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Course Administration

Lecturers & examiners
• Thomas Parisini
(parisini@units.it)

• Gianfranco Fenu
(fenu@units.it)

Course home page
• slides, exercises and
computer code
examples

• old exams

Systems Dynamics
homepage

Course credits
• 9 CFU
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Examination

• Final exam: a preliminary written examination followed by oral
questions.

• The final grade depends on both the written part and the outcome of
the oral discussion.

• Written examination and oral discussion usually usually take during
the same exam session.
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Examination (cont.)

Written examination
The exam paper consists of 3 – 4
essay questions:

• typical numerical application
problems

• specific questions about
theoretical aspects (theorems,
properties, definitions) could
be included

Oral questions
Oral questions deal with any
possible topic, discussed and
analysed in the lectures.

• A short discussion about the
written examination results
generally also takes place
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Examination (cont.)

Homework (not compulsory)
• Advanced engineering specific projects are offered during the course,
characterised by challenges more difficult to address than the usual
ones.

• The aim is to stimulate learning advanced concepts during the course
also to help the learning exercise

• These projects are then evaluated upon request by the students.
• It’s allowed to solve the projects in groups, up to 3 persons.
• Working on homework problems is not compulsory
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Examination (cont.)

Homework & final grade
• Homework contributes to the final grade, with an increment of the
score up to 2 points.

• The grading of the homework is independent from the grading of the
examination

• Homework expiration: the increment of the final exam score, using the
homework grade, is allowed during the current academic year (for the
academic year 2022/2023 until the end of the examination session in
February 2024). When the exam sessions of the current academic year
are over, the homework grade expires.
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Exam Sessions

Examination timetable
• 3 sessions in
January–February

• 2 sessions in June–July
• 2 session in September

How to sign up for examinations
• In order to participate to the exam
session you must sign up/register
for the exam (compulsory)

• To sign up, use the students
university career management
system Esse3 to access to the on-line
University Services.

• Please, pay attention to the dates of
the registration periods and the
examination periods!
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Course Information

Prerequisites
• Linear algebra, calculus and complex
analysis

• Course 034IN “Fundamentals of
automatic control” (or equivalent for
students enrolled from other
universities/programs)

• Basic knowledge of probability and
statistics is not mandatory, but highly
helpful

Course organization
• Lectures
• Exercise sessions
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Desiderata

Students who pass the course should be able to:
• carry out a complete and comprehensive analysis of the main
properties of deterministic and stochastic discrete-time dynamic
systems;

• design and implement parametric estimation and identification, and
state estimation algorithms that use available data or data collected in
real-time with reference to engineering application scenarios;

• · · ·
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Desiderata (cont.)

Students who pass the course should be able to
• evaluate, among several options, what’s the best choice of parametric
estimation and identification, and state estimation algorithms starting
from requirements and considering technological constraints;

• describe in a clear and plain way the functionalities of a parametric
estimation and identification, and state estimation algorithm in the
context of discrete-time dynamic systems and with the correct use of
technical terminology
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Lectures Plan

Lect. Content
1 Course overview. Generalities: systems and models (defs, props,

problems). Sampling and discrete-time representation of linear
continuous-time dynamic systems.

2 Time-evolution of state and output of linear dynamic systems.
3 Stability of discrete-time dynamic systems.
4 Model identification from data.
5 A glimpse on prob. theory, random vars and discrete-time

stochastic processes.
6 Definitions and properties of the estimation and prediction prob-

lems.
· · ·
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Lectures Plan (cont.)

Lect. Content
7 Dynamicmodels of stationary discrete-time stochastic processes.
8 Least-squares estimation.
9 Bayes estimation.
10 Solution of the prediction problem.
11 Identification Based on Prediction Error Minimization (PEM).
12 Batch PEM Identification Algorithms.
13 State estimation from observed data.
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Motivating Application Examples
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Prediction of Temperature at the Spout of a Glass Furnace Feeder

Prediction of Melted Glass
Temperature
• A feeder is the final part of a
plant used for melting glass.

• Main purpose: to realize a
homogeneous temperature
distribution of the glass at
some absolute level that
allows shaping of the glass.

• Structure: it is divided into
several sections in which
energy can be supplied to or
extracted from the glass, using
burners and cooling air.

Figure 1: Typical industrial glass production
plant, with in evidence the feeder [Source:
Verallia Oberland AG]
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Prediction of Temperature at the Spout of a Glass Furnace Feeder (cont.)

• The model shall capture and
describe the dynamic relations
between the inputs of the
feeder (burners and cooling air
in the various sections) and the
outputs (some glass
temperatures close to the
outlet).

• The outputs are temperatures of
the glass measured at some
points in a cross section of the
feeder just before the spout.

• Available data: 1247 samples for
each input and output variable;

• 3 inputs:
• input 1: gas input of the first
feeder section;

• input 2: cooling air input;
• input 3: gas input of the second
feeder section;

• 6 outputs: glass temperatures in
a cross-section of the feeder,
close to the outlet.
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Prediction of Temperature at the Spout of a Glass Furnace Feeder (cont.)

Figure 2: The data have been pre-processed: detrending, peak shaving, scaling.
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Prediction of Temperature at the Spout of a Glass Furnace Feeder (cont.)

Figure 3: Prediction of the temperature T1 using the best ARX model according the
Cross-validation criterion: fit 73.66 %.
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Prediction of Temperature at the Spout of a Glass Furnace Feeder (cont.)

The Model
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

Polynomial orders: na = 7, nb = [7, 5, 4], nk = [1, 2, 5]

A(z) = 1− 0.6969z−1 − 0.05691z−2 − 0.06532z−3 − 0.02166z−4 −
0.1276z−5 − 0.0871z−6 + 0.1011z−7

B1(z) = 0.02755z−1 + 0.07005z−2 + 0.05956z−3 + 0.03304z−4 +
0.02933z−5 + 0.03725z−6 + 0.02344z−7

B2(z) = −0.1006z−2 − 0.09078z−3 − 0.06914z−4 − 0.03442z−5 − 0.01503z−6

B3(z) = −0.04104z−5 − 0.04249z−6 − 0.01118z−7 − 0.008236z−8
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A Kalman Filter Based Battery SOC Estimation

SOC Estimation
• A battery management system is responsible for monitoring the
state-of-charge (SOC) of the battery, among other features.

• The SOC can be estimated using a Kalman Filter.

Figure 4: 2nd order RC ECM battery
model.

• common battery model: 2-RC
Equivalent Circuit Model (ECM);

• parameters: the battery Open
Circuit Voltage (OCV) as voltage
source VOC , the internal resistance
R0 and two parallel RC pairs;

• the ECM parameters depend on the
actual SOC value and the battery
temperature
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A Kalman Filter Based Battery SOC Estimation (cont.)

Appropriate battery tests
should be done to obtain
data for OCV as a
function of SOC for a
desired range of battery
temperatures.
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Figure 5: OCV vs. SOC of a Turnigy Graphene 5000mAh
Li-ion Battery.
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A Kalman Filter Based Battery SOC Estimation (cont.)

The tests data are used
also to estimate the EMC
parameters R0 , R1 , R2 ,
C1 and C2 at different
temperatures as
functions of SOC.

A model-based
parameter optimization
approach has to be
applied. 0204060801000
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Figure 6: Resistance R0 vs. SOC of a Turnigy Graphene
5000mAh Li-ion Battery.
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A Kalman Filter Based Battery SOC Estimation (cont.)

Battery as dynamic system: the ECM dynamics is described by

SOC(k + 1) = SOC(k)− η∆ i(k)

Cn

V1(k + 1) = e
−∆

R1C1 V1(k) +R1

(
1− e

−∆
R1C1

)
i(k)

V2(k + 1) = e
−∆

R2C2 V2(k) +R2

(
1− e

−∆
R2C2

)
i(k)

VOC(k) = g
(
SOC(k) , T (k)

)
Vt(k) = VOC(k)− V1(k)− V2(k)−R0 i(k)

where ∆ is the sampling time interval, k indicates the k-th time instant, η
is the Coulombic efficiency, Cn is the battery nominal capacity, i is the
battery current (negative when charging, positive when discharging), T is
the battery temperature.

The equations are in state space form and describe a non-linear system:
not only VOC depends on the actual SOC and T values, but also the ECM
parameters R0 , R1 etc.
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A Kalman Filter Based Battery SOC Estimation (cont.)

An Extended Kalman Filter as SOC Estimator
Assuming that both the state transition and the observation equation
sets are affected by additive zero mean multivariate Gaussian noise x(k + 1) = f

(
x(k), u(k)

)
+ w(k)

z(k) = h
(
x(k), u(k)

)
+ ν(k)

where x(k) =
[
SOC(k) , V1(k) , V2(k)

]T
, u(k) = i(k) , z(k) = Vt(k)

an Extended Kalman Filter may be successfully applied to estimate the
SOC value at the k-th time instant, using the measurements of input and
output at the same time instant.
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A Kalman Filter Based Battery SOC Estimation (cont.)

An Extended Kalman Filter as SOC Estimator
The EKF structure

e(k) =
[
z(k)− h

(
f
(
x̂ (k − 1|k − 1) , u(k)

)
, u(k)

)]
x̂ (k|k) = f

(
x̂ (k − 1|k − 1) , u(k)

)
+K0(k)e(k)

K0(k) = P(k)HT (k)
[
H(k)P(k)HT (k) +R

]−1
P(k + 1) = F

{
P(k)−K0(k)H(k)P(k)

}
FT (k) +Q

where
F(k) =

∂ f

∂x
|x̂(k−1|k−1) , u(k) Q = cov(w)

H(k) =
∂ h

∂x
|x̂(k−1|k−1) , u(k) R = cov(ν)
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A Kalman Filter Based Battery SOC Estimation (cont.)
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Figure 7: SOC estimation error using EKF filter, applied to a Turnigy Graphene
5000mAh Li-ion battery.
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Online Tutorials and Courses on MATLAB

Online courses and
tutorials for learning
MATLAB fundamentals
and programming
techniques with online
courses:
MATLAB Academy
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