduction rate of 1000
75mm/yr, subducted into the Kamchatka Trench ~20-30 Ma ago,
then after the change in the Pacific Plate motion ~47 Ma. Wei et al., 2020, Science, 370
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LIPs Main Characteristics

LIPs source has high temperature LIPs correlate with mass extinction events
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Volume of basalt (106 km3)

No Correlation with LIPs volume



Siberian Traps

Siberian LIP
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e Why no pre-magmatic uplift?

e Why large volume of magmas erupted at thick cratonic

lithosphere without extreme extension?

e How lithosphere was thinned by >50 km during only few 100

thousand years?

e What was the source of large volumes of CO, and other gases

that triggered P-T mass extinction?



Ni/(Mg/Fe)/1000

Piroxenite formation

1.9

2.6 - 100Mn/Fe
" fa,
244 = *
LR PYROXENITE a PYR, HERZBERG
221 % % 8 PYR, KINZLER
24 o %, —o—MIX, HERZBERG
% % —o—MIX, KINZLER
1.8 - . -
% B MORB
1 A WPM-THIN
1.4 - A & WPM-THICK
o | i © KOMATIITES
1 -
08 T o PERIDOTITE
s . - ¢ ‘.--la... A
0.6 4 A= o >
O “Ilg. “:
0.4 - > : e )
'...’.lllll... 2
0-2 1 1 1 | 1 T 1 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
100Mn/Fe

Ni excess and Mn depletion is interpreted as:

1.

the result of the contribution of olivine free pyroxenite
lithology in their source.

Effect of clinopyroxene crystallization.

Contribution of core material to the mantle source.

Sobolev et al, Science, 2007
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Kellogg et al., 1999

Piroxenite formation

In subduction at P > 2.5 GPa, the basaltic and gabbroic
portions of the oceanic crust are transformed completely to
eclogite (clinopyroxene and garnet) with a free SiO, phase.
In the ascending, the silica-oversaturated eclogite starts
melting at higher pressures than the peridotite and
produces high silica melt, which reacts with olivine from
peridotite, producing pyroxenes and garnet.

Eclogite




Piroxenite formation
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Plume numerical models

Model Setup

e Plume potential temperature Tp=1600°C
eEclogite content in plume 10-20wt% (15wt%)
e|nitial lithospheric thickness = 130 km

Free surface, T=0°C
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Plume numerical models
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Large fraction (15 wt%) of dense recycled material is present within the plume, which strongly decreases its buoyancy, causing little regional
uplift (250 m).

1.
2.

The plume head erodes the lowest part of the thermal lithosphere and rapidly spreads below the more refractory depleted lithosphere.
Plume ascent leads to progressive melting of recycled eclogitic material in the plume and to the formation of reaction pyroxenite, which
melts at depths of 130-180 km (well before the peridotite).

The melt intrudes into the lower lithosphere, cools and crystallizes to dense eclogite. It also strongly heats, weakens and mechanically
erodes the lithosphere, promoting Raleigh—Taylor instabilities.

Enriched in eclogite, the lithospheric material in the boundary layer above the plume escapes to the sides of the plume and then
downwards, allowing the plume to ascend.

The plume reaches its minimum depth of about 50 km crystallizing to a garnet-free assemblage, having a density lower than that of the
ambient mantle (no formation of Raleigh—Taylor instabilities).



Effect of plume on the intensity of the lithospheric destruction

A Different lithospheric thickness
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Effect of plume on the intensity of the lithospheric destruction

A Different plume temperatures
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Effect of plume on the surface topography and intensity of the lithospheric destruction

Different plume composition
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Results of plumes numerical models

Thermochemical plume rich in recycled crust does not generate significant pre-magmatic uplift of the lithosphere.

Such a plume is able to thin dramatically cratonic lithosphere without extension and to generate several min km3 of melt in
few 100 thousand years.

Massive CO, and HCI degassing from the plume could alone trigger the Permian-Triassic mass extinction and before the main

volcanic phase.
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