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8. Applicazioni lineari

1 Definizione e prime proprietà

Definizione 1. Siano V e W due spazi vettoriali sul campo K. Una appli-
cazione lineare da V in W è una funzione f : V → W che soddisfa le seguenti
proprietà:

(AL1) f(v1 + v2) = f(v1) + f(v2), per ogni v1, v2 ∈ V ;

(AL2) f(c · v) = c · f(v), per ogni c ∈ K e per ogni v ∈ V .

L’insieme di tutte le applicazioni lineari da V in W si denota con Hom(V,W ).
Un’applicazione lineare da V in V , f : V → V , è anche detta un endomor-

fismo di V . L’insieme di tutti gli endomorfismi di V si denota con End(V ).
Un isomorfismo da V in W è un’applicazione lineare biettiva f : V → W .

Un isomorfismo da V in V si chiama anche automorfismo. L’insieme degli
automorfismi di V si denota con GL(V ). Se V = Kn, allora si usa la notazione
GLn(K) in luogo di GL(Kn).

Si osservi che, nella proprietà (AL1), la somma v1 + v2 è quella in V , mentre
f(v1) + f(v2) è la somma dei vettori f(v1) e f(v2) in W . Analogamente, in
(AL2), c · v è il prodotto del vettore v per lo scalare c in V , mentre c · f(v) è
il prodotto dello scalare c per il vettore f(v) in W . Per questo motivo si dice
anche che un’applicazione lineare f : V → W “rispetta le operazioni di somma e
di prodotto per scalari” di V e W .

Le seguenti osservazioni seguono direttamente dalle proprietà (AL1), (AL2),
la verifica è lasciata per esercizio.

Osservazione 1. 1. Se f : V → W è un’applicazione lineare, allora f manda il
vettore nullo di V nel vettore nullo di W , in simboli f(0) = 0.
Infatti possiamo scrivere il vettore nullo di V come segue, 0 = 0 · v, dove lo 0 a
sinistra è il vettore nullo di V , mentre lo 0 a destra è lo scalare 0 ∈ K, v ∈ V è
un qualsiasi vettore. Dalla (AL2) segue che f(0) = f(0 · v) = 0 · f(v) = 0.

2. Sia f : V → W un’applicazione lineare, e sia v = λ1v1 + . . . + λkvk, per
qualche v1, . . . , vk ∈ V e λ1, . . . , λk ∈ K. Allora f(v) = λ1f(v1) + . . .+ λkf(vk).
In altre parole, per ogni v ∈ Span(v1, . . . , vk), l’immagine di v secondo f , f(v), è
determinata da f(v1), . . . , f(vk) e dai coefficienti della combinazione lineare.

3. Siano f ∈ Hom(V,W ) e g ∈ Hom(W,U), allora g ◦ f ∈ Hom(V,U).
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4. Se f : V → W è un isomorfismo, allora la funzione inversa f−1 : W → V è
lineare, quindi anche f−1 è un isomorfismo.

5. Le proprietà (AL1) ed (AL2) sono indipendenti l’una dall’altra. Ad esempio,
per V = C e K = C, la funzione f : C → C, f(z) = z̄ (dove z̄ è il coniugato di
z), soddisfa la proprietà (AL1), ma non la (AL2).

Sia ora V = R2 e K = R, f : R2 → R definita da f

(
x
y

)
= (x3 + y3)

1
3 . Si

verifica facilmente che f soddisfa la proprietà (AL2) ma non la (AL1).

6. Hom(V,W ) è uno spazio vettoriale su K con la somma ed il prodotto per
scalari definiti come segue: ∀f, g ∈ Hom(V,W ), f + g : V → W è la funzione
definita come segue, (f + g)(v) = f(v) + g(v), ∀v ∈ V ; ∀f ∈ Hom(V,W ) e
∀c ∈ K, c · f : V → W è la funzione definita come segue, (c · f)(v) = c · f(v),
∀v ∈ V . (Si verifichi che le applicazioni f + g e c · f cos̀ı definite sono lineari.)

Esempio 1. In seguito V e W denotano due spazi vettoriali arbitrari su un
campo K. La verifica della linearità delle seguenti applicazioni lineari è lasciata
per esercizio.

1. La applicazione nulla 0: V → W , che associa ad ogni vettore v ∈ V il
vettore nullo di W , 0(v) = 0, ∀v ∈ V , è un’applicazione lineare.

2. La funzione identità IdV : V → V , IdV (v) = v, ∀v ∈ V , è un’applicazione
lineare.

3. Sia B = {v1, . . . , vn} una base di V e sia fB : V → Kn la funzione che associa

ad ogni vettore v ∈ V le sue coordinate rispetto alla base B, fB(v) =

λ1...
λn

 se e

solo se v = λ1v1 + . . .+ λnvn. La funzione fB è un isomorfismo da V in Kn.

4. Supponiamo che U,W ⊆ V siano due sottospazi vettoriali di V , e che V =
U ⊕W . Ricordiamo che, in tal caso, per ogni v ∈ V esistono e sono unici due
vettori u ∈ U e w ∈W tali che v = u+w. La proiezione di V su U si definisce
come la funzione PU : V → V che associa ad ogni v ∈ V il vettore PU (v) = u,
dove u ∈ U è tale che v = u+w per qualche w ∈W . Allora PU è un’applicazione
lineare.

Osserviamo che, in tali condizioni è definita in modo analogo la proiezione di
V su W , PW . Usando la precedente notazione PW (v) = w.

Ad esempio, siano V = R2, U = Span

(
2
1

)
e W = Span

(
1
1

)
.
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Osserviamo che R2 = U⊕W , quindi sono definite le proiezioni PU ,PW : R2 → R2.

Consideriamo il vettore v =

(
−1
1

)
∈ R2, ed osserviamo che(

−1
1

)
= −2

(
2
1

)
+ 3

(
1
1

)
,

quindi PU

(
−1
1

)
= −2

(
2
1

)
, e PW

(
−1
1

)
= 3

(
1
1

)
. Osserviamo che, dalla regola

del parallelogramma, PU

(
−1
1

)
è il vettore che si ottiene intersecando la retta

parallela a W passante per il punto

(
−1
1

)
con U , mentre PW

(
−1
1

)
è il vettore

che si ottiene intersecando la retta parallela ad U passante per il punto

(
−1
1

)
con W .

In generale, per ogni vettore

(
x
y

)
∈ R2,(

x
y

)
= (x− y)

(
2
1

)
+ (−x+ 2y)

(
1
1

)
,

quindi PU

(
x
y

)
=

(
2x− 2y
x− y

)
, e PW

(
x
y

)
=

(
−x+ 2y
−x+ 2y

)
.

5. Per ogni matrice m × n a coefficienti nel campo K, A ∈ Mm,n(K), possiamo

definire una funzione LA : Kn → Km nel seguente modo: ∀v =

λ1...
λn

 ∈ Kn,

LA(v) := A · v = A ·

λ1...
λn

 ∈ Km ,
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dove A · v è il prodotto righe per colonne di A e v. La funzione LA è lineare. La
proprietà (AL1) segue dalla proprietà distributiva del prodotto righe per colonne
rispetto alla somma, mentre la (AL2) segue dal fatto che la moltiplicazione per
scalari commuta con il prodotto righe per colonne.

Ad esempio, se A =

(
1 −1
−1 2

)
∈ M2(R), allora LA : R2 → R2 ha la seguente

espressione:

LA

(
x
y

)
=

(
1 −1
−1 2

)
·
(
x
y

)
=

(
x− y
−x+ 2y

)
.

Analogamente, se A =

(
1 2 0
0 −1 0

)
∈ M2,3(R), allora LA : R3 → R2 agisce come

segue:

LA

xy
z

 =

(
1 2 0
0 −1 0

)
·

xy
z

 =

(
x+ 2y
−y

)
.

6. Sia n ∈ N un numero intero, e sia V = R[t]n lo spazio vettoriale dei polinomi a
coefficienti reali, nella indeterminata t, di grado ≤ n. Sia f : V → V la funzione
che associa ad ogni polinomio P ∈ V la sua derivata rispetto a t, f(P ) = P ′,
concretamente, se P = a0+a1t+a2t

2+. . .+ant
n, f(P ) = a1+2a2t+. . .+nant

n−1.
Tale funzione è lineare, quindi f ∈ End(R[t]n).

7. Sia V = R[t]n come nell’esempio precedente, e siano a ≤ b due numeri reali.

La funzione
∫ b
a : R[t]n → R, P 7→

∫ b
a P (t)dt è un’applicazione lineare.

Problema 1. Trovare esplicitamente l’applicazione lineare f : R3 → R3 che cor-

risponde alla rotazione intorno all’asse Span

−1
1
1

 di un angolo di 30 gradi.

Teorema 1 (di struttura per le applicazioni lineari). Siano V e W due spazi
vettoriali sul campo K. Sia {v1, . . . , vn} una base di V , e siano w1, . . . , wn ∈ W
vettori di W . Allora esiste un’unica applicazione lineare f : V → W , tale che
f(vi) = wi, per ogni i = 1, . . . , n.

Dim. (Esistenza) Definiamo una funzione f : V → W come segue: per ogni
vettore v ∈ V , esso si esprime in modo unico come combinazione lineare dei
vettori della base {v1, . . . , vn} di V , v = λ1v1 + . . . + λnvn, dove λ1, . . . , λn ∈ K
sono le coordinate di v rispetto alla base data; allora definiamo

f(v) = λ1w1 + . . .+ λnwn ∈W .

Si verifica facilmente che tale f è lineare (esercizio) e, per definizione, si ha che
f(vi) = wi, ∀i = 1, . . . , n.

(Unicità) Siano f, g ∈ Hom(V,W ) due applicazioni lineari che soddisfano la
proprietà dell’enunciato, f(vi) = wi = g(vi), ∀i = 1, . . . , n. Dimostriamo che
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f = g, cioè che f(v) = g(v), ∀v ∈ V . A tale scopo, sia v ∈ V un vettore arbi-
trario. Scriviamo v come combinazione lineare dei vettori della base {v1, . . . , vn},
v = λ1v1 + . . .+ λnvn, allora, sfruttando le proprietà (AL1) e (AL2) si ha:

f(v) = f(λ1v1 + . . .+ λnvn) = f(λ1v1) + . . .+ f(λnvn)

= λ1f(v1) + . . .+ λnf(vn) = λ1w1 + . . .+ λnwn

= λ1g(v1) + . . .+ λng(vn) = g(λ1v1 + . . .+ λnvn) = g(v) .

Esempio 2. Sia A ∈ Mm,n(K), allora l’applicazione lineare LA : Kn → Km

definita nell’Esempio 1.5. è l’unica applicazione lineare tale che LA(ei) = A(i),
∀i = 1, . . . , n, dove {e1, . . . , en} è la base canonica di Kn, ed A(1), . . . , A(n) ∈ Km

sono le colonne di A.
Dal teorema di struttura segue che LA = LB ⇔ A = B.

2 Nucleo ed immagine

Definizione 2. Siano V e W due spazi vettoriali su un campo K. Sia f : V →W
un’applicazione lineare. Il nucleo di f è il sottoinsieme di V definito come segue:

ker(f) := {v ∈ V | f(v) = 0} .

L’immagine di f è il sottoinsieme di W definito come segue:

im(f) := {w ∈W | ∃v ∈ V tale che f(v) = w} .

Proposizione 1. Sia f : V →W un’applicazione lineare, allora valgono le seguenti
affermazioni.

(1) ker(f) è un sottospazio vettoriale di V .

(2) im(f) è un sottospazio vettoriale di W .

(3) f è iniettiva ⇔ ker(f) = {0}.

(4) f è suriettiva ⇔ im(f) = W .

Dim. (1) Dalla Osservazione 1.1. segue che il vettore nullo di V appartiene al
nucleo di f , quindi ker(f) 6= ∅. Siano ora v1, v2, v ∈ ker(f) e sia a ∈ K. Siccome f
è lineare, valgono le seguenti uguaglianze: f(v1 +v2) = f(v1)+f(v2) = 0+0 = 0,
f(av) = af(v) = a0 = 0. Da questo segue che v1 + v2, av ∈ ker(f), quindi
ker(f) ⊆ V è un sottospazio vettoriale.

(2) Il vettore nullo di W appartiene all’immagine di f , poiché 0 = f(0),
quindi im(f) 6= ∅. Siano ora w1, w2, w ∈ im(f) e sia a ∈ K. Per definizione di
im(f), esistono v1, v2, v ∈ V , tali che f(v1) = w1, f(v2) = w2 ed f(v) = w. Per la

5



linearità di f si ha: f(v1+v2) = w1+w2, f(av) = aw. Quindi w1+w2, aw ∈ im(f),
da cui segue che im(f) ⊆W è un sottospazio vettoriale.

(3) Ricordiamo che, per definizione, una funzione f è iniettiva se f(v) 6= f(w),
∀v 6= w appartenenti al domino di f .

Dimostriamo ora l’enunciato. (⇒) Supponiamo che f sia (lineare ed) iniettiva.
Allora, per ogni v 6= 0, f(v) 6= f(0) = 0, quindi v 6∈ ker(f), da cui segue che
ker(f) = {0}.
(⇐) Viceversa, supponiamo che ker(f) = {0}. Siano v, w ∈ V vettori distinti,
v 6= w, allora v − w 6= 0, quindi f(v − w) 6= 0. Per la linearità di f , f(v − w) =
f(v)− f(w) 6= 0, quindi f(v) 6= f(w), cioè f è iniettiva.

(4) Questa affermazione vale per definizione di funzione suriettiva.

Definizione 3. Siano V e W due spazi vettoriali su un campo K, con W di
dimensione finita. Sia f : V → W un’applicazione lineare. Il rango di f è la
dimensione dell’immagine di f e si indica con rg(f):

rg(f) := dim(im(f)) .

Osservazione 2. 1. Sia A ∈ Mm,n(K), e sia LA : Kn → Km, LA(v) = A · v,
l’applicazione lineare associata ad A (si veda l’Esempio 1.5.). Allora

ker(LA) = {v ∈ Kn |LA(v) = A · v = 0} ,

cioè ker(LA) è l’insieme delle soluzioni del sistema lineare omogeneo A · x = 0.
Come conseguenza della Proposizione 2 del Capitolo 3 abbiamo che, se Ã

è una matrice che si ottiene da A per mezzo di operazioni elementari, allora
ker(LÃ) = ker(LA).

2. Se f : V →W è un’applicazione lineare e {v1, . . . , vn} è una base di V , allora
im(f) = Span(f(v1), . . . , f(vn)).
Dim. Chiaramente f(v1), . . . , f(vn) ∈ im(f), quindi im(f) ⊇ Span(f(v1), . . . , f(vn)),
poiché im(f) è uno spazio vettoriale.
Viceversa, sia w ∈ im(f), allora esiste v ∈ V , tale che f(v) = w. Siccome
{v1, . . . , vn} è una base di V , possiamo esprimere v come combinazione lineare
dei vettori v1, . . . , vn, v = a1v1+. . .+anvn, con a1, . . . , an ∈ K. Per la linearità di
f si ha: w = f(v) = a1f(v1) + . . .+ anf(vn). Quindi w ∈ Span(f(v1), . . . , f(vn)),
da cui segue che im(f) ⊆ Span(f(v1), . . . , f(vn)). L’affermazione segue dalla
doppia inclusione.

3. Sia A ∈ Mm,n(K), e sia LA : Kn → Km l’applicazione lineare associata ad A
(come nell’Esempio 1.5.). Come osservato nell’Esempio 2, LA(ei) = A(i), ∀i =
1, . . . , n, quindi im(LA) = Span(A(1), . . . , A(n)) ed in particolare rg(A) = rg(LA).

Osserviamo che se Ã si ottiene da A per mezzo di operazioni elementari, in
generale im(LÃ) 6= im(LA), anche se rg(Ã) = rg(A) (Proposizione 1, Capitolo

5). Si consideri ad esempio la matrice A =

(
1 1
1 1

)
, allora im(LA) = Span

(
1
1

)
.
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Sostituendo la seconda riga di A con la sua differenza con la prima riga, si ottiene

Ã =

(
1 1
0 0

)
. Quindi im(LÃ) = Span

(
1
0

)
6= im(LA).

Esempio 3. 1. Consideriamo l’applicazione lineare f : R3 → R3 definita da

f

xy
z

 =

 6x− 4y
3x− 2y + 2z

2z

. Per determinare il nucleo, l’immagine ed il rango di

f , osserviamo che f = LA, con A =

6 −4 0
3 −2 2
0 0 2

. Trasformiamo A a scala per

mezzo di operazioni elementari:

A → Ã =

6 −4 0
0 0 2
0 0 0

 .

Quindi rg(f) = rg(A) = rg(Ã) = 2 ed una base di im(f) è formata dai vettori

A(1) =

6
3
0

 , A(3) =

0
2
2

 (Proposizione 1.2. del Capitolo 5). (Osserviamo che

anche in questo caso im(f) 6= im(LÃ).) Per determinare il nucleo di f , risolviamo

il sistema lineare omogeneo A ·

xy
z

 = 0 ed otteniamo: ker(f) = Span

2
3
0

.

2. Sia f : R[t]3 → R[t]3 l’applicazione lineare che associa ad ogni polinomio P di
grado ≤ 3 la sua derivata, f(P ) = P ′. Allora il nucleo di f è formato dai polinomi
la cui derivata è nulla, quindi dalle costanti (polinomi di grado 0). In altre parole
ker(f) = R[t]0 e quindi dim(ker(f)) = 1. Mentre im(f) = R[t]2, poiché, per ogni
Q = b0 + b1t+ b2t

2 ∈ R[t]2, f(b0t+ 1
2b1t

2 + 1
3b2t

3) = Q.

3. Sia V uno spazio vettoriale di dimensione n sul campo K e sia B una base di V .
Consideriamo l’applicazione lineare fB : V → Kn dell’Esempio 1.3. Poiché fB è
un isomorfismo, essa è iniettiva e suriettiva, quindi ker(fB) = {0} ed im(fB) = Kn

(Proposizione 1).

4. Se V è somma diretta di due sottospazi U e W , V = U ⊕W , consideriamo
le proiezioni PU ,PW : V → V (Esempio 1.4.). Allora si verifica facilmente che
im(PU ) = U , ker(PU ) = W , im(PW ) = W , ker(PW ) = U (la verifica è lasciata
per esercizio).

Teorema 2 (della dimensione). Siano V e W due spazi vettoriali su un campo
K, con V di dimensione finita. Sia f : V → W un’applicazione lineare. Allora
vale la seguente uguaglianza:

dim(V ) = dim(ker(f)) + rg(f) .
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Dim. Poiché V ha dimensione finita e ker(f) è un sottospazio vettoriale di V ,
dim(ker(f)) < ∞. Fissiamo una base {v1, . . . , vk} di ker(f) e completiamola a
base di V , {v1, . . . , vk, vk+1, . . . , vn} (teorema del completamento, Proposizione
7, Capitolo 4). Dimostriamo ora che {f(vk+1), . . . , f(vn)} è una base di im(f)
ed osserviamo che da questo segue l’enunciato, perché rg(f) = n− k e dim(V ) =
n = k + (n− k) = dim(ker(f)) + rg(f).

Dalla Osservazione 2.2. si ha che im(f) = Span(f(v1), . . . , f(vk), f(vk+1), . . . , f(vn)),
e siccome f(v1) = . . . = f(vk) = 0, segue che im(f) = Span(f(vk+1), . . . , f(vn)).
Rimane quindi da dimostrare che f(vk+1), . . . , f(vn) sono linearmente indipen-
denti. A tale scopo siano λk+1, . . . , λn ∈ K tali che λk+1f(vk+1)+. . .+λnf(vn) =
0. Per la linearità di f , λk+1f(vk+1)+ . . .+λnf(vn) = f(λk+1vk+1+ . . .+λnvn) =
0. Quindi λk+1vk+1 + . . . + λnvn ∈ ker(f). Siccome {v1, . . . , vk} è una base di
ker(f), esistono λ1, . . . , λk ∈ K, tali che λk+1vk+1+. . .+λnvn = λ1v1+. . .+λkvk,
da cui segue che λk+1vk+1 + . . . + λnvn − λ1v1 − . . . − λkvk = 0, e siccome
v1, . . . , vk, vk+1, . . . , vn sono linearmente indipendenti, gli scalari λ1, . . . , λn de-
vono essere necessariamente tutti nulli.

Osservazione 3. Sia f : V → W un’applicazione lineare. Ricordiamo che, per
ogni vettore w ∈W , f−1(w) denota la pre-immagine di w tramite f , cioè

f−1(w) = {v ∈ V | f(v) = w} .

Osserviamo che, f−1(w) 6= ∅ ⇔ w ∈ im(f). In tal caso si ha che

f−1(w) = ṽ + ker(f) ,

dove ṽ è un qualsiasi elemento di f−1(w). Questo segue, ad esempio, tramite
una dimostrazione analoga a quella del teorema di struttura per le soluzioni
di un sistema lineare (la verifica è lasciata come esercizio). Dal teorema della
dimensione si ha che dim(ker(f)) = dim(V ) − rg(f). Si osservi che in questo
modo, nel caso in cui V = Kn, W = Km, f = LA, per qualche A ∈ Mm,n(K), si
ritrova il teorema di struttura per le soluzioni di un sistema lineare ed il teorema
di Rouché-Capelli.

Il seguente risultato segue immediatamente dal Teorema della dimensione ed
è stato utilizzato nella dimostrazione della Proposizione 1 del Capitolo 5.

Corollario 1. Sia A ∈ Mm,n(K) e sia W = {v ∈ Kn |A · v = 0} lo spazio delle
soluzioni del sistema lineare omogeneo A · x = 0. Allora

n = dim(W ) + rg(A) .

Corollario 2. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Supponiamo che dim(V ) = dim(W ). Sia f : V → W un’applicazione lineare.
Allora le seguenti affermazioni sono equivalenti.

1. ker(f) = {0} (cioè f è iniettiva).
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2. im(f) = W (cioè f è suriettiva).

3. f è un isomorfismo.

Dim. ker(f) = {0} ⇔ dim(ker(f)) = 0. Per il Teorema della dimensione,
dim(ker(f)) = 0 ⇔ dim(im(f)) = dim(V ). Per ipotesi dim(V ) = dim(W ), ne
segue che ker(f) = {0} ⇔ dim(im(f)) = dim(W ), poiché im(f) è un sottospazio
vettoriale di W quest’ultima condizione è equivalente a im(f) = W . Quindi 1. e
2. sono equivalenti tra di loro.

Supponiamo ora che valga la condizione 2. (oppure la 1.). Per quanto ap-
pena dimostrato vale anche la condizione 1. (rispettivamente la 2.), quindi f è
un isomorfismo. Viceversa, se f è un isomorfismo, è iniettiva e suriettiva per
definizione, quindi valgono 1. e 2.

Definizione 4. Due spazi vettoriali V e W sul campo K si dicono isomorfi, se
esiste un isomorfismo f : V →W . In tal caso si scrive V ∼= W .

Osservazione 4. L’isomorfismo è una relazione di equivalenza tra gli spazi vet-
toriali su uno stesso campo K.

Vale is seguente teorema.

Teorema 3. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Allora V ∼= W ⇔ dim(V ) = dim(W ).

Dim. (⇒) Sia f : V → W un isomorfismo. Per il precedente corollario, ker(f) =
{0} ed im(f) = W , quindi per il teorema della dimensione dim(V ) = rg(f) =
dim(W ).

(⇐) Supponiamo ora che dim(V ) = dim(W ) = n. Fissiamo una base {v1, . . . , vn}
di V ed una base {w1, . . . , wn} di W . Per il teorema di struttura per le appli-
cazioni lineari esiste un unica applicazione lineare f : V →W tale che f(vi) = wi,
∀i = 1, . . . , n. Per l’Osservazione 2.2. im(f) = Span(w1, . . . , wn) = W , quindi f
è suriettiva. Dal precedente corollario abbiamo che f è un isomorfismo, quindi
V ∼= W .

3 Applicazioni lineari e matrici

Nell’Esempio 1.5. abbiamo visto che ad ogni matrice A ∈ Mm,n(K) corrisponde
un’applicazione lineare LA : Kn → Km, LA(v) = A ·v. In questa sezione vedremo
che, viceversa, data un’applicazione lineare f : V → W tra spazi vettoriali di
dimensione finita, fissata una base B di V ed una base C di W , possiamo associare
ad f una matrice MBC (f) (la matrice che rappresenta f rispetto alle basi B e C)
tale che il seguente diagramma sia commutativo:

V
f

//W

fC
��

Kn

f−1
B

OO

L
MBC (f) // Km

(1)
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dove n = dim(V ), m = dim(W ), fB ed fC sono gli isomorfismi associati alle
basi B e C come nell’Esempio 1.3. Il fatto che il diagramma (1) sia commutativo
significa che, per ogni λ ∈ Kn,

fC(f(f−1B (λ))) = LMBC (f)
(λ) .

In altre parole, per ogni v ∈ V , se

λ1...
λn

 ∈ Kn sono le coordinate di v rispetto

alla base B, allora le coordinate di f(v) rispetto alla base C sono (Prop. 2)µ1
...
µm

 = MBC (f) ·

λ1...
λn

 .

Definizione 5. Siano V e W due spazi vettoriali di dimensione finita su K.
Sia f : V → W un’applicazione lineare. Siano B = {v1, . . . , vn} una base di V e
C = {w1, . . . , wm} una base di W . La matrice che rappresenta f rispetto
alle basi B e C è definita come segue:

MBC (f) =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ∈ Mm,n(K) ,

dove, per ogni j = 1, . . . , n, f(vj) = a1jw1 + . . . + amjwm. In altre parole, la
colonna j-ma di MBC (f) è formata dalle coordinate di f(vj) rispetto alla base C,
∀j = 1, . . . , n.

Osservazione 5. 1. Sia A ∈ Mm,n(K), consideriamo l’applicazione lineare
LA : Kn → Km. Siano B e C le basi canoniche di Kn e Km, rispettivamente.
Allora MBC (LA) = A. Infatti, se ej denota il j-mo vettore della base canonica
di Kn, allora LA(ej) = A · ej = A(j), e le coordinate di A(j) rispetto alla base

canonica di Km sono

a1j
...

amj

, dove A = (aij)1≤i≤m
1≤j≤n

.

2. Sia f l’applicazione nulla (Esempio 1.1.), allora MBC (f) = 0 per ogni scelta
di B e C. Infatti f(vj) = 0, ∀j = 1, . . . , n, e le coordinate del vettore nullo sono0

...
0

.

3. Se V = W ed f = IdV , allora MBB(IdV ) = In per ogni base B di V . Infatti, per
ogni j = 1, . . . , n, IdV (vj) = vj , e le coordinate di vj rispetto alla base {v1, . . . , vn}
coincidono con il j-mo vettore della base canonica di Kn, ej .
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Più in generale, se V = W e f = λIdV per qualche scalare λ ∈ K, allora
MBB(λIdV ) = λIn (la verifica è lasciata per esercizio).

Osserviamo che, se C 6= B, allora MBC (IdV ) 6= In (la verifica è lasciata per
esercizio).

Proposizione 2. Siano V e W due spazi vettoriali su K di dimensione finita,
sia f : V → W un’applicazione lineare, e siano B = {v1, . . . , vn} una base di V ,
C = {w1, . . . , wm} una base di W . Dato un vettore v ∈ V , se v = λ1v1+. . .+λnvn,
allora f(v) = µ1w1 + . . .+ µmwm, doveµ1

...
µm

 = MBC (f) ·

λ1...
λn

 .

Dim. L’enunciato segue dalla seguente sequenza di uguaglianze, dove si sfrutta
il fatto che f è lineare e la definizione di MBC (f):

f(v) = f(λ1v1 + . . .+ λnvn)

= λ1f(v1) + . . .+ λnf(vn)

= λ1(a11w1 + . . .+ am1wm) + . . .+ λn(a1nw1 + . . .+ amnwm)

= (λ1a11 + . . .+ λna1n)w1 + . . .+ (λ1am1 + . . .+ λnamn)wm .

Osserviamo che, per ogni i = 1, . . . ,m, λ1ai1 + . . . + λnain è l’i-ma componente

del vettore MBC (f) ·

λ1...
λn

 ∈ Km.

Uno dei vantaggi che si ottengono descrivendo un’applicazione lineare f per
mezzo delle matrici MBC (f) è che possiamo usare i risultati dei capitoli 3 e 5 per
determinare im(f) e ker(f), come segue.

Corollario 3. Sia f : V → W un’applicazione lineare, dove V e W sono spazi
vettoriali di dimensione finita. Siano B = {v1, . . . , vn} una base di V e C =
{w1, . . . , wm} una base di W . Sia MBC (f) la matrice che rappresenta f nelle basi
B e C. Allora valgono le seguenti uguaglianze:

ker(f) =

{
λ1v1 + . . .+ λnvn ∈ V |MBC (f) ·

λ1...
λn

 = 0

}
;

im(f) =

{
µ1w1 + . . .+ µmwm ∈W |

µ1
...
µm

 ∈ im(LMBC (f)
)

}
;

rg(f) = rg(MBC (f)) .
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Dim. La prima uguaglianza segue dal fatto che se v = λ1v1 + . . . + λnvn, allora
f(v) = 0 se e soltanto se le coordinate di f(v) rispetto alla base C sono tutte
= 0. Dalla precedente proposizione questo è equivalente a richiedere che MBC (f) ·λ1...
λn

 = 0. La seconda uguaglianza segue analogamente.

Dimostriamo ora l’ultima uguaglianza. Osserviamo che per la seconda uguaglianza,
la restrizione di fC : W → Km all’immagine di f è un isomorfismo da im(f) a
im(LMBC (f)

). Quindi rg(f) = dim(im(f)) = dim(im(LMBC (f)
)) = rg(MBC (f)).

Esempio 4. 1. Siano V = R2, W = R3, f : R2 → R3 l’applicazione lineare

f

(
x
y

)
=

2x− 3y
x

x+ y

. Sia B =
{(1

0

)
,

(
0
1

)}
la base canonica di R2 e sia

C =

{1
0
0

 ,

0
1
0

 ,

0
0
1

} la base canonica di R3. Determiniamo la matrice

MBC (f). Per definizione, MBC (f) ∈ M3,2(R), la prima colonna (rispettivamente

la seconda) è formata dalle coordinate di f

(
1
0

)
=

2
1
1

 (rispettivamente di

f

(
0
1

)
=

−3
0
1

) rispetto alla base C. Quindi

MBC (f) =

2 −3
1 0
1 1

 ∈ M3,2(R) .

In particolare rg(f) = 2, ker(f) = {0} (per il teorema della dimensione), e

im(f) = Span

(2
1
1

 ,

−3
0
1

).

2. Consideriamo ora la stessa applicazione f : R2 → R3 del precedente esempio.

Scegliamo le basi B̃ =
{(1

1

)
,

(
1
−1

)}
di R2, e C̃ =

{1
0
0

 ,

1
1
0

 ,

1
1
1

} di R3

e determiniamo MB̃C̃ (f) ∈ M3,2(R). A tale scopo determiniamo le coordinate di
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f

(
1
1

)
ed f

(
1
−1

)
rispetto alla base C̃:

f

(
1
1

)
=

−1
1
2

 = −2

1
0
0

− 1

1
1
0

+ 2

1
1
1


f

(
1
−1

)
=

5
1
0

 = 4

1
0
0

+ 1

1
1
0

+ 0

1
1
1

 .

Dalla Definizione 5 segue che MB̃C̃ (f) =

−2 4
−1 1
2 0

.

3. Siano V = R[t]3, W = R[t]2, ed f : R[t]3 → R[t]2, f(P ) = P ′, la derivata di P
rispetto a t. Scegliamo le basi B = {1, t, t2, t3} di R[t]3 e C = {1, t, t2} di R[t]2.
La matrice MBC (f) ∈ M3,4(R) ha come prima colonna (rispettivamente seconda,
terza, quarta) le coordinate di f(1) (rispettivamente f(t), f(t2), f(t3)) rispetto
alla base C. Siccome f(1) = 0, f(t) = 1, f(t2) = 2t ed f(t3) = 3t2, abbiamo che

MBC (f) =

0 1 0 0
0 0 2 0
0 0 0 3

 .

Si ha che ker(LMBC (f)
) = Span


1
0
0
0

, ed im(LMBC (f)
) = Span

(1
0
0

 ,

0
1
0

 ,

0
0
1

),

quindi ker(f) = Span(1) ed im(f) = Span(1, t, t2) = R[t]2.

4. Siano V = W = R[t]3, e sia f : R[t]3 → R[t]3, f(P ) = tP ′, dove P ′ è la derivata
di P rispetto a t. Si verifica facilmente che f è lineare (esercizio). Consideriamo
la base B = {1, t, t2, t3} di R[t]3, e determiniamo MBB(f) ∈ M4(R). Abbiamo che:
f(1) = 0, f(t) = t, f(t2) = 2t2 ed f(t3) = 3t3. Per definizione, la matrice MBB(f)
ha per colonne le coordinate, rispetto alla base B, dei vettori f(1) = 0, f(t) = t,
f(t2) = 2t2 ed f(t3) = 3t3, quindi

MBB(f) =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .

Per determinare ker(f) ed im(f), determiniamo prima ker(LMBB(f)
) ed im(LMBB(f)

).

Usando i risultati dei capitoli 3 e 5 abbiamo che ker(LMBB(f)
) = Span


1
0
0
0

, ed
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im(LMBB(f)
) = Span

(
0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


)

. Quindi ker(f) = Span(1), im(f) =

Span(t, t2, t3) ⊂ R[t]3.

5. Consideriamo l’applicazione lineare f : R3 → R3, f

xy
z

 =

 2x+ πz

x− y +
√

2z
y + z

.

Si vuole determinare ker(f) e rg(f). Sia quindi B = {e1, e2, e3} la base canonica
di R3. Abbiamo che

MBB(f) =

2 0 π

1 −1
√

2
0 1 1

 .

Si calcola che rg(MBB(f)) = 3, quindi rg(f) = rg(MBB(f)) = 3 e per il teorema
della dimensione ker(f) = {0}.

Teorema 4. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Siano B = {v1, . . . , vn} e C = {w1, . . . , wm} basi di V e W , rispettivamente.
Allora l’applicazione

MBC : Hom(V,W )→ Mm,n(K) , f 7→ MBC (f) ,

è un isomorfismo di spazi vettoriali. In particolare Hom(V,W ) ha dimensione
finita pari a n ·m = dim(V ) · dim(W ).

Dim. Dimostriamo dapprima che MBC è lineare. Siano f, g ∈ Hom(V,W ) e sia
c ∈ K. Denotiamo con aij (rispettivamente bij) l’elemento di posto (i, j) di
MBC (f) (rispettivamente di MBC (g)). Dobbiamo verificare che l’elemento di posto
(i, j) di MBC (f + g) coincide con aij + bij , per ogni i = 1, . . . ,m, j = 1, . . . , n. Per
definizione, [MBC (f + g)]ij è la coordinata i-ma di (f + g)(vj) rispetto alla base C.
Abbiamo le seguenti uguaglianze:

(f + g)(vj) = f(vj) + g(vj)

= (a1jw1 + . . .+ amjwm) + (b1jw1 + . . .+ bmjwm)

= (a1j + b1j)w1 + . . .+ (amj + bmj)wm .

Da questo segue che [MBC (f + g)]ij = aij + bij = [MBC (f)]ij + [MBC (g)]ij , per ogni
i = 1, . . . ,m, j = 1, . . . , n, quindi MBC (f + g) = MBC (f) + MBC (g).
Analogamente si dimostra che MBC (cf) = cMBC (f), quindi MBC è lineare.

Per dimostrare che MBC è iniettiva, è sufficiente provare che ker(MBC ) = {0}
(Proposizione 1). Sia quindi f ∈ Hom(V,W ) tale che MBC (f) = 0 ∈ Mm,n(K).
Sfruttando la Proposizione 2, si ha che f = 0, da cui segue la tesi.

Per concludere, dimostriamo che MBC è suriettiva. Sia quindi A = (aij) ∈
Mm,n(K). Definiamo fA ∈ Hom(V,W ) come quell’applicazione lineare tale che
fA(vj) = a1jw1 + . . . + amjwm, ∀j = 1, . . . , n (dal Teorema di struttura per le
applicazioni lineari una tale funzione esiste ed è unica). Per definizione si ha che
MBC (fA) = A, quindi MBC è suriettiva.
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Osservazione 6. Dalla dimostrazione del precedente teorema segue che la fun-
zione inversa di MBC è quella funzione Mm,n(K) → Hom(V,W ) che associa A 7→
fA, ∀A ∈ Mm,n(K).

3.1 Cambiamenti di base

In questa sezione vedremo come cambia la matrice MBC (f) al variare delle basi B
e C. Questo seguirà dalla seguente proposizione.

Proposizione 3. Siano U , V e W tre spazi vettoriali sul campo K, di dimensione
p, n,m, rispettivamente. Siano

D = {u1, . . . , up} una base di U ,

B = {v1, . . . , vn} una base di V ,

C = {w1, . . . , wm} una base di W .

Siano g : U → V e f : V →W applicazioni lineari. Allora

MDC (f ◦ g) = MBC (f) ·MDB (g) .

Dim. Dobbiamo dimostrare che, per ogni i = 1, . . . ,m e per ogni j = 1, . . . , p,
vale la seguente uguaglianza:

[MDC (f ◦ g)]ij =
n∑
k=1

[MBC (f)]ik · [MDB (g)]kj .

Denotiamo con aik = [MBC (f)]ik e con bkj = [MDB (g)]kj , e ricordiamo che [MDC (f ◦
g)]ij è la i-ma coordinata rispetto a C di (f ◦ g)(uj).
Dalla definizione di composizione di due applicazioni, dalla linearità di f e g, e
dalla Definizione 5 si hanno le seguenti uguaglianze:

(f ◦ g)(uj) = f(g(uj)) = f(

n∑
k=1

bkjvk)

=
n∑
k=1

bkjf(vk)

=
n∑
k=1

bkj(
m∑
`=1

a`kw`)

=
n∑
k=1

m∑
`=1

bkja`kw`

=

m∑
`=1

(

n∑
k=1

bkja`k)w` .

Da questo segue che la i-ma coordinata di (f ◦ g)(uj) rispetto alla base C è∑n
k=1 aikbkj .
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Corollario 4. Sia V uno spazio vettoriale di dimensione n sul campo K. Sia B
una base di V . Allora valgono le seguenti affermazioni.

1. Sia f ∈ End(V ). Allora f è un automorfismo ⇔ MBB(f) è invertibile. In
tal caso MBB(f−1) = MBB(f)−1.

2. (Si confronti con il Teorema 3 del Capitolo 5.) Sia A ∈ Mn(K). Allora A
è invertibile ⇔ rg(A) = n.

Dim. 1. (⇒) Supponiamo che f ∈ End(V ) sia un automorfismo, e sia f−1

la funzione inversa di f (che è lineare per l’Osservazione 1.4.). Allora valgono
le uguaglianze f ◦ f−1 = f−1 ◦ f = IdV . Per l’Osservazione 5.3. si ha che
MBB(f ◦ f−1) = MBB(f−1 ◦ f) = In, e dalla Proposizione 3 segue che In = MBB(f) ·
MBB(f−1) = MBB(f−1) ·MBB(f). Da cui segue l’enunciato.
(⇐) Viceversa, se MBB(f) è invertibile, allora l’unica soluzione del sistema lineare
omogeneo MBB(f) · x = 0 è x = MBB(f)−1 · 0 = 0. Dal Corollario 3 segue che
ker(f) = {0} e dal Corollario 2 che f è un isomorfismo.

2. Consideriamo l’applicazione lineare LA : Kn → Kn e ricordiamo che A =
MBB(LA), dove B è la base canonica di Kn. Dal punto 1. si ha che A ∈ GLn(K)⇔
LA è un isomorfismo. Per il Corollario 2, LA è un isomorfismo ⇔ rg(LA) = n.
L’enunciato segue dal fatto che rg(LA) = rg(A) (Osservazione 2.3., Corollario
3).

Definizione 6. Sia V uno spazio vettoriale di dimensione n sul campo K. Siano
B = {v1, . . . , vn} e C = {w1, . . . , wn} due basi di V . La matrice del cambia-
mento di base da B a C è la matrice MBC (IdV ) ∈ Mn(K) che rappresenta la
funzione identità IdV : V → V rispetto alle basi B e C.

Osservazione 7. 1. Per ogni j = 1, . . . , n, siano

a1j...
anj

 le coordinate di vj =

IdV (vj) rispetto alla base C (cioè vj = a1jw1+. . .+anjwn), allora dalla Definizione
5 segue che,

MBC (IdV ) =

a11 . . . a1j . . . a1n
...

. . .
...

. . .
...

an1 . . . anj . . . ann

 .

2. Dalla Proposizione 2 abbiamo che, per ogni vettore v ∈ V , se

λ1...
λn

 ∈ Kn

sono le coordinate di v rispetto alla base B, allora le coordinate di v rispetto alla
base C sono µ1...

µn

 = MBC (IdV ) ·

λ1...
λn

 .
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Quindi MBC (IdV ) permette di determinare le coordinate di un vettore rispetto alla
base C se sono note le sue coordinate rispetto a B, per questo prende il nome di
matrice del cambiamento di base da B a C.

Proposizione 4. MBC (IdV ) è invertibile, inoltre vale la seguente uguaglianza
MBC (IdV )−1 = MCB(IdV ).

Dim. Valgono le seguenti identità:

In
Oss.5.3.

== MBB(IdV )
IdV =IdV ◦IdV== MBB(IdV ◦ IdV )

Prop.3
== MCB(IdV ) ·MBC (IdV ) .

Analogamente si dimostra che In = MBC (IdV )·MCB(IdV ). Da questo segue l’enunciato.

Come corollario della Proposizione 3 abbiamo il seguente risultato che esprime
MB

′
C′ (f) in termini di MBC (f) e delle matrici del cambiamento di base.

Corollario 5. Sia f : V →W un’applicazione lineare. Siano B,B′ due basi di V
e C, C′ due basi di W . Allora

MB
′
C′ (f) = MCC′(IdW ) ·MBC (f) ·MB′B (IdV ) . (2)

In particolare, se V = W ,

MCC(f) = (MCB(IdV ))−1 ·MBB(f) ·MCB(IdV ) . (3)

Dim. Applicando la Proposizione 3 al prodotto MBC (f) · MB
′
B (IdV ) abbiamo:

MBC (f) · MB′B (IdV ) = MB
′
C (f ◦ IdV ) = MB

′
C (f). Applicando di nuovo la Propo-

sizione 3 abbiamo che:

MCC′(IdW ) ·MBC (f) ·MB′B (IdV ) = MCC′(IdW ) ·MB′C (f) = MB
′
C′ (IdW ◦ f) = MB

′
C′ (f) ,

da cui segue la prima uguaglianza dell’enunciato.
L’uguaglianza (3) segue dalla precedente e dal fatto che MBC (IdV ) = (MCB(IdV ))−1

(Proposizione 4).

Esempio 5. 1. Sia V = R2. Consideriamo le basi B =

{(
1
0

)
,

(
0
1

)}
e C ={(

2
−1

)
,

(
−3
1

)}
. Allora, poiché B è la base canonica, MCB(IdR2) =

(
2 −3
−1 1

)
.

Per la Proposizione 4,

MBC (IdR2) =

(
2 −3
−1 1

)−1
=

(
−1 −3
−1 −2

)
.

In particolare le coordinate del vettore

(√
2

7

)
rispetto alla base C sono

(
−1 −3
−1 −2

)
·
(√

2
7

)
=

(
−
√

2− 21

−
√

2− 14

)
.
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2. Sia V = M2(C) lo spazio vettoriale delle matrici 2 × 2 a coefficienti in C.

Consideriamo le seguenti basi di V : B =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
e C =

{
I2,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
. Allora

MCB(IdM2(C)) =


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 ,

quindi

MBC (IdM2(C)) =


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1


−1

=


1
2 0 0 1

2
0 1

2
1
2 0

0 i
2 − i

2 0
1
2 0 0 −1

2

 .

In particolare, le coordinate della matrice

(
1 2
3 4

)
rispetto alla base C sono

1
2 0 0 1

2
0 1

2
1
2 0

0 i
2 − i

2 0
1
2 0 0 −1

2

 ·


1
2
3
4

 =


5
2
5
2
− i

2
−3

2

 .

3. Sia f : R4 → R3 la funzione f


x1
x2
x3
x4

 =

x1 − x3 + 2x4
−x1 + 2x2
x2 − x3 + x4

. Si verifica facil-

mente che f è lineare (la verifica è lasciata per esercizio). Sia B la base canonica
di R4 e C la base canonica di R3. Allora

MBC (f) =

 1 0 −1 2
−1 2 0 0
0 1 −1 1

 .

Per determinare ker(f) e rg(f), trasformiamo MBC (f) a scala per mezzo di oper-
azioni elementari:  1 0 −1 2

−1 2 0 0
0 1 −1 1

→
1 0 −1 2

0 1 −1 1
0 0 1 0

 ,

quindi rg(f) = 3 e dim(ker(f)) = 4 − 3 = 1. Siccome le operazioni elementari
trasformano un sistema lineare in uno equivalente,

ker(f) =

{
x1
x2
x3
x4

 ∈ R4 |x3 = 0 , x2 = −x4 , x1 = −2x4

}
= Span


−2
−1
0
1

 .
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Consideriamo ora le basi B′ =

{
1
0
0
0

 ,


1
1
0
0

 ,


1
1
1
0

 ,


1
1
1
1


}

di R4 e C′ =

{1
0
1

 ,

0
1
0

 ,

 1
0
−1

} di R3. Vogliamo determinare la matrice MB
′
C′ (f). Dalla

Definizione 5, se MB
′
C′ (f) =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

, allora

f


1
0
0
0

 =

 1
−1
0

 = a11

1
0
1

+ a21

0
1
0

+ a31

 1
0
−1

 ,

f


1
1
0
0

 =

1
1
1

 = a12

1
0
1

+ a22

0
1
0

+ a32

 1
0
−1

 ,

f


1
1
1
0

 =

0
1
0

 = a13

1
0
1

+ a23

0
1
0

+ a33

 1
0
−1

 ,

f


1
1
1
1

 =

2
1
1

 = a14

1
0
1

+ a24

0
1
0

+ a34

 1
0
−1

 .

Risolvendo le precedenti equazioni otteniamo:

MB
′
C′ (f) =

 1
2 1 0 3

2
−1 1 1 1
1
2 0 0 1

2

 .

Determiniamo ora la matrice MB
′
C′ (f) usando l’uguaglianza (2), cioè

MB
′
C′ (f) = MCC′(IdR3) ·MBC (f) ·MB′B (IdR4) .

È immediato determinare le matrici MB
′
B (IdR4) ed MC

′
C (IdR3):

MB
′
B (IdR4) =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 ,

MC
′
C (IdR3) =

1 0 1
0 1 0
1 0 −1

 .
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Dalla Proposizione 4 abbiamo:

MCC′(IdR3) = (MC
′
C (IdR3))−1 =

1
2 0 1

2
0 1 0
1
2 0 −1

2

 .

Moltiplicando le precedenti matrici come nella formula (2), si ottiene la matrice
MB

′
C′ (f).

4. Sia V = R[t]2 e sia f : V → V la funzione che associa ad ogni polinomio P di
grado≤ 2 la sua derivata rispetto a t, f(P ) = P ′. Consideriamo le seguenti basi di

V : B = {1, t, t2}, C = { 1, t+1, t2−t}. Abbiamo che MBB(f) =

0 1 0
0 0 2
0 0 0

. Inoltre

MCB(IdV ) =

1 1 0
0 1 −1
0 0 1

, quindi MBC (IdV ) =

1 1 0
0 1 −1
0 0 1

−1 =

1 −1 −1
0 1 1
0 0 1

.

Dalla (3) segue che

MCC(f) =

1 −1 −1
0 1 1
0 0 1

 ·
0 1 0

0 0 2
0 0 0

 ·
1 1 0

0 1 −1
0 0 1

 =

0 1 −3
0 0 2
0 0 0

 .

3.2 Cambiamenti di coordinate affini

In questa sezione applichiamo i risultati delle precedenti sezioni per determinare
la formula di trasformazione delle coordinate affini rispetto a due riferimenti.

Sia A uno spazio affine sullo spazio vettoriale V sul campo K. Consideriamo
due sistemi di coordinate affini O,B = {v1, . . . , vn} ed O′, C = {w1, . . . , wn} di

A. Sia P ∈ A e siano

λ1...
λn

 le sue coordinate rispetto ad O,B = {v1, . . . , vn},

vogliamo determinare le sue coordinate

µ1...
µn

 rispetto ad O′, C = {w1, . . . , wn}.

Ricordiamo che, per definizione di coordinate in uno spazio affine,
−−→
OP = λ1v1 + . . .+ λnvn ,

ed analogamente −−→
O′P = µ1w1 + . . .+ µnwn .

Usando l’uguaglianza
−−→
O′P =

−−→
O′O +

−−→
OP , otteniamo

−−→
O′P −

−−→
O′O =

−−→
OP . Quindi,

se

c1...
cn

 sono le coordinate di O rispetto ad O′, {w1, . . . , wn}, si ha che

(µ1 − c1)w1 + . . .+ (µn − cn)wn = λ1v1 + . . .+ λnvn .
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Dalla Osservazione 7.2. abbiamo:µ1 − c1...
µn − cn

 = MBC (IdV ) ·

λ1...
λn

 ,

equivalentemente µ1...
µn

 =

c1...
cn

+ MBC (IdV ) ·

λ1...
λn

 . (4)

Esempio 6. Consideriamo il piano affine A2(R) con il riferimento canonico

O′, C = {e1, e2}. Sia O =

(
−1
2

)
, e sia B =

{(
1
−2

)
,

(
1
1

)}
. Allora MBC (IdR2) =(

1 1
−2 1

)
. Per ogni punto P ∈ A2(R), se

(
λ1
λ2

)
sono le sue coordinate rispetto

ad O,B, le sue coordinate rispetto ad O′, C sono date dalla formula(
µ1
µ2

)
=

(
−1
2

)
+

(
1 1
−2 1

)
·
(
λ1
λ2

)
.

4 Diagonalizzazione

Sia V uno spazio vettoriale di dimensione finita n sul campo K, e sia f ∈ End(V ).
Abbiamo visto che, scelta una base B di V , possiamo rappresentare f per mezzo di
una matrice MBB(f) (Definizione 5, Proposizione 2). Molte proprietà di f possono
essere studiate tramite la matrice MBB(f) (si veda ad esempio i corollari 3, 4).
L’obiettivo di questa sezione è di stabilire se, data f , esiste una base di V tale
che la matrice che rappresenta f rispetto a tale base sia diagonale.

Ricordiamo che, se C è un’altra base di V , allora le matrici MCC(f) ed MBB(f)
solo collegate dalla formula (3):

MCC(f) = (MCB(IdV ))−1 ·MBB(f) ·MCB(IdV ) ,

dove MCB(IdV ) è la matrice del cambiamento di base da C a B. Dalla Proposizione
4 abbiamo che MCB(IdV ) è invertibile. Questo motiva la seguente definizione.

Definizione 7. Due matrici A,B ∈ Mn(K) sono simili se esiste C ∈ GLn(K)
tale che

B = C−1 ·A · C .

In tal caso si scrive A ∼ B.

Quindi, per la (3), se due matrici rappresentano lo stesso endomorfismo
rispetto a due basi, allora esse sono simili. Vale anche il viceversa, come afferma
il seguente risultato.
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Lemma 1. Sia f ∈ End(V ) e sia A = MBB(f) ∈ Mn(K), dove B = {v1, . . . , vn} è
una base di V . Per ogni B ∈ Mn(K), A ∼ B ⇔ ∃C base di V tale che B = MCC(f).

Dim. L’implicazione ⇐ segue dall’equazione (3). Viceversa, supponiamo che
A ∼ B. Allora per definizione, ∃C ∈ GLn(K) tale che B = C−1 · A · C. Sia
cij l’elemento di posto (i, j) di C, ∀i, j = 1, . . . , n. Definiamo una base C =
{w1, . . . , wn} di V come segue: wj := c1jv1+. . .+cnjvn, j = 1, . . . , n. Osserviamo
che C = MCB(IdV ), quindi B = C−1 · A · C = MBC (IdV ) · MBB(f) · MCB(IdV ) =
MCC(f).

Osservazione 8. 1. La similitudine è una relazione di equivalenza tra le matrici
a coefficienti in K. Infatti, ∀A ∈ Mn(K), A = I−1n · A · In ⇒ A ∼ A, quindi ∼
è riflessiva. La proprietà simmetrica si dimostra come segue: A ∼ B ⇒ ∃C ∈
GLn(K) tale che B = C−1 · A · C ⇒ A = C · B · C−1 = (C−1)−1 · B · (C−1),
quindi B ∼ A poiché C−1 ∈ GLn(K). Per concludere, dimostriamo la proprietà
transitiva: se A ∼ B e B ∼ C, allora ∃D,E ∈ GLn(K) tali che B = D−1 · A ·D
e C = E−1 ·B ·E, quindi C = E−1 ·D−1 ·A ·D ·E = (D ·E)−1 ·A · (D ·E), cioè
A ∼ C.

Lemma 2. Siano A,B ∈ Mn(K). Se A ∼ B, allora det(A) = det(B).

Dim. A ∼ B ⇒ ∃C ∈ GLn(K) tale che B = C−1 · A · C. Quindi det(B) =

det(C−1 ·A ·C)
(Binet)
== det(C−1) ·det(A) ·det(C)

Cor.4Cap.6
== 1

det(C) ·det(A) ·det(C) =

det(A).
Questo risultato ci permette di definire il determinante di un endomorfismo

come segue.

Definizione 8. Sia V uno spazio vettoriale di dimensione finita su K. Sia
f ∈ End(V ). Allora det(f) := det(MBB(f)), dove B è una base di V . Osserviamo
che, per il Lemma 2, det(f) non dipende dalla scelta della base B, quindi la
definizione è ben posta.

Definizione 9. 1. Sia V uno spazio vettoriale di dimensione finita n sul campo
K. Sia f ∈ End(V ). Allora f si dice diagonalizzabile se esiste una base
B di V tale che MBB(f) è diagonale (Definizione 2 del Capitolo 2). In tal
caso, B è detta base di V che diagonalizza f .

2. Una matrice A ∈ Mn(K) è detta diagonalizzabile se è simile ad una
matrice diagonale.

Osservazione 9. 1. Sia A ∈ Mn(K). Allora A è diagonalizzabile, se e solo se
l’endomorfismo LA : Kn → Kn è diagonalizzabile. Questo segue dal fatto che
A = MBB(LA), dove B è la base canonica di Kn (Osservazione 5.1.), e dal Lemma
1.

2. Se dim(V ) = 1, allora ogni endomorfismo f ∈ End(V ) è diagonalizzabile ed
ogni base di V diagonalizza f .
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Infatti, sia B = {v}, allora f(v) = λv per qualche λ ∈ K. Quindi MBB(f) =
(
λ
)
∈

M1(K), che è diagonale.

3. Vedremo che, se dim(V ) > 1, allora esistono endomorfismi f ∈ End(V ) che
non sono diagonalizzabili. In altre parole, se n > 1, esistono matrici A ∈ Mn(K)

non diagonalizzabili, ad esempio A =


0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

.

Il seguente risultato è una riformulazione della Definizione 9 che motiva le
definizioni che seguono.

Lemma 3. Sia f ∈ End(V ). Sia B = {v1, . . . , vn} una base di V che diagonalizza
f . Allora, per ogni i = 1, . . . , n, f(vi) = λivi, per qualche λi ∈ K.

Viceversa, se esiste una base B di V con tali proprietà, allora f è diagonaliz-
zabile e B diagonalizza f .

Dim. Per definizione abbiamo che MBB(f) è diagonale. Quindi, se denotiamo con
aij l’elemento di posto (i, j) di MBB(f), per la Definizione 5 si ha che f(vj) = ajjvj ,
∀j = 1, . . . , n. Quindi basta porre λj = ajj , per j = 1, . . . , n.

Viceversa, se B = {v1, . . . , vn} è una base di V tale che f(vj) = λjvj , per ogni
j = 1, . . . , n, allora

MBB(f) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ∈ Mn(K) ,

che è diagonale, quindi f è diagonalizzabile e B diagonalizza f .

Definizione 10. 1. Sia V uno spazio vettoriale su un campo K. Sia f ∈
End(V ). Un autovettore di f è un vettore v ∈ V diverso dal vettore
nullo, v 6= 0, tale che ∃λ ∈ K per cui vale: f(v) = λv.
In tal caso, λ è l’autovalore di f relativo all’autovettore v.

Lo spettro di f è l’insieme degli autovalori di f , esso si denota con Sp(f)
ed è un sottoinsieme del campo K.

2. Sia A ∈ Mn(K). Un autovettore di A è un vettore v ∈ Kn non nullo tale
che v sia un autovettore di LA, cioè tale che A ·v = λv, per qualche λ ∈ K.
In tal caso, λ è l’autovalore di A relativo all’autovettore v. Lo spettro di A
si definisce come l’insieme degli autovalori di A e si indica con Sp(A).

Osservazione 10. 1. Se f = IdV , allora ogni vettore v ∈ V \{0} è un autovettore
di f , con autovalore corrispondente λ = 1.

Viceversa, se f ∈ End(V ) è tale che, ∀v ∈ V \ {0}, v è autovettore di f con
autovalore 1, allora f = IdV (la verifica è lasciata per esercizio).

2. 0 ∈ Sp(f)⇔ ker(f) 6= {0} (la verifica è lasciata per esercizio).
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La seguente proposizione è una riformulazione del Lemma 3.

Proposizione 5. Sia V uno spazio vettoriale sul campo K. Sia f ∈ End(V ).
Allora f è diagonalizzabile ⇔ esiste una base B di V composta da autovettori.

La seguente proposizione contiene le principali proprietà degli autovettori ed
autovalori.

Proposizione 6. Sia V uno spazio vettoriale sul campo K, sia f ∈ End(V ).
Allora valgono le seguenti proprietà.

1. Se v ∈ V è un autovettore di f , allora l’autovalore corrispondente a v è
unico.

2. Siano v1, . . . , vm ∈ V autovettori di f con relativi autovalori λ1, . . . , λm ∈
K, rispettivamente. Se λi 6= λj, per ogni i 6= j ∈ {1, . . . ,m}, allora
v1, . . . , vm sono linearmente indipendenti.

3. Sia λ ∈ Sp(f) un autovalore di f . Allora l’insieme

Vλ(f) := {v ∈ V | v è un autovettore di f con autovalore λ} ∪ {0}
= ker(f − λIdV ) ,

è un sottospazio vettoriale di V , chiamato l’autospazio di f relativo
all’autovalore λ. In seguito, se non ci sarà pericolo di confusione, Vλ(f)
verrà denotato con Vλ.

Dim. 1. Supponiamo per assurdo che esistono due autovalori distinti λ 6= µ ∈
Sp(f) relativi all’autovettore v. Allora λv = f(v) = µv, quindi 0 = λv − µv =
(λ−µ)v. Siccome v è un autovettore, v 6= 0, quindi λ−µ = 0, cioè λ = µ. Questo
contraddice l’ipotesi λ 6= µ, da cui segue l’enunciato.

2. Procediamo per induzione su m. Se m = 1, allora v1 è linearmente in-
dipendente. Infatti per definizione di autovettore, v1 6= 0.
m− 1⇒ m Siano c1, . . . , cm ∈ K scalari tali che c1v1 + . . .+ cmvm = 0. Allora:

0 = f(c1v1 + . . .+ cmvm) = c1λ1v1 + . . .+ cmλmvm . (5)

D’altro canto, moltiplicando ambo i membri di c1v1 + . . .+ cmvm = 0 per λm, si
ottiene

λmc1v1 + . . .+ λmcmvm = 0 . (6)

Sottraendo l’equazione (6) alla (5) otteniamo: c1(λ1−λm)v1 + . . .+cm−1(λm−1−
λm)vm−1 = 0. Per ipotesi induttiva, v1, . . . , vm−1 sono linearmente indipendenti,
quindi c1(λ1 − λm) = . . . = cm−1(λm−1 − λm) = 0. Poiché λi 6= λj , se i 6= j,
segue che c1 = . . . = cm−1 = 0. Ma questo implica che cmvm = 0, quindi anche
cm = 0, da cui segue che v1, . . . , vm sono linearmente indipendenti.

3. Osserviamo che Vλ(f) = {v ∈ V | f(v) = λv}, poiché f(0) = 0 = λ0.
Inoltre f(v) = λv ⇔ f(v) − λv = 0 ⇔ (f − λIdV )(v) = 0 ⇔ v ∈ ker(f − λIdV ).
Siccome f − λIdV ∈ End(V ), ker(f − λIdV ) è un sottospazio vettoriale di V
(Proposizione 1).
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Corollario 6. Sia V uno spazio vettoriale di dimensione finita n sul campo K,
sia f ∈ End(V ). Allora f ha al più n autovalori distinti.

Dim. Siano λ1, . . . , λm ∈ Sp(f) autovalori distinti di f . Per ogni i = 1, . . . ,m, sia
vi un autovettore di f relativo all’autovalore vi. Per il punto 2. della precedente
proposizione, v1, . . . , vm sono linearmente indipendenti, quindi m ≤ dim(V ) =
n.

Teorema 5. Sia V uno spazio vettoriale di dimensione finita n sul campo K.
Sia f ∈ End(V ) e sia Sp(f) = {λ1, . . . , λk} lo spettro di f (con λi 6= λj, se i 6= j).
Allora valgono le seguenti affermazioni.

1. dim(Vλ1(f)) + . . .+ dim(Vλk(f)) ≤ n.

2. f è diagonalizzabile ⇔ dim(Vλ1(f)) + . . .+ dim(Vλk(f)) = n.

Dim. 1. Sia di := dim(Vλi), per ogni i = 1, . . . , k. Sia {vi,1, . . . , vi,di} una base di

Vλi , per ogni i = 1, . . . , k. È sufficiente dimostrare che i vettori

v1,1, . . . , v1,d1 , . . . , vk,1, . . . , vk,dk

sono linearmente indipendenti. A tale scopo siano c1,1, . . . , ck,dk ∈ K scalari, tali
che

c1,1v1,1 + . . .+ ck,dkvk,dk = 0 . (7)

Denotiamo con wi := ci,1vi,1 + . . . + ci,divi,di , ed osserviamo che wi ∈ Vλi , ∀i =
1, . . . , k. Dalla (7) segue che w1 + . . . + wk = 0, quindi per il punto 2. della
Proposizione 6 si ha che w1 = . . . = wk = 0. Siccome, per ogni i = 1, . . . , k, wi :=
ci,1vi,1 + . . .+ ci,divi,di e vi,1, . . . , vi,di sono linearmente indipendenti, concludiamo
che ci,1 = . . . = ci,di = 0, ∀i. Da cui segue l’enunciato.

2. (⇐) Siano d1, . . . , dk, v1,1, . . . , v1,d1 , . . . , vk,1, . . . , vk,dk , come nella dimostrazione
del punto 1. Allora, per ipotesi d1+. . .+dk = n. Siccome v1,1, . . . , v1,d1 , . . . , vk,1, . . . , vk,dk
sono linearmente indipendenti, essi formano una base di V di autovettori per f ,
quindi f è diagonalizzabile.
(⇒) Se f è diagonalizzabile esiste una base B di V formata da autovettori di
f . Per ogni i = 1, . . . , k sia {vi,1, . . . , vi,δi} ⊆ B il sottoinsieme di B formato dai
vettori che appartengono a Vλi (cioè dagli autovettori aventi come autovalore λi).
Osserviamo che δi ≤ di := dim(Vλi), ed usando il punto 1. abbiamo:

n =

k∑
i=1

δi ≤
k∑
i=1

di ≤ n .

Quindi
∑k

i=1 di = n.

Dal precedente teorema si ottiene un procedimento per determinare se un
dato endomorfismo f ∈ End(V ), dove V è uno spazio vettoriale di dimensione
finita su un campo K, è diagonalizzabile, ed eventualmente trovare una base di
V che diagonalizza f . Si procede come segue:
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1. Si determinano gli autovalori di f , e quindi il suo spettro Sp(f) = {λ1, . . . , λk};

2. Per ogni i = 1, . . . , k, si determina la dimensione dell’autospazio Vλi(f) =
ker(f − λiIdV ), osserviamo che per il teorema della dimensione,

dim(Vλi(f)) = dim(ker(f − λiIdV )) = dim(V )− rg(f − λiIdV ) ;

3. f è diagonalizzabile ⇔ dim(Vλ1(f)) + . . .+ dim(Vλk(f)) = dim(V );

4. Se f è diagonalizzabile, per trovare una base di V formata da autovettori di
f , si determina una base Bi di Vλi(f) = ker(f−λiIdV ), per ogni i = 1, . . . , k,
allora l’unione B1∪ . . .∪Bk è una base di V che diagonalizza f . Osserviamo
che per determinare Bi bisogna risolvere un sistema lineare omogeneo.

In pratica, per determinare gli autovalori di f , si sfrutta il seguente risultato.

Proposizione 7. Sia λ ∈ K uno scalare. Allora:

λ ∈ Sp(f) ⇔ ker(f − λIdV ) 6= {0} ⇔ det(f − λIdV ) = 0 .

Dim. λ ∈ Sp(f) ⇔ ∃v ∈ V, v 6= 0, tale che f(v) = λv. Siccome f(v) = λv ⇔
0 = f(v)− λv = (f − λIdV )(v), λ ∈ Sp(f)⇔ ∃v 6= 0 tale che v ∈ ker(f − λIdV ).
Quindi λ ∈ Sp(f)⇔ ker(f − λIdV ) 6= 0.

Sia λ ∈ K uno scalare. Siccome f − λIdV è un endomorfismo di V , per il
Corollario 2, ker(f − λIdV ) 6= 0 ⇔ f − λIdV non è un automorfismo. Per il
Corollario 4, f − λIdV non è un automorfismo ⇔ la matrice MBB(f − λIdV ) non
è invertibile, dove B è una base qualsiasi di V . Dal Corollario 3 del Capitolo 6,
abbiamo che MBB(f −λIdV ) non è invertibile, se e solo se det(MBB(f −λIdV )) = 0.
Il risultato segue ora dalla Definizione 8, det(f − λIdV ) = det(MBB(f − λIdV )),
dove B è una base qualsiasi di V .

Sia B una base di V , sia A = (aij) = MBB(f). Allora

MBB(f − λIdV )
Teo.4
== MBB(f)−MBB(λIdV )

Oss.5
== A− λIn =


a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ

 ,

dove n = dim(V ). Dalla precedente proposizione,

λ ∈ Sp(f)⇔ det


a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ

 = 0 .

Osserviamo che la funzione K → K, t 7→ det(A − tIn) è polinomiale, in altre
parole, se consideriamo t come una variabile, e calcoliamo det(A − tIn) formal-
mente con uno dei metodi del Capitolo 6, otteniamo un polinomio di grado n a
coefficienti in K nella indeterminata t.
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Definizione 11. Sia V uno spazio vettoriale di dimensione finita su un campo
K. Sia f ∈ End(V ). Il polinomio caratteristico di f si definisce come il
polinomio det(f − tIdV ) ∈ K[t] e si indica con Pf (t).

Sia A ∈ Mn(K), il polinomio caratteristico di A è il polinomio det(A− tIn) ∈
K[t] e si indica con PA(t).

Esempio 7. Sia A =

(
1 2
3 −1

)
∈ M2(R). Allora PA(t) = det

(
1− t 2

3 −1− t

)
=

(1− t)(−1− t)− 6 = t2 − 7 ∈ R[t].

Osservazione 11. 1. Pf (t) ∈ K[t] è un polinomio di grado pari alla dimensione
di V . Se n = dim(V ), allora il coefficiente di tn vale (−1)n, mentre il termine
noto coincide con det(f).

2. Se A ∈ Mn(K), allora PA(t) = PLA
(t). Questo segue dal fatto che A =

MBB(LA), dove B è la base canonica di Kn.

Come conseguenza immediata della Proposizione 7 abbiamo il seguente corol-
lario (si confronti con il Corollario 6).

Corollario 7. λ ∈ Sp(f)⇔ Pf (λ) = 0, cioè gli autovalori di f coincidono con le
radici del polinomio caratteristico Pf (t). In particolare il numero degli autovalori
distinti di f è ≤ dim(V ).

Il precedente risultato fornisce un metodo per calcolare gli autovalori di f ∈
End(V ), quindi lo spettro di f , Sp(f). Per ogni λ ∈ Sp(f), per determinare la
dimensione di Vλ(f), osserviamo che Vλ(f) = ker(f − λIdV ), e dal teorema della
dimensione segue:

dim(Vλ(f)) = dim(V )− rg(f − λIdV ) .

Per calcolare rg(f−λIdV ), fissiamo una base qualsiasi B di V , allora dal Corollario
3 abbiamo:

rg(f − λIdV ) = rg(MBB(f − λIdV )) = rg(MBB(f)− λIn) = rg(A− λIn) ,

dove n = dim(V ) ed A = MBB(f). Infine, per determinare una base di Vλ(f), si
trova una base dello spazio delle soluzioni del seguente sistema lineare omogeneo
(Corollario 3):

(A− λIn) · x = 0 .

Esempio 8. 1. Consideriamo la matrice A =

(
1 2
3 −1

)
∈ M2(Q). Calcoliamo il

polinomio caratteristico di A:

PA(t) = det

(
1− t 2

3 −1− t

)
= t2 − 7 ∈ Q[t] .
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Osserviamo che PA(t) non ha radici in Q, quindi Sp(A) = ∅ ed A non è diagonal-
izzabile. Ricordiamo che questo significa che non esiste una matrice invertibile
C ∈ GL2(Q) tale che C−1 ·A · C sia diagonale.

2. Consideriamo la stessa matrice A del punto precedente, questa volta come
matrice a coefficienti reali, A ∈ M2(R). Allora il polinomio caratteristi PA(t) =
t2 − 7 ∈ R[t], ha due radici reali, ±

√
7, quindi Sp(A) = {

√
7,−
√

7}. Usando il
teorema della dimensione ed i risultati del Capitolo 5 abbiamo:

dim(V√7) = 2− rg(A−
√

7I2) = 2− rg

(
1−
√

7 2

3 −1−
√

7

)
= 1 ,

dim(V−
√
7) = 2− rg(A+

√
7I2) = 2− rg

(
1 +
√

7 2

3 −1 +
√

7

)
= 1 .

Quindi dim(V√7) + dim(V−
√
7) = 2, da cui segue che A è diagonalizzabile. Per

trovare una base di R2 che diagonalizza A (equivalentemente una matrice C ∈
GL2(R) tale che C−1 ·A · C sia diagonale), risolviamo i seguenti sistemi lineari:(

1−
√

7 2

3 −1−
√

7

)
·
(
x
y

)
=

(
0
0

)
,(

1 +
√

7 2

3 −1 +
√

7

)
·
(
x
y

)
=

(
0
0

)
.

In particolare, V√7 = Span

(
2

−1 +
√

7

)
, V−

√
7 = Span

(
2

−1−
√

7

)
. Quindi{(

2

−1 +
√

7

)
,

(
2

−1−
√

7

)}
è una base di R2 che diagonalizza A, equivalen-

temente C =

(
2 2

−1 +
√

7 −1−
√

7

)
∈ GL2(R). Si osservi che

C−1 ·A · C =

(√
7 0

0 −
√

7

)
.

3. Consideriamo la matriceA =

(
0 −1
1 0

)
∈ M2(R). Allora PA(t) = det

(
−t −1
1 −t

)
=

t2 + 1. Siccome PA(t) non ha radici in R, A non è diagonalizzabile.

4. Consideriamo ora la stessa matrice A del punto precedente come matrice a

coefficienti complessi, A =

(
0 −1
1 0

)
∈ M2(C). Allora Sp(A) = {i,−i}. Inoltre,

dim(Vi) = 2− rg

(
−i −1
1 −i

)
= 1, ed dim(V−i) = 2− rg

(
i −1
1 i

)
= 1. Quindi A è

diagonalizzabile, se considerata come matrice a coefficienti complessi. Procedendo

come nell’esempio 2, si trova che una base che diagonalizza A è

{(
1
−i

)
,

(
1
i

)}
,
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e ponendo C =

(
1 1
−i i

)
si ottiene:

C−1 ·A · C =

(
i 0
0 −i

)
.

5. Consideriamo infine A =

(
0 1
0 0

)
∈ M2(K), dove K = Q,R, oppure C. Allora

PA(t) = t2, quindi Sp(A) = {0} per ogni campo K. dim(V0) = 2−rg(A) = 1 6= 2,
quindi A non è diagonalizzabile.

Osservazione 12. I precedenti esempi mostrano che la diagonalizzabilità di una
matrice (rispettivamente di un endomorfismo f ∈ End(V )) può dipendere dal
campo K su cui è definita la matrice (rispettivamente l’endomorfismo). Cioè, se
A ∈ Mn(K), e K̂ è un campo che contiene K, allora A ∈ Mn(K̂). In questa
situazione può accadere che A non sia simile ad una matrice diagonale in Mn(K),
mentre A è simile ad una matrice diagonale in Mn(K̂).

Concludiamo il capitolo con un altro criterio per stabilire se un endomorfismo
è diagonalizzabile.

Definizione 12. Sia V uno spazio vettoriale di dimensione finita su un campo
K. Sia f ∈ End(V ) e sia λ ∈ Sp(f).

La molteplicità algebrica di λ è la molteplicità di λ come radice del poli-
nomio caratteristico Pf (t), si denota con ma(λ, f), ovvero con ma(λ).

La molteplicità geometrica di λ è la dimensione dell’autospazio Vλ(f)
relativo a λ, si denota con mg(λ, f), ovvero con mg(λ).

Proposizione 8. ∀λ ∈ Sp(f), vale la seguente disuguaglianza:

mg(λ) ≤ ma(λ) .

Dim. Sia Vλ ⊆ V l’autospazio relativo all’autovalore λ. Sia {v1, . . . , vmg(λ)} una
base di Vλ. Completiamo v1, . . . , vmg(λ) ad una base di V , B = {v1, . . . , vmg(λ), vmg(λ)+1, . . . , vn},
dove n = dim(V ). Allora MBB(f) ha la seguente forma:

MBB(f) =

(
λImg(λ) A

0 B

)
dove A ∈ Mmg(λ),n−mg(λ)(K), 0 è la matrice nulla di Mn−mg(λ),mg(λ)(K), B ∈
Mn−mg(λ)(K). Quindi

Pf (t) = det

(
(λ− t)Img(λ) A

0 B − tIn−mg(λ)

)
= (λ− t)mg(λ) · det(B − tIn−mg(λ)) .

Quindi λ interviene almeno mg(λ) volte come radice di Pf (t), perciò mg(λ) ≤
ma(λ).
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Teorema 6. Sia V uno spazio vettoriale di dimensione finita sul campo K. Sia
f ∈ End(V ). Allora f è diagonalizzabile se e solo se valgono le seguenti con-
dizioni:

1. Tutte le radici di Pf (t) appartengono al campo K (cioè Pf (t) decompone
come prodotto di polinomi di grado 1 in K[t]);

2. ∀λ ∈ Sp(f), mg(λ) = ma(λ).

Osservazione 13. Ricordiamo che, per ipotesi K = Q,R, oppure C, quindi in
ogni caso, K ⊆ C. Di conseguenza K[t] ⊆ C[t], in altre parole ogni polinomio a
coefficienti in K può essere considerato come un polinomio a coefficienti in C. In
particolare il polinomio caratteristico Pf (t) ∈ K[t] può essere considerato come
polinomio in C[t]. Per il teorema fondamentale dell’algebra,

Pf (t) = (λ1 − t) · (λ2 − t) · . . . · (λn − t) ,

con λ1, . . . , λn ∈ C (non necessariamente distinti), dove n = dim(V ). Nel punto
1. del precedente teorema si richiede che λ1, . . . , λn ∈ K.

Vediamo dapprima una conseguenza immediata del Teorema 6.

Corollario 8. Sia n = dim(V ). Se f ha n autovalori distinti, allora f è diago-
nalizzabile.

Dim. Siano λ1, . . . , λn gli autovalori di f (che per ipotesi sono distinti). Per
definizione di autovalore, λ1, . . . , λn ∈ K, quindi la condizione 1. del Teorema 6 è
soddisfatta. Inoltre Pf (t) = (λ1−t)·. . .·(λn−t), quindi ma(λ1) = . . . = ma(λn) =
1. Da questo fatto e dalla Proposizione 8 deduciamo che 1 ≤ mg(λi) ≤ ma(λi) =
1, per ogni i = 1, . . . , n. Quindi mg(λi) = ma(λi), ∀i = 1, . . . , n, ed anche la
condizione 2. del Teorema 6 è soddisfatta, perciò f è diagonalizzabile.

Dimostrazione del Teorema 6. Sia Sp(f) = {λ1, . . . , λk}, con λi 6= λj , per ogni
i 6= j. Siccome Pf (t) ∈ K[t] ha grado n, ma(λ1)+. . .+ma(λk) ≤ n, e la condizione
1. del Teorema 6 è equivalente alla condizione ma(λ1) + . . .+ ma(λk) = n. Dalla
Proposizione 8 segue che mg(λ1) + . . . + mg(λk) ≤ ma(λ1) + . . . + ma(λk), ed
inoltre vale l’uguaglianza se e solo se mg(λi) = ma(λi), ∀i = 1, . . . , k. Quindi le
condizioni 1. e 2. sono equivalenti alla condizione mg(λ1) + . . . + mg(λk) = n,
che è equivalente al fatto che f sia diagonalizzabile per il Teorema 5.
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