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8. Applicazioni lineari

1 Definizione e prime proprieta

Definizione 1. Siano V e W due spazi vettoriali sul campo K. Una appli-
cazione lineare da V in W é una funzione f: V — W che soddisfa le sequenti
proprieta:

(AL1) f(vi+w2) = f(v1) + f(v2), per ogni vi,va € V;
(AL2) f(c-v)=c- f(v), per ogni c € K e per ogniv € V.

L’insieme di tutte le applicazioni lineari da 'V in W si denota con Hom(V, W).
Un’applicazione lineare da V in 'V, f: V — V, é anche detta un endomor-
fismo di V. L’insieme di tutti gli endomorfismi di V' si denota con End(V).
Un isomorfismo da V in W ¢& un’applicazione lineare biettiva f: V — W.
Un isomorfismo da V in V' si chiama anche automorfismo. L’insieme degli
automorfismi di V' si denota con GL(V). Se V.= K", allora si usa la notazione

GL,(K) in luogo di GL(K™).

Si osservi che, nella proprieta (AL1), la somma v; 4+ vy € quella in V', mentre
f(v1) + f(v2) € la somma dei vettori f(vi) e f(v2) in W. Analogamente, in
(AL2), c¢- v ¢ il prodotto del vettore v per lo scalare ¢ in V, mentre c- f(v) e
il prodotto dello scalare ¢ per il vettore f(v) in W. Per questo motivo si dice
anche che un’applicazione lineare f: V — W “rispetta le operazioni di somma e
di prodotto per scalari” di V e W.

Le seguenti osservazioni seguono direttamente dalle proprieta (AL1), (AL2),
la verifica ¢ lasciata per esercizio.

Osservazione 1. 1. Se f: V — W & un’applicazione lineare, allora f manda il
vettore nullo di V' nel vettore nullo di W, in simboli f(0) = 0.

Infatti possiamo scrivere il vettore nullo di V' come segue, 0 = 0 - v, dove lo 0 a
sinistra e il vettore nullo di V', mentre lo 0 a destra e lo scalare 0 € K, v € V ¢
un qualsiasi vettore. Dalla (AL2) segue che f(0) = f(0-v) =0- f(v) =0.

2. Sia f: V — W un’applicazione lineare, e sia v = Ajv1 + ... + AgUk, per
qualche vy,...,vp €V e A1,..., A € K. Allora f(v) = A1 f(v1) + ... + A\ f(vk).
In altre parole, per ogni v € Span(vy,...,vx), 'immagine di v secondo f, f(v), &
determinata da f(v1),..., f(vg) e dai coefficienti della combinazione lineare.

3. Siano f € Hom(V, W) e g € Hom(W, U), allora g o f € Hom(V,U).



4. Se f: V — W & un isomorfismo, allora la funzione inversa f~1: W — V &
lineare, quindi anche f~! & un isomorfismo.

5. Le proprieta (AL1) ed (AL2) sono indipendenti I'una dall’altra. Ad esempio,
per V=Ce K = C, la funzione f: C — C, f(z) = z (dove Z & il coniugato di
z), soddisfa la proprieta (AL1), ma non la (AL2).

Siaora V =R%?e K = R, f: R?> = R definita da f <:yc> = (23 +y3)%. Si
verifica facilmente che f soddisfa la proprieta (AL2) ma non la (AL1).

6. Hom(V,W) & uno spazio vettoriale su K con la somma ed il prodotto per
scalari definiti come segue: Vf,g € Hom(V,W), f 4+ ¢g: V — W ¢ la funzione
definita come segue, (f + g)(v) = f(v) + g(v), Vv € V; Vf € Hom(V,W) e
Ve e K, c- f:' V — W & la funzione definita come segue, (c¢- f)(v) = ¢+ f(v),
Vv € V. (Si verifichi che le applicazioni f 4+ g e ¢- f cosi definite sono lineari.)

Esempio 1. In seguito V e W denotano due spazi vettoriali arbitrari su un
campo K. La verifica della linearita delle seguenti applicazioni lineari e lasciata
per esercizio.

1. La applicazione nulla 0: V — W, che associa ad ogni vettore v € V il
vettore nullo di W, 0(v) =0, Yv € V, & un’applicazione lineare.

2. La funzione identita Idy: V — V| Idy(v) = v, Vv € V, & un’applicazione
lineare.

3. Sia B ={v1,...,v,} una base di V e sia fz: V — K" la funzione che associa
A1

ad ogni vettore v € V' le sue coordinate rispetto alla base B, fg(v) =] : | see
A

n
solo se v = A\jv1 + ... + A\v,. La funzione fz € un isomorfismo da V in K™.

4. Supponiamo che U,W C V siano due sottospazi vettoriali di V', e che V =
U @ W. Ricordiamo che, in tal caso, per ogni v € V esistono e sono unici due
vettori u € U e w € W tali che v = u+w. La proiezione di V su U si definisce
come la funzione Py: V' — V che associa ad ogni v € V il vettore Py(v) = u,
dove u € U e tale che v = u+w per qualche w € W. Allora Py ¢ un’applicazione
lineare.

Osserviamo che, in tali condizioni € definita in modo analogo la proiezione di
V su W, Py. Usando la precedente notazione Py (v) = w.

Ad esempio, siano V = R?, U = Span (?) e W = Span (1)



Osserviamo che R? = U@®W, quindi sono definite le proiezioni Py7, Py : R — R2.

. . -1 .
Consideriamo il vettore v = < 1 ) € R?, ed osserviamo che

-1 2 1
() ==2()+(0)-
o -1 2 -1 1 .
quindi Py 1) = -2 1) e Pw 1) = 3 1) Osserviamo che, dalla regola

-1\ .. — .
del parallelogramma, Py ( ) e il vettore che si ottiene intersecando la retta

1

1

) con U, mentre Py < 1

parallela a W passante per il punto < ) ¢ il vettore

o : . -1
che si ottiene intersecando la retta parallela ad U passante per il punto ( 1 >

con W.
In generale, per ogni vettore <:;> € R?,

(5 == () +aram(}).
auindi Py (1) = (2072, epy (4) = (Z0120),

5. Per ogni matrice m x n a coefficienti nel campo K, A € M,, ,(K), possiamo
Al
definire una funzione L4 : K™ — K™ nel seguente modo: Vv = | : | € K",
An
A1
La(v):=A-v=A4-| : | e K™,
An



dove A - v ¢ il prodotto righe per colonne di A e v. La funzione L 4 ¢ lineare. La
proprieta (AL1) segue dalla proprieta distributiva del prodotto righe per colonne
rispetto alla somma, mentre la (AL2) segue dal fatto che la moltiplicazione per
scalari commuta con il prodotto righe per colonne.

Ad esempio, se A = (_11 21> € My(R), allora L4 : R? — R? ha la seguente

L) = () ()= (5%

1 2 0
0 -1 0

ooy o2 oy (D) (a2
A9 =0 -1 0 “\ )
z z

6. Sia n € N un numero intero, e sia V' = R]t],, lo spazio vettoriale dei polinomi a
coefficienti reali, nella indeterminata ¢, di grado < n. Sia f: V — V la funzione
che associa ad ogni polinomio P € V la sua derivata rispetto a t, f(P) = P/,
concretamente, se P = ag+ait-+ast’>+...+ant”, f(P) = a1 +2ast+. .. +na,t" L.
Tale funzione ¢ lineare, quindi f € End(R[t],).

espressione:

Analogamente, se A = < > € Ma3(R), allora La: R? — R? agisce come

segue:

<

7. Sia V = R[t],, come nell’esempio precedente, e siano a < b due numeri reali.
La funzione f;: R[t], - R, P+ ffP(t)dt ¢ un’applicazione lineare.

Problema 1. Trovare esplicitamente 1’applicazione lineare f: R?® — R3 che cor-
-1

risponde alla rotazione intorno all’asse Span [ 1 | di un angolo di 30 gradi.
1

Teorema 1 (di struttura per le applicazioni lineari). Siano V e W due spazi
vettoriali sul campo K. Sia {vi,...,v,} una base di V', e siano wy,...,w, € W
vettori di W. Allora esiste un’unica applicazione lineare f: V — W, tale che
f(vi) =w;, per ognii =1,...,n.

Dim. (Esistenza) Definiamo una funzione f: V — W come segue: per ogni
vettore v € V, esso si esprime in modo unico come combinazione lineare dei
vettori della base {v1,...,v,} di V, v = ANovi + ...+ Ayup, dove Aq,... N\, € K
sono le coordinate di v rispetto alla base data; allora definiamo

fw) =X w1 +...+ \w, e W.

Si verifica facilmente che tale f ¢ lineare (esercizio) e, per definizione, si ha che
f(vl) = Wy, Vi = 1,...,n.

(Unicita) Siano f,g € Hom(V,W) due applicazioni lineari che soddisfano la
proprieta dell’enunciato, f(v;) = w; = g(v;), Vi = 1,...,n. Dimostriamo che



f =g, cioe che f(v) = g(v), Vv € V. A tale scopo, sia v € V un vettore arbi-
trario. Scriviamo v come combinazione lineare dei vettori della base {v1,...,v,},
v = A1 + ...+ A\, allora, sfruttando le proprieta (AL1) e (AL2) si ha:

f) = fuvr+...+ o) = fqv) + ...+ F(Apon)
= )qf(vl) + ...+ )\nf(vn) = \Nwi + ...+ Awy,
Ag(v1) + .-+ Ang(vn) = g(Avr + ..o+ Anwy) = g(v) -

O

Esempio 2. Sia A € M,,,(K), allora I'applicazione lineare Ly: K" — K™
definita nell’Esempio 1.5. & 1'unica applicazione lineare tale che L4 (e;) = A®,
Vi=1,...,n, dove {ey,...,e,} ¢ la base canonica di K", ed AW A e gm
sono le colonne di A.

Dal teorema di struttura segue che Ly = Lgp < A = B.

2 Nucleo ed immagine

Definizione 2. Siano V e W due spazi vettoriali su un campo K. Sia f: V — W
un’applicazione lineare. Il nucleo di f é il sottoinsieme di V' definito come seque:

ker(f) :={ve V| f(v)=0}.
Limmagine di f ¢é il sottoinsieme di W definito come seque:
im(f) :={w e W |3v eV tale che f(v) = w}.

Proposizione 1. Sia f: V — W un’applicazione lineare, allora valgono le sequenti
affermazions.

(1) ker(f) é un sottospazio vettoriale di V.
(2) im(f) é un sottospazio vettoriale di W .
(38) f é iniettiva < ker(f) = {0}.
(4) [ é suriettiva < im(f) =W.

Dim. (1) Dalla Osservazione 1.1. segue che il vettore nullo di V' appartiene al
nucleo di f, quindi ker(f) # 0. Siano ora vy, v, v € ker(f) esiaa € K. Siccome f
¢ lineare, valgono le seguenti uguaglianze: f(vi+wv2) = f(v1)+ f(v2) =0+0 =0,
flav) = af(v) = a0 = 0. Da questo segue che vy + vo,av € ker(f), quindi
ker(f) C V e un sottospazio vettoriale.

(2) 1 vettore nullo di W appartiene all'immagine di f, poiché 0 = f(0),
quindi im(f) # (. Siano ora wi,ws,w € im(f) e sia a € K. Per definizione di
im(f), esistono vy, ve,v € V, tali che f(v1) = w1, f(ve) = we ed f(v) = w. Per la



linearita di f si ha: f(v1+wv2) = wi+ws, f(av) = aw. Quindi wi+ws, aw € im(f),
da cui segue che im(f) C W & un sottospazio vettoriale.

(3) Ricordiamo che, per definizione, una funzione f & iniettiva se f(v) # f(w),
Yv # w appartenenti al domino di f.

Dimostriamo ora ’enunciato. (=) Supponiamo che f sia (lineare ed) iniettiva.
Allora, per ogni v # 0, f(v) # f(0) = 0, quindi v &€ ker(f), da cui segue che
ker(/) = {0},

(<) Viceversa, supponiamo che ker(f) = {0}. Siano v,w € V vettori distinti,
v # w, allora v — w # 0, quindi f(v — w) # 0. Per la linearita di f, f(v —w) =
f(v) = f(w) # 0, quindi f(v) # f(w), cioe f & iniettiva.

(4) Questa affermazione vale per definizione di funzione suriettiva. O

Definizione 3. Siano V e W due spazi vettoriali su un campo K, con W di
dimensione finita. Sia f: V. — W wun’applicazione lineare. Il rango di f ¢ la
dimensione dell’immagine di f e si indica con rg(f):

rg(f) = dim(im(f)).

Osservazione 2. 1. Sia A € M,,, ,(K), e sia Ly: K™ — K™, La(v) = A - v,
Papplicazione lineare associata ad A (si veda I’'Esempio 1.5.). Allora

ker(La) ={ve K" |La(v)=A-v=0},

cioe ker(L 4) € 'insieme delle soluzioni del sistema lineare omogeneo A - x = 0.
Come conseguenza della Proposizione 2 del Capitolo 3 abbiamo che, se A

¢ una matrice che si ottiene da A per mezzo di operazioni elementari, allora

ker(L ;) = ker(L4).

2. Se f: V — W & un’applicazione lineare e {v1,...,v,} € una base di V, allora

im(f) = Span(f(v1), ., f(vn)).

Dim. Chiaramente f(v1),..., f(v,) € im(f), quindiim(f) 2O Span(f(vi),..., f(vn)),

poiché im(f) & uno spazio vettoriale.

Viceversa, sia w € im(f), allora esiste v € V, tale che f(v) = w. Siccome
{v1,...,v,} € una base di V, possiamo esprimere v come combinazione lineare
dei vettori v1,...,0n, v = aiv1+...+a,v,, conay,...,a, € K. Perla linearita di

fsiha: w= f(v) =ai1f(v1)+...+anf(vy). Quindi w € Span(f(v1),..., f(vn)),
da cui segue che im(f) C Span(f(v1),..., f(vy)). L’affermazione segue dalla
doppia inclusione. ]

3. Sia A € M, o(K), esia Ly: K™ — K™ D'applicazione lineare associata ad A
(come nell’Esempio 1.5.). Come osservato nell’Esempio 2, La(e;) = A®, Vi =
1,...,n, quindi im(L4) = Span(A™M), ..., A(™) ed in particolare rg(A) = rg(LA).

Osserviamo che se A si ottiene da A per mezzo di operazioni elementari, in

generale im(L ;) # im(L,), anche se rg(A) = rg(A) (Proposizione 1, Capitolo

5). Si consideri ad esempio la matrice A = <1 1), allora im(L4) = Span <i>



Sostituendo la seconda riga di A con la sua differenza con la prima riga, si ottiene

A= <(1) (1)> Quindi im(L ;) = Span (é) #im(La).

Esempio 3. 1. Consideriamo l'applicazione lineare f: R3 — R3 definita da
x 6z — 4y

fly| =1|3x—2y+2z|. Per determinare il nucleo, I'immagine ed il rango di
z 2z
6 —4 0
f, osserviamo che f = Ly, con A= |3 —2 2. Trasformiamo A a scala per
0 0 2
mezzo di operazioni elementari:
6 —4 0
A—-A=(0 0 2
0 0 O

Quindi rg(f) = rg(A) = rg(A) = 2 ed una base di im(f) & formata dai vettori
6
AW =13
0
anche in questo caso im(f) # im(L 3).) Per determinare il nucleo di f, risolviamo
z 2
il sistema lineare omogeneo A - | y | = 0 ed otteniamo: ker(f) = Span | 3
z 0
2. Sia f: R[t]s — RJ[t]3 Papplicazione lineare che associa ad ogni polinomio P di
grado < 3 la sua derivata, f(P) = P’. Allora il nucleo di f & formato dai polinomi
la cui derivata ¢ nulla, quindi dalle costanti (polinomi di grado 0). In altre parole
ker(f) = RJt]o e quindi dim(ker(f)) = 1. Mentre im(f) = R[t]2, poiché, per ogni
Q = bo + byt + byt® € R[t]a, f(bot + 3b1t* + 3bat?) = Q.
3. Sia V uno spazio vettoriale di dimensione n sul campo K e sia B una base di V.
Consideriamo 'applicazione lineare fp: V — K" dell’Esempio 1.3. Poiché fi e
un isomorfismo, essa ¢ iniettiva e suriettiva, quindi ker(fg) = {0} ed im(fg) = K"
(Proposizione 1).
4. Se V & somma diretta di due sottospazi U e W, V = U & W, consideriamo
le proiezioni Py, Py : V — V (Esempio 1.4.). Allora si verifica facilmente che
im(Py) = U, ker(Py) = W, im(Pw) = W, ker(Pw) = U (la verifica ¢ lasciata
per esercizio).

0

LAB) = (2) (Proposizione 1.2. del Capitolo 5). (Osserviamo che
2
m

Teorema 2 (della dimensione). Siano Ve W due spazi vettoriali su un campo
K, con V di dimensione finita. Sia f:V — W un’applicazione lineare. Allora
vale la sequente uguaglianza:

dim(V) = dim(ker(f)) + rg(f) .



Dim. Poiché V ha dimensione finita e ker(f) ¢ un sottospazio vettoriale di V,
dim(ker(f)) < oo. Fissiamo una base {v1,..., v} di ker(f) e completiamola a
base di V, {v1,..., 0%, Vks1,...,0n} (teorema del completamento, Proposizione
7, Capitolo 4). Dimostriamo ora che {f(vg+1),...,f(vs,)} & una base di im(f)
ed osserviamo che da questo segue I’enunciato, perché rg(f) =n —k e dim(V) =
n=k+ (n— k)= dim(ker(f)) + rg(f).
Dalla Osservazione 2.2. si ha che im(f) = Span(f(vi),..., f(vk), f(Vk+1), .-, f(vn)),

e siccome f(v1) = ... = f(vg) = 0, segue che im(f) = Span(f(vgs1),---,f(vn)).
Rimane quindi da dimostrare che f(vk+1),..., f(vn) sono linearmente indipen-
denti. A tale scopo siano Agi1,..., A\, € K tali che Agiq f(vgs1)+. ..+ A\ f(vn) =
0. Per la linearita di f, Aer1f(vgs1)+- .-+ A f(vn) = fAkr10ks1+. ..+ A\pop) =
0. Quindi A\gy10k41 + ... + Aoy € ker(f). Siccome {v1,...,vr} € una base di
ker(f), esistono A1, ..., \x € K, tali che \gyqvgpp1+.. .+ \vn = Arv1+. ..+ Agvg,
da cui segue che Apy1vk+1 + ... + Apvp — A1 — ... — Ay = 0, e siccome
Vly. ..Uk, Vk+1, - --,Up sono linearmente indipendenti, gli scalari Ay,..., A, de-
vono essere necessariamente tutti nulli. O

Osservazione 3. Sia f: V — W un’applicazione lineare. Ricordiamo che, per
ogni vettore w € W, f~!(w) denota la pre-immagine di w tramite f, cio®

JHw) ={v e V| fv) =w}.
Osserviamo che, f~1(w) # 0 < w € im(f). In tal caso si ha che

f7Hw) =T+ ker(f),

dove ¥ & un qualsiasi elemento di f~!(w). Questo segue, ad esempio, tramite
una dimostrazione analoga a quella del teorema di struttura per le soluzioni
di un sistema lineare (la verifica ¢ lasciata come esercizio). Dal teorema della
dimensione si ha che dim(ker(f)) = dim(V') — rg(f). Si osservi che in questo
modo, nel caso in cui V. = K", W = K™, f = Ly, per qualche A € M,;, ,(K), si
ritrova il teorema di struttura per le soluzioni di un sistema lineare ed il teorema

di Rouché-Capelli.

Il seguente risultato segue immediatamente dal Teorema della dimensione ed
e stato utilizzato nella dimostrazione della Proposizione 1 del Capitolo 5.

Corollario 1. Sia A € My, ,(K) e sia W ={v e K"|A-v =0} lo spazio delle
soluzioni del sistema lineare omogeneo A -x = 0. Allora

n = dim(W) 4+ rg(A).

Corollario 2. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Supponiamo che dim(V') = dim(W). Sia f: V — W un’applicazione lineare.
Allora le sequenti affermazioni sono equivalenti.

1. ker(f) = {0} (cioé f é iniettiva).



2. im(f) =W (cioe f é suriettiva).
3. f é un isomorfismo.

Dim. ker(f) = {0} & dim(ker(f)) = 0. Per il Teorema della dimensione,
dim(ker(f)) = 0 < dim(im(f)) = dim(V). Per ipotesi dim(V) = dim(W), ne
segue che ker(f) = {0} < dim(im(f)) = dim(W), poiché im(f) ¢ un sottospazio
vettoriale di W quest’ultima condizione ¢ equivalente a im(f) = W. Quindi 1. e
2. sono equivalenti tra di loro.

Supponiamo ora che valga la condizione 2. (oppure la 1.). Per quanto ap-
pena dimostrato vale anche la condizione 1. (rispettivamente la 2.), quindi f &
un isomorfismo. Viceversa, se f € un isomorfismo, € iniettiva e suriettiva per
definizione, quindi valgono 1. e 2. O

Definizione 4. Due spazi vettoriali V e W sul campo K si dicono isomorfi, se
esiste un isomorfismo f: V. — W. In tal caso si scrive V=W.

Osservazione 4. L’isomorfismo € una relazione di equivalenza tra gli spazi vet-
toriali su uno stesso campo K.

Vale is seguente teorema.

Teorema 3. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Allora V=W < dim(V) = dim(W).

Dim. (=) Sia f: V — W un isomorfismo. Per il precedente corollario, ker(f) =
{0} ed im(f) = W, quindi per il teorema della dimensione dim(V') = rg(f) =
dim(W).
(<) Supponiamo ora che dim(V') = dim(W) = n. Fissiamo una base {v1,...,v,}

di V ed una base {wy,...,w,} di W. Per il teorema di struttura per le appli-
cazioni lineari esiste un unica applicazione lineare f: V' — W tale che f(v;) = w;,
Vi =1,...,n. Per 'Osservazione 2.2. im(f) = Span(wy,...,w,) = W, quindi f
& suriettiva. Dal precedente corollario abbiamo che f & un isomorfismo, quindi
V=w. O

3 Applicazioni lineari e matrici

Nell’Esempio 1.5. abbiamo visto che ad ogni matrice A € M, »(K) corrisponde
un’applicazione lineare L4 : K™ — K™, La(v) = A-v. In questa sezione vedremo
che, viceversa, data un’applicazione lineare f: V — W tra spazi vettoriali di
dimensione finita, fissata una base B di V' ed una base C di W, possiamo associare
ad f una matrice Mg(f) (la matrice che rappresenta f rispetto alle basi B e C)
tale che il seguente diagramma sia commutativo:

VW (1)



dove n = dim(V), m = dim(W), fg ed fc sono gli isomorfismi associati alle
basi B e C come nell’Esempio 1.3. 1l fatto che il diagramma (1) sia commutativo
significa che, per ogni A € K",

fe(F(f5 (N) = Lys (V) -

A1
In altre parole, per ogni v € V,se | : | € K" sono le coordinate di v rispetto
An
alla base B, allora le coordinate di f(v) rispetto alla base C sono (Prop. 2)
p1 A1
. B
: =M (/) :
Hm An
Definizione 5. Siano V e W due spazi vettoriali di dimensione finita su K.
Sia f: V — W un’applicazione lineare. Siano B = {vi,...,v,} una base di V e
C = {wr,...,wy} una base di W. La matrice che rappresenta [ rispetto

alle bast B e C é definita come seque:

ail e A1n
MES) =] ¢+ . 1| €MpalK),
aml .. AOmn
dove, per ogni j = 1,...,n, f(vj) = aijwi + ... + amjwn. In altre parole, la

colonna j-ma di ME(f) é formata dalle coordinate di f(v;) rispetto alla base C,
Vi=1,...,n.

Osservazione 5. 1. Sia A € M,,,(K), consideriamo l’applicazione lineare
Ly: K™ — K™. Siano B e C le basi canoniche di K™ e K™, rispettivamente.
Allora MB(L4) = A. Infatti, se e; denota il j-mo vettore della base canonica
di K", allora La(ej) = A-e; = AU e le coordinate di AY) rispetto alla base
a1y
canonica di K™ sono | : |, dove A= (aw)i%;gf
amj B
2. Sia f l'applicazione nulla (Esempio 1.1.), allora ME(f) = 0 per ogni scelta
di B eC. Infatti f(v;) =0, Vj =1,...,n, e le coordinate del vettore nullo sono
0

0
3. Se V=W ed f =1dy, allora Mg(Idv) = I,, per ogni base B di V. Infatti, per

ognij =1,...,n,Idy(v;) = vj, ele coordinate di v; rispetto alla base {v1,...,v,}
coincidono con il j-mo vettore della base canonica di K", e;.
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Piu in generale, se V. = W e f = Mldy per qualche scalare A € K, allora
ME(Aldy) = AL, (la verifica ¢ lasciata per esercizio).

Osserviamo che, se C # B, allora M5(Idy) # I, (la verifica & lasciata per
esercizio).

Proposizione 2. Siano V e W due spazi vettoriali su K di dimensione finita,
sia f: V — W un’applicazione lineare, e siano B = {v1,...,v,} una base di V,
C =A{wi,...,wy} una base di W. Dato un vettorev € V', se v = A\vi+...+\0n,
allora f(v) = prw1 + ... + fmWpy,, dove

Dim. L’enunciato segue dalla seguente sequenza di uguaglianze, dove si sfrutta
il fatto che f ¢ lineare e la definizione di M5(f):

flo) = fhvr+...4+ o)
= Mf(v1)+... 4+ M\f(vn)
= AManwi + ...+ amiwm) + ... + Ap(amwi + ...+ GmpWi,)
= (Mar+ ...+ ap)ws + ...+ (Mami + -+ Apmn) Wi -

Osserviamo che, per ogni ¢ = 1,...,m, A\a;1 + ...+ Apaiy € 'i-ma componente
A1

del vettore ME(f)- | : | € K™. O
An

Uno dei vantaggi che si ottengono descrivendo un’applicazione lineare f per
mezzo delle matrici M? (f) & che possiamo usare i risultati dei capitoli 3 e 5 per
determinare im(f) e ker(f), come segue.

Corollario 3. Sia f: V — W un’applicazione lineare, dove V.e W sono spazi
vettoriali di dimensione finita. Siano B = {vi,...,v,} una base di V e C =
{wy,...,wy} una base di W. Sia Mg(f) la matrice che rappresenta f nelle basi
B e C. Allora valgono le sequenti uguaglianze:

A1
ker(f) = {)\1U1+-..+)\nvn€V]M§(f)- C | = };
An
M1
im(f) = {N1w1+"'+umwm€W’ eim(LMg(f))};

Hom,
rg(f) = rg(ME(f)).
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Dim. La prima uguaglianza segue dal fatto che se v = A\jv1 + ... + A\yvy,, allora
f(v) = 0 se e soltanto se le coordinate di f(v) rispetto alla base C sono tutte
= 0. Dalla precedente proposizione questo ¢ equivalente a richiedere che Mg( f)-
A1
- | =0. La seconda uguaglianza segue analogamente.
An
Dimostriamo ora I'ultima uguaglianza. Osserviamo che per la seconda uguaglianza,
la restrizione di fe: W — K™ all'immagine di f & un isomorfismo da im(f) a

im(Lygs ). Quindi rg(f) = dim(im(f)) = dim(im(Lys ) = rgME(f)). O

Esempio 4. 1. Siano V = R?, W = R3, f: R? — R? l'applicazione lineare

x 20 =3y 1\ /0
f = T . Sia B = { , } la base canonica di R? e sia
4 r+y 0 !

1 0 0
C = { 01,11],(0 } la base canonica di R3. Determiniamo la matrice

0 0 1
ME(f). Per definizione, M5(f) € M32(R), la prima colonna (rispettivamente
2
la seconda) ¢ formata dalle coordinate di f ((1)) = [ 1] (rispettivamente di
1

-3
f <(1)) = | 0 |) rispetto alla base C. Quindi
1

-3
0 S M372 (R) .
1

ME(f) =

)

In particolare rg(f) = 2, ker(f) = {0} (per il teorema della dimensione), e

2 -3
im(f)zSpan( 11,10 )
1 1

2. Consideriamo ora la stessa applicazione f: R? — R? del precedente esempio.

1 1 1
Scegliamolebasigz{<1>,<_11>}diRQ,eé:{ 01,{1]),11 }di]R3

0 0 1

e determiniamo M? (f) € M32(R). A tale scopo determiniamo le coordinate di

12



f <i) ed f (_11> rispetto alla base C:

1 -1 1 1 1
f<1>: 1] = —2(o]—1{1]+2]1
2 0 0 1
1 ) 1 1 1
f<_1>: 1] = 4f{o0)+1|1]+of1
0 0 0 1
) 2 4
Dalla Definizione 5 segue che MCB~( f)= —1 1
0
3. Siano V = R[t]3, W = R[t]2, ed f: R[t ]3 — R[t]2, f(P) = P’, la derivata di P

rispetto a t. Scegliamo le basi B = {1,¢,t, 3} d1 R[ J3 e C = {1,t,2} di R[t]s.
La matrice ME(f) € M3 4(R) ha come prima colonna (rispettivamente seconda,
terza, quarta) le coordinate di f(1) (rispettivamente f(t), f(t2), f(t3)) rispetto
alla base C. Siccome f(1) =0, f(t) =1, f(t?) = 2t ed f(t3) = 3t?, abbiamo che

ME(f) =

o O o

10
0 2
0 0

w O O

(1) 1 0 0
Si ha che ker(LMg(f)) = Span ol ed im(LMg(f)) = Span( 0),11],(0 ) ,
0 0 0 1

quindi ker(f) = Span(1) ed im(f) = Span(1,t,t?) = R[t]s.

4. Siano V =W = R[t]s, e sia f: R[t]s — R[t]s, f(P) = tP’, dove P’ & la derivata
di P rispetto a t. Si verifica facilmente che f ¢ lineare (esercizio). Consideriamo
la base B = {1,t,2,t3} di R[t]3, e determiniamo ME(f) € My(R). Abbiamo che:
f() =0, f(t) =t, f(t?) = 2t% ed f(t3) = 3t3. Per definizione, la matrice ME(f)
ha per colonne le coordinate, rispetto alla base B, dei vettori f(1) =0, f(t) =t,
f(t?) =2t2 ed f(t3) = 3t3, quindi

ME(f) =

o O O O
O O = O
o N O O
w o o o

Per determinare ker(f) ed im(f), determiniamo prima ker(LMg( n)ed im(LMg( )
1

)

Usando i risultati dei capitoli 3 e 5 abbiamo che ker(LMg( f)) = Span , ed

o O

13



0 0 0
im(Lys py) = Span( L 0 0 ) Quindi ker(f) = Span(1),im(f) =
5(f) Of"11]710 ’
0 0 1
Span(t, t2,t3) C R[t]s.
z 2v 4+ 72
5. Consideriamo I'applicazione lineare f: R3 - R3 f |y | = [z —y+ V22
Z Y+ z

Si vuole determinare ker(f) e rg(f). Sia quindi B = {e1, e2,e3} la base canonica

di R?. Abbiamo che
2 0

ME(f)=|1 -1 V2
0 1

1
Si calcola che rg(ME(f)) = 3, quindi rg(f) = rg(ME(f)) = 3 e per il teorema
della dimensione ker(f) = {0}.

Teorema 4. Siano V e W due spazi vettoriali di dimensione finita sul campo
K. Siano B = {v1,...,v,} e C ={w1,...,wn} basi di V e W, rispettivamente.
Allora Uapplicazione

ME: Hom(V, W) = Mumn(K), f— ME(f),

[\

¢ un isomorfismo di spazi vettoriali. In particolare Hom(V, W) ha dimensione

finita pari a n-m = dim(V) - dim(W).

Dim. Dimostriamo dapprima che Mg ¢ lineare. Siano f,g € Hom(V, W) e sia
¢ € K. Denotiamo con a;; (rispettivamente b;;) 1'elemento di posto (7,7) di
ME(f) (rispettivamente di MZ(g)). Dobbiamo verificare che 1’elemento di posto
(i,5) di ME(f + g) coincide con a;; + b;j, per ognii =1,...,m, j =1,...,n. Per
definizione, [ME(f + g)];; ¢ la coordinata i-ma di (f + g)(v;) rispetto alla base C.
Abbiamo le seguenti uguaglianze:

(f+9)(v) = flv;)+9g(vy)
= (ajwi + ...+ amjwm) + (brjwi + ... + byjwp,)
= (alj + blj)wl + ...+ (amj + bm]’)wm .

Da questo segue che [ME(f + ¢)]ij = aij + bij = [ME(£)]i; + [ME(9)]:;, per ogni
i=1,...,m,j=1,...,n, quindi ME(f + g) = ME(f) + M5(g).
Analogamente si dimostra che M5(cf) = ¢ME(f), quindi M& & lineare.

Per dimostrare che MZ & iniettiva, ¢ sufficiente provare che ker(M%) = {0}
(Proposizione 1). Sia quindi f € Hom(V,W) tale che ME(f) = 0 € My, ,,(K).
Sfruttando la Proposizione 2, si ha che f = 0, da cui segue la tesi.

Per concludere, dimostriamo che Mlg e suriettiva. Sia quindi A = (a;5) €
My (K). Definiamo f4 € Hom(V, W) come quell’applicazione lineare tale che

fa(vj) = aywi + ... + amjwm, Vj = 1,...,n (dal Teorema di struttura per le
applicazioni lineari una tale funzione esiste ed ¢ unica). Per definizione si ha che
Mg(fA) = A, quindi Mg ¢ suriettiva. O
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Osservazione 6. Dalla dimostrazione del precedente teorema segue che la fun-
zione inversa di M & quella funzione M,, ,(K) — Hom(V, W) che associa A
fa, VA € My, (K).

3.1 Cambiamenti di base

In questa sezione vedremo come cambia la matrice Mg (f) al variare delle basi B
e C. Questo seguira dalla seguente proposizione.

Proposizione 3. Siano U,V e W tre spazi vettoriali sul campo K, di dimensione
p,n, m, rispettivamente. Siano

D = {w,...,up} wunabase di U,
B = {vi,...,vn} wunabasedi V,

C = {wi,...,wy} una base di W.
Siano g: U =V e f: V. = W applicazioni lineari. Allora

ME (f o g) =ME(f)-ME(g) .

Dim. Dobbiamo dimostrare che, per ogni ¢ = 1,...,m e per ogni j = 1,...,p,
vale la seguente uguaglianza:

n

IME(f o g)lij = D> _IME(f)]ik - IMB(9)]k -
k=1
Denotiamo con a;; = [Mg(f)]lk e con by = [Mg(g)]kj, e ricordiamo che [Mg(f o
9))ij € la i-ma coordinata rispetto a C di (f o g)(u;).
Dalla definizione di composizione di due applicazioni, dalla linearita di f e g, e
dalla Definizione 5 si hanno le seguenti uguaglianze:

(fog)(u) = flo(uy)) = FO_ brjor)
k=1
= > bif(we)
k=1

= Z bkj(z agwy)
=1

k=1

= Z Z brjaekwy

1 (=
n

( bkjagk)wg .

n o m
14

b
Il
—

I
NE

~
l‘
x
—_

Da questo segue che la i-ma coordinata di (f o g)(u;) rispetto alla base C e
ZZ:l az‘kbk]‘. O



Corollario 4. Sia V uno spazio vettoriale di dimensione n sul campo K. Sia B
una base di V. Allora valgono le sequenti affermazioni.

1. Sia f € End(V). Allora f ¢ un automorfismo < ME(f) ¢ invertibile. In
tal caso ME(f~1) = ME(f)~L.

2. (Si confronti con il Teorema 3 del Capitolo 5.) Sia A € My, (K). Allora A
¢ invertibile < rg(A) = n.

Dim. 1. (=) Supponiamo che f € End(V) sia un automorfismo, e sia f~!
la funzione inversa di f (che & lineare per 1’Osservazione 1.4.). Allora valgono
le uguaglianze f o f~' = f~lo f = Idy. Per I’Osservazione 5.3. si ha che
ME(fo f~1) =ME(f~!o f) =1,, e dalla Proposizione 3 segue che I,, = ME(f) -
ME(f~1) =ME(f71) - ME(f). Da cui segue I'enunciato.

(<) Viceversa, se ME(f) ¢ invertibile, allora I'unica soluzione del sistema lineare
omogeneo ME(f) -z = 0 ¢ z = ME(f)™* -0 = 0. Dal Corollario 3 segue che
ker(f) = {0} e dal Corollario 2 che f & un isomorfismo.

2. Consideriamo 'applicazione lineare L4: K™ — K™ e ricordiamo che A =
ME(L4), dove B ¢ la base canonica di K™. Dal punto 1. si ha che 4 € GL,(K) <
L4 & un isomorfismo. Per il Corollario 2, L4 € un isomorfismo < rg(L4) = n.
L’enunciato segue dal fatto che rg(La) = rg(A) (Osservazione 2.3., Corollario
3). O

Definizione 6. Sia V uno spazio vettoriale di dimensione n sul campo K. Siano
B ={vi,...,vn} eC = {wi,...,wy} due basi di V. La matrice del cambia-
mento di base da B a C ¢ la matrice ME(Idy) € M,,(K) che rappresenta la
funzione identita Idy : V — V rispetto alle basi B e C.

a1j
Osservazione 7. 1. Per ogni j = 1,...,n, siano : le coordinate di v; =
anj
Idy (v;) rispetto alla base C (cioe v; = a1 w1 +...+anjwy,), allora dalla Definizione
5 segue che,

ai;p ... Q13 ... Qin
ME(Idy) =
anl ... anj ceo Qpn
A1
2. Dalla Proposizione 2 abbiamo che, per ogni vettore v € V, se : e K"
An

sono le coordinate di v rispetto alla base B, allora le coordinate di v rispetto alla
base C sono
111 A1
| =MEdy) -
P An
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Quindi MZ(Idy ) permette di determinare le coordinate di un vettore rispetto alla
base C se sono note le sue coordinate rispetto a B, per questo prende il nome di
matrice del cambiamento di base da B a C.

Proposizione 4. Mg(ldv) e invertibile, inoltre vale la sequente uguaglianza
ME(Idy)~! = M§(Idy ).
Dim. Valgono le seguenti identita:

Oss.5.3.

fdv=ldveldv \iB(1dy o Idy) 22 M$(Idy) - MB(Idy) .

Analogamente si dimostra che I,, = M (Idy/)-M§(Idy ). Da questo segue I’enunciato.
O
Come corollario della Proposizione 3 abbiamo il seguente risultato che esprime
Mg,’ (f) in termini di ME(f) e delle matrici del cambiamento di base.

Corollario 5. Sia f: V — W un’applicazione lineare. Siano B,B’' due basi di V
e C,C" due basi di W. Allora

ME/(f) = MG (Idw) - ME(f) - M (Idy) . (2)
In particolare, se V. =W,
ME(f) = (Mz(Idy)) " - ME(f) - Mi(1dy) . (3)

Dim. Applicando la Proposizione 3 al prodotto ME(f) - ME (Idy/) abbiamo:
ME(f) - ME'(Idy) = M5 (f oIdy) = ME'(f). Applicando di nuovo la Propo-
sizione 3 abbiamo che:

MG (Idw) - ME(f) - ME (1dy) = M, (Idw) - ME (f) = ME (Idw o f) = ME (f)

da cui segue la prima uguaglianza dell’enunciato.
Luguaglianza (3) segue dalla precedente e dal fatto che ME(Idy ) = (M§(Idy))~*
(Proposizione 4). O

Esempio 5. 1. Sia V = R2. Consideriamo le basi B = { <(1)) , ((1)> } eC =

{ < 21> ) <_13> } Allora, poiché B & la base canonica, M%(IdRz) = (_21 _13>

Per la Proposizione 4,

wioae - (2 ) = (00 )

: : 2\ .
In particolare le coordinate del vettore <\7[ rispetto alla base C sono

(G 2)(7)- ()
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2. Sia V = M;3(C) lo spazio vettoriale delle matrici 2 x 2 a coefficienti in C.

S . - 10 0 1 0 0 0 0
Consideriamo le seguenti basi di V: B = { (0 0) ) <O O) , (1 O) ) (0 1) }
0 1 0 —
eC—{b,(l O)’(i 0) ( )} Allora
1
0
0
1

0 0 1
1 = 0
C
0 0 -1
quindi
1o o 1\' /Lo o I
B I R ~lo 3 3 o
Mcdw@)= 1o 1 ¢ o “lo & i o
10 0 -1 10 0 -1
: . . 1 2\ .
In particolare, le coordinate della matrice <3 4) rispetto alla base C sono
1 1 5
3 00 3 1 2
0 5 5 0| |2]_|3
5 00 —3 4 -5
T

: 4 3 . T2 1~ @3t 22 . . .
3. Sia f: R* — R° la funzione f = —x1+2x9 |. Si verifica facil-

xs3
To9 — T3 + X4
T4

mente che f ¢ lineare (la verifica ¢ lasciata per esercizio). Sia B la base canonica
di R* e C la base canonica di R?. Allora

1 0 -1 2
ME(f)=(-1 2 0 0
0 1 -1 1

Per determinare ker(f) e rg(f), trasformiamo MZ(f) a scala per mezzo di oper-
azioni elementari:

1 0 -1 2 1 0 -1 2
-1 2 0 0)J—=1(0 1 -1 1],
0 1 -1 1 00 1 O

quindi rg(f) = 3 e dim(ker(f)) = 4 —3 = 1. Siccome le operazioni elementari
trasformano un sistema lineare in uno equivalente,

T —2
kel"(f)—{ zz €R4’1‘3—0,9«°2——x4,x1——2x4}—Span _O
T4 1
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1 1 1 1
. . o 0 1 1 1 . 4 p
Consideriamo ora le basi B’ = , , , di R* e C' =
0 0 1 1
0 0 0 1
1 0 1
{ o],11].,10 } di R®. Vogliamo determinare la matrice M5, (f). Dalla
1 -1
) ailr a2 a3 a4
Definizione 5, se Mg, (f)=la21 a2 a agy |, allora
azr a3z 433 as4
[1) 1 1 0 1
f ol = -1 = an (0] +ax 1| +anun| O |,
0 1 0 -1
0
} 1 1 0 1
f ol = 1 = a2 |0] +ax|1] +azx]| O ,
0 1 1 0 -1
1 0 1 0 1
i1 =] = as|0f+as|lf+as| 0],
0 1 0 -1
0
i 2 1 0 1
f 1= 1] = aua[0) +aga {1 | +asa| O ] .
1 1 0 -1
1
Risolvendo le precedenti equazioni otteniamo:
1 3
. 3 1.0 3
1 1
3 00 3

Determiniamo ora la matrice Mg,/ (f) usando l'uguaglianza (2), cioe
ME () = MG (Idgs) - ME(f) - ME (Idgs)

E immediato determinare le matrici ME' (Idgs) ed MS (Idgs):

11

/ 1
Mg (IdR4) - 1
0

1
0| .
-1

1
1 )
1

MS (Idgs) =

_— O = OO O

o= O O O
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Dalla Proposizione 4 abbiamo:

, 2 0 3

MS, (Tdgs) = (MS (Idgs)) ™= {0 1 0
1 1
19 -1
2 2

~—

Moltiplicando le precedenti matrici come nella formula (2), si ottiene la matrice

ME (f)-
4. Sia V =R[t]y e sia f: V — V la funzione che associa ad ogni polinomio P di
grado < 2 la sua derivata rispetto a t, f(P) = P’. Consideriamo le seguenti basi di

010
V:B={1,t,t*},C = { 1,t+1,t>—t}. Abbiamo che ME(f)= [0 0 2. Inoltre
000
11 0 11 0\ " /1 -1 -1
M§(Idy) =0 1 —1|,quindi ME(Idy)= {0 1 -1 =0 1 1
00 1 00 1 0 0 1
Dalla (3) segue che
1 -1 -1 010 11 0 01 -3
MS(f)=10 1 1 ]-{foo0 2]-[{0o1 -1]=]0 0 2
0 0 1 000 00 1 00 0

3.2 Cambiamenti di coordinate affini

In questa sezione applichiamo i risultati delle precedenti sezioni per determinare

la formula di trasformazione delle coordinate affini rispetto a due riferimenti.
Sia A uno spazio affine sullo spazio vettoriale V sul campo K. Consideriamo

due sistemi di coordinate affini O,B = {vy,...,v,} ed O',C = {w1,...,w,} di

A1
A. Sia P € A esiano | ! | le sue coordinate rispetto ad O,B = {v1,...,v,},
An
H1
vogliamo determinare le sue coordinate | : | rispetto ad O',C = {w1,...,w,}.
[in

Ricordiamo che, per definizione di coordinate in uno spazio affine,
Oﬁ:/\lvl—l—...—}—)\nvn,

ed analogamente
/
O'P = pjwy + ...+ ppwy, .

—  — —
Usando 'uguaglianza O'P = O'O + O?, otteniamo O'P — 0’0 = OP. Quindi,
C1
se | | sono le coordinate di O rispetto ad O’,{ws,...,w,}, si ha che
Cn

(1 —c)wi + ... 4 (fn — Cp)wp = Av1 + ... + AUy
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Dalla Osservazione 7.2. abbiamo:

p1—C1 A1
: = Mg(IdV) ’ )
Un — Cn An
equivalentemente
H1 C1 )\1
= e MEday) - f ] (4)
Hn Cn An

Esempio 6. Consideriamo il piano affine A?(R) con il riferimento canonico

O',C ={e1,e2}. Sia O = <_21>, e sia B = { <_12> , <1> } Allora M5 (Idg2) =

1 1 A
( 9 1). Per ogni punto P € A?(R), se < /\1> sono le sue coordinate rispetto
- 2

ad O, B, le sue coordinate rispetto ad O’,C sono date dalla formula
m) (-1 11\ [\
() - (2= (5 1))

4 Diagonalizzazione

Sia V' uno spazio vettoriale di dimensione finita n sul campo K, e sia f € End(V).
Abbiamo visto che, scelta una base B di V', possiamo rappresentare f per mezzo di
una matrice Mg( f) (Definizione 5, Proposizione 2). Molte proprieta di f possono
essere studiate tramite la matrice ME(f) (si veda ad esempio i corollari 3, 4).
L’obiettivo di questa sezione ¢ di stabilire se, data f, esiste una base di V tale
che la matrice che rappresenta f rispetto a tale base sia diagonale.

Ricordiamo che, se C & un’altra base di V/, allora le matrici M§(f) ed ME(f)
solo collegate dalla formula (3):

Me(f) = (Mz(Idy)) ™! - ME(f) - M(1dy),

dove M%(Idv) e la matrice del cambiamento di base da C a B. Dalla Proposizione
4 abbiamo che M§(Idy) & invertibile. Questo motiva la seguente definizione.

Definizione 7. Due matrici A, B € M,,(K) sono simili se esiste C € GLy,(K)
tale che
B=C"-A.C.

In tal caso si scrive A ~ B.

Quindi, per la (3), se due matrici rappresentano lo stesso endomorfismo
rispetto a due basi, allora esse sono simili. Vale anche il viceversa, come afferma
il seguente risultato.
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Lemma 1. Sia f € End(V) e sia A = ME(f) € M,,(K), dove B= {v1,...,v,,} ¢
una base di V. Per ogni B € M,,(K), A ~ B < 3C base di V tale che B = MS(f).

Dim. L’implicazione < segue dall’equazione (3). Viceversa, supponiamo che
A ~ B. Allora per definizione, 3C € GL,(K) tale che B = C~!- A.C. Sia

¢ij I'elemento di posto (i,7) di C, Vi,j = 1,...,n. Definiamo una base C =
{w,...,wy} di V come segue: w; := c1jv1+...4CpjUn, j = 1,...,n. Osserviamo
che C = M§(Idy), quindi B = C71 - A-C = ME(Idy) - ME(f) - M§(Idy) =
ME(f). O

Osservazione 8. 1. La similitudine ¢ una relazione di equivalenza tra le matrici
a coefficienti in K. Infatti, VA € M, (K), A=11-A-1, = A~ A, quindi ~
e riflessiva. La proprieta simmetrica si dimostra come segue: A ~ B = 3C €
GL,(K) taleche B=C1-A-C=A=C-B-C'=(CH1.B-(C),
quindi B ~ A poiché C~! € GL,(K). Per concludere, dimostriamo la proprieta
transitiva: se A ~ B e B ~ C, allora 3D, E € GL,(K) tali che B=D"!'-A-D
eC=E'"B-E,quindiC=FE' D' A-D-E=(D-E)"'-A-(D-E), cio¢
A~C.

Lemma 2. Siano A,B € M,(K). Se A~ B, allora det(A) = det(B).

Dim. A ~ B = 3C € GL,(K) tale che B = C~'-A-C. Quindi det(B) =
det(C1-A-C) "= det(C1) - det(4) -det(C) “ELPE L det(4) -det(C) =
det(A). O

Questo risultato ci permette di definire il determinante di un endomorfismo

come segue.

Definizione 8. Sia V uno spazio vettoriale di dimensione finita su K. Sia
f € End(V). Allora det(f) := det(ME(f)), dove B ¢ una base di V.. Osserviamo
che, per il Lemma 2, det(f) non dipende dalla scelta della base B, quindi la
definizione ¢ ben posta.

Definizione 9. 1. Sia 'V uno spazio vettoriale di dimensione finita n sul campo
K. Sia f € End(V). Allora f si dice diagonalizzabile se esiste una base
B di V tale che ME(f) ¢ diagonale (Definizione 2 del Capitolo 2). In tal
caso, B ¢é detta base di V che diagonalizza f.

2. Una matrice A € M,(K) é detta diagonalizzabile se ¢ simile ad una
matrice diagonale.

Osservazione 9. 1. Sia A € M, (K). Allora A ¢ diagonalizzabile, se e solo se
I’endomorfismo L4: K™ — K™ e diagonalizzabile. Questo segue dal fatto che
A =ME(L4), dove B ¢ la base canonica di K™ (Osservazione 5.1.), e dal Lemma
1.

2. Se dim(V') = 1, allora ogni endomorfismo f € End(V') e diagonalizzabile ed
ogni base di V' diagonalizza f.

22



Infatti, sia B = {v}, allora f(v) = Av per qualche A\ € K. Quindi Mg(f) = ()\) €
M; (K), che ¢ diagonale.

3. Vedremo che, se dim(V') > 1, allora esistono endomorfismi f € End(V) che
non sono diagonalizzabili. In altre parole, se n > 1, esistono matrici A € M,,(K)

010 ...0
000 ... 0
non diagonalizzabili, ad esempio A = o .
000 ... 0

Il seguente risultato ¢ una riformulazione della Definizione 9 che motiva le
definizioni che seguono.

Lemma 3. Sia f € End(V). Sia B = {v1,...,v,} una base di V che diagonalizza
f. Allora, per ognii=1,...,n, f(v;) = \jv;, per qualche \; € K.

Viceversa, se esiste una base B di V' con tali proprietd, allora f & diagonaliz-
zabile e B diagonalizza f.

Dim. Per definizione abbiamo che ME(f) ¢ diagonale. Quindi, se denotiamo con
a;j 'elemento di posto (7, ) di ME(f), per la Definizione 5 si ha che f(v;) = aj;v;,
Vi =1,...,n. Quindi basta porre \; = a;j, per j =1,...,n.

Viceversa, se B = {v1,...,v,} ¢ una base di V tale che f(vj) = Ajv;, per ogni
7=1,...,n, allora
A0 ...00
5 0 X ... O
MB(f): . <. . EMn(K)y

0 0 ... X\
che e diagonale, quindi f & diagonalizzabile e B diagonalizza f. O
Definizione 10. 1. Sia V wuno spazio vettoriale su un campo K. Sia f €

End(V). Un autovettore di f ¢ un vettore v € V diverso dal vettore
nullo, v # 0, tale che IX € K per cui vale: f(v) = Av.
In tal caso, A é l'autovalore di f relativo all’autovettore v.

Lo spettro di f ¢ l’insieme degli autovalori di f, esso si denota con Sp(f)
ed € un sottoinsieme del campo K.

2. Sia A € M,(K). Un autovettore di A é un vettore v € K™ non nullo tale
che v sia un autovettore di L4, cioé tale che A-v = v, per qualche \ € K.
In tal caso, \ é autovalore di A relativo all’autovettore v. Lo spettro di A
st definisce come linsieme degli autovalori di A e si indica con Sp(A).

Osservazione 10. 1. Se f = Idy, allora ogni vettore v € V'\{0} ¢ un autovettore
di f, con autovalore corrispondente A = 1.

Viceversa, se f € End(V) ¢ tale che, Yo € V' \ {0}, v ¢ autovettore di f con
autovalore 1, allora f = Idy (la verifica & lasciata per esercizio).

2. 0 € Sp(f) < ker(f) # {0} (la verifica ¢ lasciata per esercizio).
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La seguente proposizione ¢ una riformulazione del Lemma 3.

Proposizione 5. Sia V' uno spazio vettoriale sul campo K. Sia f € End(V).
Allora f ¢ diagonalizzabile < esiste una base B di V' composta da autovettorsi.

La seguente proposizione contiene le principali proprieta degli autovettori ed
autovalori.

Proposizione 6. Sia V uno spazio vettoriale sul campo K, sia f € End(V).
Allora valgono le sequenti proprieta.

1. Sev € V e un autovettore di f, allora l’autovalore corrispondente a v €

UNILCO.

2. Siano vy, ...,v, € V autovettori di f con relativi autovalori Ay, ..., Ay €
K, rispettivamente. Se X\; # X\j, per ogni i # j € {1,...,m}, allora
V1, ..., Um SOno linearmente indipendenti.

3. Sia A € Sp(f) un autovalore di f. Allora l’insieme

W(f) = {veV|véun autovettore di f con autovalore A} U {0}
= ker(f — Aldy),

e un sottospazio vettoriale di V', chiamato l'autospazio di f relativo
all’autovalore \. In seguito, se non ci sard pericolo di confusione, Vy(f)
verra denotato con V).

Dim. 1. Supponiamo per assurdo che esistono due autovalori distinti A\ # pu €
Sp(f) relativi all’autovettore v. Allora A\v = f(v) = pv, quindi 0 = Av — pv =
(A—p)v. Siccome v & un autovettore, v # 0, quindi A—p = 0, cioe A = . Questo
contraddice l'ipotesi A # u, da cui segue ’enunciato.

2. Procediamo per induzione su m. Se m = 1, allora v; & linearmente in-
dipendente. Infatti per definizione di autovettore, vy # 0.
m — 1 = m Siano ¢y, ..., ¢, € K scalari tali che civ1 + ...+ ¢, = 0. Allora:

0= f(crv1+ ...+ cmom) = 1M1 + ... + CnAmUm, - (5)

D’altro canto, moltiplicando ambo i membri di civ1 + ... + ¢pvm = 0 per Ay, si
ottiene
AmC1v1 + ...+ ACmtm = 0. (6)

Sottraendo ’equazione (6) alla (5) otteniamo: ¢1(A1 — A )1+ ...+ em—1(Am—1—
Am)Um—1 = 0. Per ipotesi induttiva, vy, ..., v,—1 sono linearmente indipendenti,
quindi Cl()\l — )\m) = ... = Cm—l()\m—l — )\m) = 0. Poiché )\z‘ 75 )\j, se 1 7& j,
segue che ¢ = ... = ¢;,—1 = 0. Ma questo implica che ¢;,v,,, = 0, quindi anche
cm = 0, da cui segue che vy, ..., v, sono linearmente indipendenti.

3. Osserviamo che V\(f) = {v € V| f(v) = Mv}, poiché f(0) = 0 = A0.
Inoltre f(v) = A < f(v) —Av=0< (f — AMldy)(v) =0 < v € ker(f — Aldy).
Siccome f — Aldy € End(V), ker(f — Ady) & un sottospazio vettoriale di V'
(Proposizione 1). O
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Corollario 6. Sia V uno spazio vettoriale di dimensione finita n sul campo K,
sia f € End(V). Allora f ha al pit n autovalori distinti.

Dim. Siano A1, ..., \,, € Sp(f) autovalori distinti di f. Per ognii = 1,...,m, sia
v; un autovettore di f relativo all’autovalore v;. Per il punto 2. della precedente
proposizione, v1, ..., v, sono linearmente indipendenti, quindi m < dim(V') =
n. O

Teorema 5. Sia V uno spazio vettoriale di dimensione finita n sul campo K.
Sia f € End(V) e sia Sp(f) = {\1,..., A} lo spettro di f (con \; # \;j, sei # j).
Allora valgono le sequenti affermazioni.

1. dim(Vy, (f)) + ...+ dim(Vy, (f)) < n.
2. f & diagonalizzabile < dim(Vy,(f)) + ... +dim(V), (f)) = n.

Dim. 1. Sia d; := dim(V),), per ogni ¢ = 1,...,k. Sia {v;1,...,v;4,} una base di

Vy,, per ogni ¢ = 1,..., k. E sufficiente dimostrare che i vettori
V1,153Vl dys--+5Vk1s -5 Vkdy
sono linearmente indipendenti. A tale scopo siano ci1,. .., ¢ q, € K scalari, tali
che
€1,1V1,1 + -+ - + Ck,d, Vk,d), = 0. (7)

Denotiamo con w; := ¢;1v;1 + ...+ ¢;q,Vid;, ed osserviamo che w; € V),, Vi =
1,...,k. Dalla (7) segue che wy + ...+ wr = 0, quindi per il punto 2. della

Proposizione 6 si ha che w; = ... = wg = 0. Siccome, perognii=1,...,k, w; :=
Ci Vi1 + ...+ CidVid; €Vi1,...,Vq sono linearmente indipendenti, concludiamo
che ¢;1 = ... =¢;q, =0, Vi. Da cui segue ’enunciato.
2. (&) Sianody, ..., dg, Vi1, Vidyy-- > Vk1s- - - Uk,dy» cOme nella dimostrazione
del punto 1. Allora, per ipotesi di+...4+dp = n. Siccome v11,...,V1,d;5- Vg 1s-- - Vkdp

sono linearmente indipendenti, essi formano una base di V' di autovettori per f,
quindi f e diagonalizzabile.

(=) Se f & diagonalizzabile esiste una base B di V formata da autovettori di
f. Perognii=1,... ksia {vi1,...,v;5} C B il sottoinsieme di B formato dai
vettori che appartengono a V), (cioe dagli autovettori aventi come autovalore ;).
Osserviamo che §; < d; := dim(V},), ed usando il punto 1. abbiamo:

k k
i=1 i=1

Quindi 3% d; = n. O

Dal precedente teorema si ottiene un procedimento per determinare se un
dato endomorfismo f € End(V'), dove V & uno spazio vettoriale di dimensione
finita su un campo K, & diagonalizzabile, ed eventualmente trovare una base di
V' che diagonalizza f. Si procede come segue:
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1. Si determinano gli autovalori di f, e quindi il suo spettro Sp(f) = {A1,..., A };

2. Per ogni i = 1,...,k, si determina la dimensione dell’autospazio Vj,(f) =
ker(f — A;Idy ), osserviamo che per il teorema della dimensione,

dim(Vy,(f)) = dim(ker(f — NIdy)) = dim(V) —rg(f — Nildy);
3. f e diagonalizzabile < dim(Vy, (f)) + ... + dim(V), (f)) = dim(V');

4. Se f e diagonalizzabile, per trovare una base di V' formata da autovettori di
f, si determina una base B; di V), (f) = ker(f—X\;Idy ), perognii =1, ...k,
allora 'unione By U...UBy ¢ una base di V' che diagonalizza f. Osserviamo
che per determinare B; bisogna risolvere un sistema lineare omogeneo.

In pratica, per determinare gli autovalori di f, si sfrutta il seguente risultato.

Proposizione 7. Sia A € K uno scalare. Allora:
X € Sp(f) © ker(f — Aldy) # {0} < det(f — Aldy) =0.

Dim. X € Sp(f) & Jv € V,v # 0, tale che f(v) = Av. Siccome f(v) = \v &
0= f(v) =M= (f—Ady)(v), A € Sp(f) & Fv # 0 tale che v € ker(f — Ady).
Quindi A € Sp(f) < ker(f — Aldy) # 0.

Sia A € K uno scalare. Siccome f — Aldy € un endomorfismo di V, per il
Corollario 2, ker(f — Aldy) # 0 < f — Aldy non ¢ un automorfismo. Per il
Corollario 4, f — Aldy non & un automorfismo < la matrice Mg( f — Aldy) non
¢ invertibile, dove B ¢ una base qualsiasi di V. Dal Corollario 3 del Capitolo 6,
abbiamo che ME(f — Aldy) non ¢& invertibile, se e solo se det(M&(f — Aldy)) = 0.
1 risultato segue ora dalla Definizione 8, det(f — Aldy) = det(ME(f — Aldy)),

dove B ¢ una base qualsiasi di V. O
Sia B una base di V, sia A = (a;;) = ME(f). Allora
Teo.4
ME(f = Aldy) == ME(f) — M(Mdy)
all — A ai19 e A1n
Os;S A_AITL _ asl a22.—)\ a9, ’
anl An?2 Ann — A

dove n = dim(V'). Dalla precedente proposizione,

ail — A a1 e Aln
a1 agy — AL aon
A € Sp(f) < det ) ) ) . =0.
anl an2 cer Qpp — A

Osserviamo che la funzione K — K, t — det(A — tI,,) & polinomiale, in altre
parole, se consideriamo ¢ come una variabile, e calcoliamo det(A — tI,,) formal-
mente con uno dei metodi del Capitolo 6, otteniamo un polinomio di grado n a
coefficienti in K nella indeterminata t.
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Definizione 11. Sia V uno spazio vettoriale di dimensione finita su un campo
K. Sia f € End(V). Il polinomio caratteristico di f si definisce come il
polinomio det(f — tldy) € K|t] e si indica con Ps(t).

Sia A € M, (K), il polinomio caratteristico di A é il polinomio det(A —tl,,) €
K|t] e si indica con PA(t).

Esempio 7. Sia A = (; _21

(1—t)(—=1—1t)—6=1t>—T7€cR[t].

) € Ma®). Alora Pat) = et (117 ) =

Osservazione 11. 1. Pf(t) € K[t] € un polinomio di grado pari alla dimensione
di V. Se n = dim(V), allora il coefficiente di ¢" vale (—1)", mentre il termine
noto coincide con det(f).

2. Se A € M, (K), allora P4(t) = Pr,(t). Questo segue dal fatto che A =
ME(L4), dove B & la base canonica di K™.

Come conseguenza immediata della Proposizione 7 abbiamo il seguente corol-
lario (si confronti con il Corollario 6).

Corollario 7. A € Sp(f) & P¢(\) =0, cioé gli autovalori di f coincidono con le
radici del polinomio caratteristico Py(t). In particolare il numero degli autovalori
distinti di f é < dim(V).

Il precedente risultato fornisce un metodo per calcolare gli autovalori di f €
End(V), quindi lo spettro di f, Sp(f). Per ogni A € Sp(f), per determinare la
dimensione di V)\(f), osserviamo che V) (f) = ker(f — Aldy), e dal teorema della
dimensione segue:

dim(Vi(f)) = dim(V) —rg(f — Aldy).

Per calcolare rg(f —AIdy ), fissiamo una base qualsiasi B di V', allora dal Corollario
3 abbiamo:

rg(f — Aldy) = rg(ME(f — Aldv)) = rg(ME(f) — L) = rg(A — AL,),

dove n = dim(V) ed A = ME(f). Infine, per determinare una base di Vj(f), si
trova una base dello spazio delle soluzioni del seguente sistema lineare omogeneo
(Corollario 3):

(A= AL, -z=0.

2

Esempio 8. 1. Consideriamo la matrice A = (3 1

) € M2(Q). Calcoliamo il

polinomio caratteristico di A:

1-1¢ 2

Py (t) = det < 3 1t

>:t2—7eQ[t].
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Osserviamo che Py4(t) non ha radici in Q, quindi Sp(A) = 0 ed A non & diagonal-
izzabile. Ricordiamo che questo significa che non esiste una matrice invertibile
C € GL2(Q) tale che C~!- A - C sia diagonale.

2. Consideriamo la stessa matrice A del punto precedente, questa volta come
matrice a coefficienti reali, A € Ma(R). Allora il polinomio caratteristi P(t) =
t?2 — 7 € R[t], ha due radici reali, ++/7, quindi Sp(A) = {v/7,—V/7}. Usando il
teorema della dimensione ed i risultati del Capitolo 5 abbiamo:

dim(V, 7) = 2—rg(A—\ﬁIQ):2—rg(1_3ﬁ —li\ﬁ>:1’

LT 2 >_1.

dim(V_ 7) = 2—rg(A+\ﬁ12)—2—rg< 5 1T

Quindi dim(V ) + dim(V_ ) = 2, da cui segue che A ¢ diagonalizzabile. Per
trovare una base di R? che diagonalizza A (equivalentemente una matrice C' €
GL2(R) tale che C~! - A - C sia diagonale), risolviamo i seguenti sistemi lineari:

(572280 - 6)
(50 2a)6) - )
In particolare, V> = Span (_ 1—12- \ﬁ), V_ s = Span (_ 13 ﬁ)' Quindi

{ <_ 1 i ﬁ) , <_ 1 3 ﬁ) } ¢ una base di R? che diagonalizza A, equivalen-

2 2 . .
temente C' = (_1 VT o1 \ﬁ) € GLa(R). Si osservi che

ClA.C= (? _Oﬁ> .

0
1

t? 4+ 1. Siccome P4(t) non ha radici in R, A non & diagonalizzabile.

_01> € Ma(R). Allora P4(t) = det <_t _1> -

3. Consideriamo la matrice A = < L

4. Consideriamo ora la stessa matrice A del punto precedente come matrice a

0 01> € My(C). Allora Sp(A) = {i,—i}. Inoltre,

coefficienti complessi, A = < 1

-7 —1 1

-1
dim(V;) =2—rg < 1 —i> =1,eddim(V_;) =2—rg (1 ; ) =1. Quindi A ¢
diagonalizzabile, se considerata come matrice a coefficienti complessi. Procedendo

come nell’esempio 2, si trova che una base che diagonalizza A & { < 1 ) , (1> },

—1 )
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1 1
e ponendo C = ( z) si ottiene:

g A (i0
C AC’_(O _Z,).

8 é) € Ma(K), dove K = Q, R, oppure C. Allora

Pa(t) = t2, quindi Sp(A) = {0} per ogni campo K. dim(Vp) = 2—1g(A4) = 1 # 2,
quindi A non ¢ diagonalizzabile.

5. Consideriamo infine A = (

Osservazione 12. I precedenti esempi mostrano che la diagonalizzabilita di una
matrice (rispettivamente di un endomorfismo f € End(V')) puo dipendere dal
campo K su cui e definita la matrice (rispettivamente ’endomorfismo). Cioe, se
A € M,(K), e K & un campo che contiene K, allora A € M, (K). In questa
situazione puo accadere che A non sia simile ad una matrice diagonale in M, (K),
mentre A & simile ad una matrice diagonale in M, (K).

Concludiamo il capitolo con un altro criterio per stabilire se un endomorfismo
¢ diagonalizzabile.

Definizione 12. Sia V uno spazio vettoriale di dimensione finita su un campo
K. Sia f € End(V) e sia A € Sp(f).

La molteplicita algebrica di A ¢ la molteplicita di X come radice del poli-
nomio caratteristico P(t), si denota con ma(A, f), ovvero con my(A).

La molteplicita geometrica di \ ¢ la dimensione dell’autospazio Vy(f)
relativo a A, st denota con mg(A, f), ovvero con mg(\).

Proposizione 8. VA € Sp(f), vale la sequente disuguaglianza:
mg(A) <my(A).

Dim. Sia V) C V Dlautospazio relativo all’autovalore A. Sia {vy,... ,vmg(/\)} una
base di V). Completiamo vy, ..., vy, (x) ad unabase diV, B = {v1,... s Umg(A)s Vmg(A)+1s - - - , Un}s
dove n = dim(V). Allora ME(f) ha la seguente forma:

Mg(f) = (Mo )

dove A € My, (3)n-—mg(n) (&), 0 & la matrice nulla di M,,_,(3),m, ) (K), B €
Mn,mg(A)(K). Quindi

B (A =)L, () A
Py(t) = det< o Bt o

= (A—t)"sWM . det(B — thyme () -

Quindi A interviene almeno mg(A) volte come radice di Py(t), percio mg(A) <
m, (A). O
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Teorema 6. Sia V uno spazio vettoriale di dimensione finita sul campo K. Sia
f € End(V). Allora f é diagonalizzabile se e solo se valgono le sequenti con-
dizioni:

1. Tutte le radici di P¢(t) appartengono al campo K (cioé Pg(t) decompone
come prodotto di polinomi di grado 1 in K|t]);

2. VA € Sp(f), mg(A) = mu(N).

Osservazione 13. Ricordiamo che, per ipotesi K = Q,R, oppure C, quindi in
ogni caso, K C C. Di conseguenza K|[t] C CJ[t], in altre parole ogni polinomio a
coeflicienti in K puo essere considerato come un polinomio a coefficienti in C. In
particolare il polinomio caratteristico Pf(t) € K[t] puo essere considerato come
polinomio in C[t]. Per il teorema fondamentale dell’algebra,

Pr(t) = (M=) - Dz =) .- O —1),

con Ap, ..., A\, € C (non necessariamente distinti), dove n = dim(V’). Nel punto
1. del precedente teorema si richiede che A1,..., A\, € K.

Vediamo dapprima una conseguenza immediata del Teorema 6.

Corollario 8. Sia n = dim(V). Se f ha n autovalori distinti, allora f é diago-
nalizzabile.

Dim. Siano Aq,...,\, gli autovalori di f (che per ipotesi sono distinti). Per
definizione di autovalore, A1, ..., A, € K, quindi la condizione 1. del Teorema 6 ¢
soddisfatta. Inoltre P(t) = (A1 —t)-...-(An—t), quindim,(\) = ... = ma(\,) =
1. Da questo fatto e dalla Proposizione 8 deduciamo che 1 < mg(X;) < m,(\;) =
1, per ogni ¢ = 1,...,n. Quindi mg(N;) = ma(N;), Vi = 1,...,n, ed anche la
condizione 2. del Teorema 6 & soddisfatta, percio f & diagonalizzabile. O

Dimostrazione del Teorema 6. Sia Sp(f) = {A1,...,Ax}, con A; # Aj, per ogni
i # j. Siccome Py(t) € K[t] ha grado n, m,y(A1)+...+m, () < n, e la condizione
1. del Teorema 6 ¢ equivalente alla condizione m,(A\1) + ...+ m,(A;) = n. Dalla
Proposizione 8 segue che mg(A1) + ... + mg(Ag) < ma(Ar) + ... + mu(Ag), ed

inoltre vale I'uguaglianza se e solo se mg(A;) = ma(A;), Vi = 1,..., k. Quindi le
condizioni 1. e 2. sono equivalenti alla condizione mgz (A1) + ...+ mg(Ay) = n,
che ¢ equivalente al fatto che f sia diagonalizzabile per il Teorema 5. O
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