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1 Introduction 

 

Multidisciplinary Design Optimization (MDO) is getting more and more import, especially in 

the aerospace community. The AIAA Association (American Institute of Aeronautics and 

Astronautics) has organized several sessions dedicated to the MDO (last session [1]) and 

recently the First Session of MDO for specialist [2]. Consequently the development of 

numerical methodologies, to solve these problems, is increasing in importance, to help the 

industry during the phases of a complex design. It seems useful to remark that the designs, in 

particular in the aeronautics field, are extremely complex, because of the physic model and 

for huge number of input and output parameters. 

One important aspect in the industrial design is the management of the uncertainties, to find 

solutions which are insensible to the stochastic fluctuations of the parameters. The name of 

this design model is Robust Design.   

The need of Robust Design method appears in many contests, especially in the Multi 

Disciplinary Design. In fact it is possible to find uncertainties in many different cases; during 

the preliminary design process, the exact value of some input parameters could be known, or 

the input parameters could change in the next design phases. Consequently the aim is to look 

for a solution as less dependent as possible on the unknown parameters. Other concerns are to 

find out solutions which are insensitive to the tolerance manufacturing parameters, to 

fluctuations in the operative conditions or numerical fluctuations in the high fidelity 

simulation models.  

The present paper shows a new optimization method that look for solutions which are 

insensitive to fluctuations, any source they are caused by. Starting from the statistical 

definition of stability, the method, based on a multi-objective approach, in particolar Game 

Theory, finds good solutions for stability and performances. 

Robust Design methodology, together with a metamodel approach is proposed, to reduce the 

total number of high fidelity analysis needed by the method. A new adaptive methodology 

based on Kriging method is presented, in order to minimize the statistical unknown error 

between the real values obtained by high fidelity analysis and the extrapolated ones. 

Finally a new important aspect of the multi disciplinary optimization is presented: the 

visualisation of the interactions between the different design parameters. It is well know that 

in the complex projects the designers have to control a huge number of different parameters 

of the system (geometry parameters, operating parameters, input/output parameters). 

Consequently a visualisation model which represents in efficient way the different 

interactions is useful to understand the final behaviour of the exanimate system. In this work 

the Self Organized Maps are presented and used to visualise the results of a aeronautic Robust 

Design. 
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2 The idea of Robust Design in Aeronautics 

 

The study of the uncertainties in engineering begins with Taguchi [3], who codified the 

methodology for the quality engineering. Taguchi divides the design in three different phases: 

the fists one, called system design, determinates the most feasible region for the following 

numerical optimizations, the second phase, called robust design, determinate the optimal 

parameter for maximizing the final quality of the considered system, and in the third final 

phase, called tolerance design, is performed one parameter tuning to reach the best possible 

final solution. 

The necessity to study uncertainty is well known in aeronautics; in fact it is possible to cite 

the definition of uncertainty given on AIAA Guideline [4]: 

 

Definition 1.2  Uncertainty: A potential deficiency in any phase or activity of the modelling 

process that is due to lack of knowledge. 

 

Notice that the uncertainty is defined how a lack of knowledge, which obviously leads to 

need a different approach for studying the model. 

From a numerical point of view the study of a model affected by uncertainties could be 

defined as: 

 

f : A × B  → ℜ where 

• a∈ A represents the design parameters chosen by the designers 

• b ∈ B represents the input parameters permeated by uncertainties consequently not 

controllable by designers. 

 

In [5] the common uncertainties (parameter b) for external aerodynamic are well described 

(more precisely in the case of two dimensional airfoil design). 

 

1. Uncertainties on geometry parameters due to manufacturing tolerance ε which 

modifies the geometry parameters in a-ε.  This situation is deeply explained in [6], where an 

airfoil with minimum drag over geometrical uncertainties is designed. 

2. Uncertainties on operative conditions (design point): usulally this case is studied with 

fluctuations on the free stream Mach number [Mmin , Mmax]. For important references see [7,8] 

. 

In [9] it is well demonstrated why the study of fluctuations is of primary importance in 

external aeronautics. It is shown how minimizing the drag coefficient of an airfoil with fixed 

operative conditions, in particular the free Mach number, the final solution has good 

performance at the design point but poor off-design characteristics (Fig. 1); this concept is 

known as over-optimization. 

 

 

 



 4 

 
  Figure 1: Drag profile for stable (Design 2) e not stable (Design 1) solution respect to Mach 

number 

 

This behaviour becomes more evident for supercritical airfoils where the relationship between 

drag and free stream velocity is nonlinear because of the fluctuations of the shock waves 

position on the airfoil surface. 

Consequently the possibility to determine solutions with good performances over a range of 

operative conditions appears attractive, also to avoid sudden changes in the behaviour of the 

system; it is interesting to remember that a stable behaviour minimises the operative risk of 

the system. 

Many numerical methods have been developed to optimise a system under uncertainties, in 

particular in the case of fluctuations of the operative conditions [7, 8, 10, 11, 12]. 

In [7] a methodology direct based on multi-point optimization has been proposed, using a 

sum-weighted formulation; in the examined example, minimization of the drag coefficient of 

an lift-constrained airfoil with uncertainties on cruise Mach number is performed. The 

proposed formulation is: 
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     (1) 

 

subjected to 

 

nicMdc liil ≤≤≥ 1for),,( *α                                                   (2) 

 

where wi are arbitrary weights, d is a set of geometric design variables that define the airfoil, 

Cd and Cl are the drag and lift coefficient defined as function of the free steam Mach number 

Mi and the angle of attack αi which can fluctuate around the design point values, and Cl
*
 is 

the required lift. The problem of the Eq.1 is that the final result depends on the choice of the 

weights wi, too arbitrary to define.  

In [10] a new concept is introduced for the Robust Design, and an approach different from the 

multi-point optimization is used. The innovative idea is the formulation of a risk ρ to 

minimize: 
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The term f(M∞) appears in Eq. 3 that is the probability density of the cruise Mach number. 

The risk (from the Bayesian theory) represents the mean value of the drag coefficient inside 

the fluctuations of the operative conditions. The author proposed for the solution of the 

integral (Eq. 3) the use of a Taylor series of second order. 

In [11], to avoid the arbitrariness of the Robust Design formulation in [7] and [10], has been 

propose an interesting methodology. This one iteratively modifies the Mach number in the 

Eq. 1 to calculate the integral Eq. 3 using the trapezoid rule. 

A new and interesting approach is proposed in [8] where the authors have demonstrated that 

the Robust Design problem has to be solved using a Multi Objective Optimization Approach. 

Starting from the definition of stability, the numerical definition of the problem becomes: 
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subjected to 
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The mean and variance Cd are defined as follows: 
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where p(M) is the probability density function of the Mach Number defined in the interval 

Mmin<M<Mmax. This Robust Design formulation (Eqs. 4-7) gives the possibility to determine 

two directions in the optimization: by the variance of the drag coefficient, it is possible to 

minimize the off-design performance degradation (fig.2, design at the bottom); on the other 

hand, by the optimization of the performance mean value (in this case drag coefficient), the 

performances will be privileged (fig.2, design at the top). Let has notice that the Robust 

Design formulation of Eq.4 is based on a Multi Objective approach, so the final result will be 

the Pareto frontier, i.e. the set of the best compromise solutions between the objective 

functions (fig.2, all the design of the Pareto frontier). The difficulty in this kind of approach 

could be find the number of high fidelity analysis needed to find the Pareto frontier; for this 

reason an alternative methodology is proposed using a descend direction that could reduce 

drag simultaneously and proportionally over the given range of Mach number.  
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Figure 2: Pareto Frontier obtained by Robust Design Optimization (Performances vs. Stability 

Degradation) 

 

Interesting is also the approach [12] where a weighted-sum function (similar to Eq. 1) is 

proposed. The author to avoid the arbitrariness of this formulation proposed an adaptive 

methodology to determinate the weights:  
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To avoid the high computational cost for solving the Robust Design problem, Trosset [5] 

proposed new methods based on the statistical decision theory, in particular the Bayesian 

formulation. From the Taguchi method for quality engineering, he demonstrated how it is 

possible to replace a computationally expensive objective function with a not-expensive 

surrogate numerical model, using the DACE methodology developed by Sachs and Welch 

[16]. 

Finally it is important to remember that one interesting field of application for Robust Design 

is the preliminary design of complex engineering systems, that involve multi-disciplinary 

subsystems [13, 14, 15]. In this case, the aim of Robust Design is the reduction of the effects 

on the performance of the whole system, produced by the decisions taken in one subsystem 

design (Fig. 3). 
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Figure 3 Coupled Multi Disciplinary System with uncertainties 

 

2.1 Why we need a Multi Objective Approach 

 

In this work a new method for Robust Design optimization is presented. The main idea is to 

use a multi objective approach to reach the best possible compromise between performance 

and stability of the design. Referring to Fig. 4, the function has an absolute extreme and a 

relative one respectively corresponding to the coordinates x1 and x2; in this case the 

uncertainties are represented by the tolerance ∆ in the input parameter x (the same case of 

manufacturing tolerance). Obviously a standard optimization, without fluctuations, would 

find out the point x1, that is the absolute maxima but with poor stability. In the case of Robust 

Design optimization (considering tolerance ∆) two different objectives have to be considered: 

mean performances and stability of the solutions, according to the ideas presented in [8]. 

Considering the mean performance inside the tolerance ∆, the best configuration would be 

represented by the point x1, since the mean value of the function is the highest. But for the 

stability, which corresponds to an evaluation of the variance of the function f(x) inside the 

field ∆ (Eq. 7), the best configuration is represented by the point x2, because the function is 

characterized by a lower variability inside the tolerance around to the point x2. 
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Figure 4: Function with two different extremes: x1 absolute no stable extreme, x2 relative 

stable extreme 

 

Consequently it is interesting to observe that when Robust Design optimization is performed, 

it is possible that the more stable region doesn’t correspond to the more performing one. So to 

perform an optimization under fluctuations the best way is to define two different objectives 

for every function to optimize: its mean value of the function and its variance. In 

mathematical term it is: 
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where f is the multi objective (in more general terms) function to be maximized and q are the 

uncertainties parameters, modeled by the probability density function p(q). 

In this way the problem of an optimization under uncertainties becomes a Multi Objective 

Optimization problem where the objectives are the stability and the performance; to solve this 

problem we need to adopt the Game Theory (see chapter 2) that is the best methodology to 

solve a real multi objective problem without using a weighted function as: 

 

fw wfwf σ21max +=                                                               (10) 

 

In fact it is tricky to assign a value to the weights wi, and this is the reason because it is better 

to refer to Game Theory approach. It is interesting to note that after the optimization phase, 

using a Pareto Frontier approach, the designer does not get only one solution but a set of 

solutions (Pareto Frontier) that represents the best possible compromise between the 

objectives. An example of a Pareto Front for a Robust Design Optimization could be 
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observed in Fig. 2; inside the Pareto frontier it is possible to choose different compromises 

between performance and stability, with more flexibility than a standard optimization, where 

the solution is unique. It is important to underline that it is possible to face a wide range of 

problems with the Robust Design approach (small manufacturing process errors, fluctuations 

in the operative conditions, unknown input parameters, etc.). The method is also extendible to 

more than one function to optimize, for example it is possible to improve the lift and drag of 

an airfoil with fluctuations in the flight speed, without the need of a weighted function to tie 

the two different performances. 

 

2.2 Numerical Example 

 

To understand better the Multi Objective approach to Robust Design optimization, could be 

useful observe an example: 
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In this example we have to maximize the function f(x,y) with uncertainties on the variable 

definition (σx,y with uniform probability density function). Following the Eq. 9, using a 

discrete formulation for the mean value and the variance, the problem becomes: 
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where the N points are distributed uniformly on the intervals [x-σx, x+σx].and [y-σy, y+σy]. 
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Figure 5: Plot 3D and contours of the mean value of the function (performance), left; plot of 

the variance of the function (stability, right) 

 

In Fig. 5 it is possible to observe graphically the Multi Objective Robust Design problem (Eq. 

11). The same remarks done in [17] for a one-variable problem is valid: the regions for local 

maxima of the function, that is the solutions with higher mean performances, usually 

corresponds to the regions where more stable solution are present. But if we plot the Pareto 

Frontier (Fig. 6)) some more considerations can be done for this problem. 
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Figure 6: Pareto Frontier for the analytical Robust Design Test Case 

 

The Pareto Frontier contains three points, which correspond to the picks of the original 

function: considering this simple analytical test case, we can argue that an effective Multi 

Objective Approach is needed as the solution is not unique. It is important to observe how in 

this kind of approach a robust optimization algorithm is necessary: normally the regions 

characterized by good stability are wide, but the picks for performance and the picks for 

stability are very restricted (the three picks in the analytical function); for these reasons if a 

weighted-sum form or a not robust optimization algorithm are adopted, the final solutions 

will not be characterized by optimal features. 

 

 

3 Game Theory on Robust Design 

 

Game Strategies, defined mathematically by J.Nash [18], have found their first applications in 

economics, in particular to solve the problems concerning the decisions that have some 

effects on different and often competitive fields.  

These strategies may however be adopted also in the industrial design, and in particular they 

can be combined with evolutionary algorithms, in order to optimize a product following 

several criteria and contrasting objectives.  

We shortly describe the basic formulation of two typologies of Game Strategies (co-operative 

and competitive), and then we will show how it is possible to implement practically these 

algorithms to solve multi-objective optimization cases. 

In a problem of minimization of two functions fA(x,y) and fB(x,y), we define the variables 

space (x,y)∈X ×Y as the set of rational strategies. Thus, we decompose the variable space 

between two “players”, called A and B, that are in charge respectively of the variable space X 

and Y; it follows that each pair (x,y)∈X ×Y represents a combination of the strategies played 

by the two players. 
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The Pareto front may be seen as the result of a co-operative game, in which the two players A 

and B try to minimize both the two functions; in other words, each strategy played by the 

players is evaluated by the fitness of the two functions. 

Not a single solution is found, but instead a set of solutions, that is called Pareto front; this set 

is characterized by the fact that there does not exist a solution such that both the two functions 

have a better fitness of any point of the front. In mathematical terms: 

(x
*
,y

*
)∈X×Y ∈  to Pareto front if and only if: 

 

∃ (x’,y’)∈X×Y  : 
( ) ( )
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These definitions can of course be generalised in the case of n functions fi. 

In a competitive game, the two players act following different objectives; in particular, player 

A have to choice his strategies in order to minimise the function fA, while player B have to 

minimise the function fB.  

Of course, as generally both the functions depend on the two domains, the strategies of one 

player influences the choices of the other one. The two players act simultaneously until an 

equilibrium is found (Nash equilibrium point): in this case, each player has minimised his 

own function with a common pair of strategies. 

In mathematical terms:  

 

(x
*
,y
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)∈X×Y  is a Nash equilibrium if and only if: 
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3.1 Multi Objective Game Theory Adaptive Algorithms 

 

From the definitions of the previous chapter, we can affirm that MOGA (multi-objective 

genetic algorithm) is an algorithm that implements practically a co-operative game, since it 

searches a Pareto front as trade-off of the contrasting objectives and all the variables co-

operate in the optimization of all the objectives. 

To implement a competitive game the procedure is more complex, since we need to define an 

algorithm that decomposes the variable space, that assigns to each part of the decomposed 

space (that becomes a player own domain) the correspondent objective and that provides a 

mono-objective optimization algorithm to each player. From different tests considered [19], it 

seems that the most efficient algorithm to be run by each player is the Nelder and Mead 

Downhill Simplex [20]: for this reason we will refer from now to any competitive game 

algorithm as to Nash-Simplex algorithm. 

After a certain number of Simplex iterations, each player finds the best configuration (and set 

of variables) for its objective, and then the search continues with a new step, for which each 

player starts a new Simplex sharing the variables found by the other players. 

As it is possible to see and previously pointed out by Periaux and Wang [21], the problem of 

the variables space decomposition is very important, since it influences the results of the Nash 
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equilibrium point and thus the optimization results. For this reason, there are different 

approaches that can be followed: 

1) it is possible to decide an initial variable decomposition and continue the competitive 

game without changing it until the convergence is achieved: this is the case of a not-adaptive 

Nash-Simplex algorithm; 

2) it is possible to implement an adaptive Nash-Simplex-tStudent algorithm, like we 

proposed in our previous work [22], using statistical analysis and in particular the t-Student 

coefficient to decide, at the end of each player step (that is after a certain number of Simplex 

iterations) if a variable is statistically significant for the player to which is assigned or not; in 

the latter case, i.e. if the significance percentage is lower than an assigned threshold, the 

variable is given to another player in the following step. In other words, the significance 

percentage [23] expresses the probability that a variation of the objective function is really 

produced by a variation of the variable instead of an effect of the statistical variance around 

the mean value of the objective function; 

3) a variation of the adaptive Nash-Simplex algorithm can be given by the adaptive 

Nash-Simplex-correlation matrix algorithm, that instead of using t-Student parameter to test 

the significance of any variable, uses the correlation matrix [23], that gives a number from –1 

to 1 to express the statistical correlation between any input variable and any objective: for 

each variable, we consider the absolute value of the correlation with every objective, and the 

variable will be assigned to the objective for which the value is higher, since it denotes an 

higher influence from that variable (independently from the fact that the correlation is inverse 

or direct); 

In this work we use a Multi Objective Genetic Algorithm approach to demonstrate the 

capability of the Robust Design Optimization in the last exhaustive example for a 2 

dimensional airfoil design under uncertainties.   

 

 

4 The use of local optimal Response Surfaces in Robust Design  

 

One interesting point, which needs to be study in details, is the calculation of the Eq. 12. The 

two equations represent the mean value (performance) and the variance (stability) of the 

function to be optimized by Robust Design approach. From the equations it is possible to 

observe that to obtain the values of the objectives to optimize it requires more than one 

calculation of the function. Consequently, when a numerical simulation needs high computing 

resources, the application of the Multi Objective Robust Design could become inapplicable 

caused of to much higher time consuming. For these reasons reducing the number of total 

simulation is a key point to make the Robust Design useful to the industry. One efficient 

numerical methodology to solve this problematic is the use of the Response Surfaces. 

For the application of Response Surfaces in Robust Design, [5] presents a Taylor 

approximation approach that in some cases is accurate. But in this paper, we present a 

different approach, based on statistical theory, called DACE. The advantage of this 

methodology is the possibility of implement an adaptive response surfaces, which tries to 

minimised the statistical error between the real function end the extrapolated one. 
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4.1 D.A.C.E. Response Surface Methodology 

 

Originally developed and used in mining engineering and geo-statistics data, the Kriging 

method is an approach for curve fitting and response surface approximation. In the 1980s, 

some statisticians have developed Design and Analysis of Computer Experiments (D.A.C.E.) 

for deterministic computer-generated data based on the Kriging method [24] [25]. The 

Kriging method used in this study is based on the D.A.C.E. approach. 

Suppose we have evaluated a deterministic function of k variables at n points. We denote the 

i-sampled point by x
i
=(x1

i
,….,xk

i
) and the associated function value by y

i
=y(x

i
), for i=1,..,n. 

The Kriging (D.A.C.E.) technique is based on the following stochastic process model: 
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The eq.15 is the weighted distance formula between the sample points x
i
 and x

j
, and eq.16 is 

the correlation between the errors corresponding to the points x
i
 and x

j
.  

Eq.17 is the model we use in the stochastic process approach: µ is the mean of the stochastic 

process, ε(x
i
) is defined by a Gaussian distribution of Normal type (0,σ2

); the latter term is the 

result of a stationary Gaussian random function that creates a localized deviation from the 

global model [14]. The parameter θh in the distance formula (eq.15) can be interpreted as 

measuring the importance or “activity” of the variable xh. The exponent ph is related to the 

smoothness of the function in coordinate direction h, with ph=2 corresponding to most smooth 

functions. The stochastic process model in Eqs.15-17 is essentially a generalized least squares 

(GLS) model [26] with a simple set of regressors (just a constant term) and a special 

correlation matrix that has unknown parameters and depends upon distances between the 

sampled point. 

The Kriging approximation presented by Schonlau [27] uses the best linear unbiased 

predictor (BLUP) of y at the point at which we are predicting, x
*
. Let r denote the n-vector of 

correlations between the error term at x
*
 and the error at the previously sampled points. That 

is, element i of r is ri(x
*
)=Corr[ε(x

i
), ε(x

i
)], computed using the formula for the correlation 

function in Eqs. 15 and 16. The estimated model of Eq.17 can be expressed by the BLUP of 

y(x
*
): 

 

 )ˆ(ˆ)( 1* µµ IyRrxy
T −+= −  (18) 

 

where y=(y
1
,…y

n
)
T
 denote the n-vector of observed function values, R denotes the n×n matrix 

whose (i,j) entry is Corr[ε(x
i
), ε(x

j
)], and I denotes an n-vector of ones. The value for µ is 

estimated using the generalized Least Squares method as: 

 yRIRI
TT 111 )1( −−−=µ  (19) 
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The estimation of θh and ph and hence an estimation of the correlation matrix are obtained by 

the maximization of a Likelihood Function [24]. 

The mean squared error (MSE) of  y(x) can be derived as: 

 
IRI
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−
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+−= σ  (20) 

Eq.20 provides an estimation of the variance of the stochastic process component of the 

Kriging approximation. 

Earlier studies imply that including the parameter ph as part of maximum likelihood 

estimation doesn’t help to improve very much the Kriging approximation, thus in the current 

study ph=2 is used for all the design variables. 

 

4.2 Adaptive DACE 

 

To initialize an extrapolation, we require a systematic way of selecting the set of inputs 

(called Design Of Experiments, or DOE) at which to perform a computational analysis. One 

common choice for generating experimental design for computational experiments is the 

Latin Hypercube [28]. Instead of using this technique we propose an adaptive arrangement of 

the initial set of samples (data base) exploiting the value of the MSE (eq.20) The value of 

MSE depends on the correlation of the landscape as well as on the local density of points. 

In particular, we consider the behaviour of RMSE (Root Mean Squared Error): the RMSE 

indicate the accuracy of the prediction and it assumes low values corresponding to the 

neighbourhood of the samples points. It is possible to understand that the extrapolation is 

more precise in regions with high point density. We define the function IEAN (Index of 

Absolute Error Normalized) as follows: 

 

 IEAN=|(y(x)-YMIN)/(YMAX -YMIN)| + RMSEY(x)/(RMSEmax-RMSEmin) (21) 

 

Eq. 21 represents the index we use to set the adaptive arrangement of the samples. In fact, we 

try to exploit the value of RMSE to understand where the extrapolation is not accurate, taking 

care at the same time of the extrapolated value associated (the y(x) function is to be 

maximised, thus a high value is interesting). For example, a high value of IEAN indicates that 

the extrapolation is not accurate or that the function gets a high value; since these points are 

the most interesting, the database will be updated by the evaluation of the function in those 

points.   

The Ymax and Ymin values are respectively the highest and lowest values of the extrapolated 

function, while RMSEmax and RMSEmin have the same meaning regarding RMSE. If y(x) is to 

be minimised, we can substitute eq. 13 with the following one: 

 

 IEAN=|(y(x)-YMAX)/(YMAX -YMIN)| + RMSEY(x)/(RMSEmax-RMSEmin) (22) 
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In any case, we apply these functions (eq.21-22) in order to add new input points in the 

database in following iterations, choosing the points of the range where the values of IEAN 

are higher. 

In fig.7 we show, as example, a function F(x) (solid line), the function F extrapolated by 

DACE (dotted line) and by the initial data base (6 black dots), the error index IEAN (dashed 

line), and then the new point to be added in the database (black dot in the solid line), for 

which the error index is maximum. 

 

 

 

Figure 7: Definition of the new point to be added in the database for adaptive DACE 

approach. 

 

4.3 Numerical Example of Adaptive Dace in Robust Design 

 

To understand the capability of the adaptive DACE methodology in comparison with the 

Taylor approximation techniques we propose a simple two dimensional airfoil example, with 

interesting connections with the Robust Design idea.  

In the common practice, in a single point airfoil optimization, the project point is fixed (e.g. 

angle of incidence α=2°, Mach number M=0.73). Due to not deterministic events (like gusts 

of wind, atmospheric turbulence, instable conditions of flight, manoeuvre inaccuracy,...), the 

project point can be considered slightly fluctuating, consequently it should be rational to 

consider a range of operating conditions instead of a single project point (e.g., 

α=2±0.5°, Μ=0.73±0.05). 
The relationship between wave drag and free flow velocity is quite non linear for high 

subsonic design Mach numbers, and thus the position of the possible shock waves can change 

quickly as soon as the operating conditions slightly changes (α and Μ): for this reason, by 

means of the single design point approach it is possible to find some airfoil shapes which are 

advantageous corresponding to the project point (low drag resistance) but that are 

characterized by poor performances in the neighbourhood of it [9]. 

To appraise the capability of the methodologies we calculated by a Navier-Stokes code 

(Muflo [29]) the lift and drag coefficient for an airfoil (RAE2822) in n points in a regular grid 

inside the uniform distribution in the range of number of Mach and angle of attack 

F real 

F 
extrapolated 

Error 
index 

Data 

base 

New point 
in data 
base 
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 (α=2±0.5°, Μ=0.73±0.05); this model simulates uncertainties, which normally happen on a 

cruise. 

 

  

 

Figure 8: Comparison between the performances calculated by the high fidelity analysis code 

(lift on the left, drag on the right) of the RAE2822 and the response surfaces by Taylor (grey 

surfaces). 

 

In Fig. 8 it is shown how the Taylor methodology approximates the real function, calculated 

by the high fidelity analysis code. The Taylor response surfaces are calculated by the middle 

point of the uncertainties range (Mach number = 0.77, Angle = 2°), closed at the second order 

using centred finite difference method; so 9 additional points needed for the response surfaces 

(lift and drag). From the figures we can observe that the behaviour of the airfoil performances 

is highly non linear, and the quadratic Taylor approximation is too poor for following the real 

surfaces. This behaviour is amplified from the presence of two uncertain parameters, in fact is 

well know how the Mach number brings high non linearity in the lift and drag profile, while 

the angle of attack is under some conditions easier to take in account. For these reasons, the 

use of a Response Surfaces with the capability to catch all the different behaviours of the 

system is strongly recommended. 

Now it is important to visualize and understand how the DACE model approximates the same 

problem. In the previous session, we have explained an adaptive methodology to find out the 

new points to construct the metamodel function, so it is important to define which is the 

parameter used to stop the algorithm iterations. As in the optimization phase the objective 

functions will be the Eq. 9 (discretized as Eq. 12) we decide to use the mean value and the 

variance of the function as stopping iterations criteria: when the contribution of the new point 

in the database doesn’t change the calculated mean and variance value on the response 

surfaces, the algorithm has get convergence. 
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Figure 9 Convergence of the DACE surfaces (lift on the left, drag on the right); above 

surfaces with 5 points in the database, bottom after convergence (38 points). 

 

In Fig. 9 we can observe how the DACE methodology reconstructs the lift and drag function; 

for the convergence of the surfaces (1% tolerance in two following steps for mean and 

variance calculation) the adaptive algorithm takes 38 new points in the database (Fig. 10). 

Clearly it is possible to note how the DACE surfaces cover with good quality the original 

surfaces, without any notable differences. This algorithm haven’t limitations due to the use of 

a fix mathematical model, actually adapting the coefficients of the exponential weighted form 

(Eq.15) and finding the database points which minimize the statistical error between the 

original function and the extrapolated one, it is possible to use the algorithm for complex and 

high non linear functions.  From the convergence profile, it is possible to note how after only 

15/20 high fidelity analysis the error in the objective functions is limited, enabling to reach 

accurate results without the use of an excessive time consuming resources. 
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Figure 10 Convergence of the DACE surface; left: mean value of lift, right: variance of drag. 

 

From this example it is possible to appreciate how an adaptive response surface methodology 

is a useful tool to decrement the number of high fidelity analysis request by the Multi 

Objective Robust Design Optimization. Using the DACE method, an iterative adaptive 

Design of Experiments is build, in order to minimize the statistical error between the real 

function and the extrapolated one. It is useful to remember that the advantages of the adaptive 

methodology increases with the number of free parameters, which in the Robust Design 

corresponds to the number of uncertain parameters. 

 

 

5. Problem of visualisation in n-dimensional space (SOM) 

 

The Self-Organizing Map (SOM)[31] is an unsupervised neural network algorithm that 

projects high-dimensional data onto a two-dimensional map. The projection preserves the 

topology of the data so that similar data items will be mapped to nearby locations on the map. 

This allows the user to identify 'clusters', i.e. large groupings of a certain type of input pattern. 

Further examination may then reveal what features the members of a cluster have in common. 

Since its invention by Finnish Professor Teuvo Kohonen in the early 1980s[32], more than 

4000 research articles have been published on the algorithm[33], its visualization and 

applications. The maps comprehensively visualize natural groupings and relationships in the 

data and have been successfully applied in a broad spectrum of research areas ranging from 

speech recognition to financial analysis. 

The Self-Organizing Map belongs to the class of unsupervised and competitive learning 

algorithms. It is a sheet-like neural network, with nodes arranged as a regular, usually two-

dimensional grid. Each node is directly associated with a weight vector. The items in the 

input data set are assumed to be in a vector format. If n is the dimension of the input space, 

then every node on the map grid holds an n-dimensional vector of weights. The basic 

principle is to adjust these weight vectors until the map represents "a picture" of the input data 

set. Since the number of map nodes is usually significantly smaller than the number of items 

in the dataset, it is needless to say that it is impossible to represent every input item from the 

data space on the map. Rather, the objective is to achieve a configuration in which the 
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distribution of the data is reflected and the most important metric relationships are preserved. 

In particular, interest is in obtaining a correlation between the similarity of items in the 

dataset and the distance of their most alike representatives on the map. In other words, items 

that are similar in the input space should map to nearby nodes on the grid. 

 

5.1 The Algorithm 

 

The algorithm proceeds iteratively. On each training step a data sample x from the input 

space is selected. The learning process is competitive, meaning that we determine a winning 

unit c on the map whose weight vector m is most similar to the input sample x. 

     minc i
i

− = −x m x m  

 

The weight vector mc of the best matching unit is modified to match the sample x even closer. 

As an extension to standard competitive learning, the nodes surrounding the best matching 

unit are adapted as well.  Their weight vectors mi are also "moved towards" the sample x. The 

update   rule may be formulated as: 

           ( 1) ( ) ( ( ))
i i ci i

t t h t+ = + ∗ −m m x m  

 

The scalar factor hci(t) is often referred to as the "neighbourhood function". It is usually a 

Gaussian curve, decreasing from the neighbourhood centre node c to the outer limits of the 

neighbourhood. 
2

22 ( )
( ) ( ) exp( )c i
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h t t
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α

−
= ∗ −

r r
 

In the above equation, α(t) is another scalar multiplier called the "learning rate". It may be 

regarded as the height of the neighbourhood kernel. σ(t) is the radius or the width the 

neighbourhood kernel. It specifies the "region of influence" that the input sample has on the 

map. Both the height and the width of the neighbourhood function decrease monotonically 

with time. 

As can be seen, nodes closer to the best matching unit will be more strongly adjusted than 

nodes further away. At the beginning of the learning process, the best matching unit (BMU) 

will be modified very strongly and the neighbourhood is fairly large. Towards the end, only 

very slight modifications will take place and the neighbourhood includes little more than the 

BMU itself. This corresponds to "rough ordering" at the beginning of the training phase and 

"fine" tuning near the end. 

Since not only the winning node is tuned towards the input pattern but also the neighbouring 

nodes, it is probable that similar input patterns in future training cycles will find their best 

matching weight vector at nearby nodes on the map. In the run of the learning process, this 

leads to a spatial arrangement of the input patterns, thus inherently clustering the data. The 

more similar two patterns are, the closer their best matching units are likely to be on the final 

map. It is often said, that the Self-Organizing Map folds like an elastic net onto the "cloud" 

formed by the input data. 

It is important to state that the Self-Organizing Map algorithm is not a clustering algorithm. It 

is intended primarily as a tool in reducing the dimensionality of the data and for information 

visualization. Of course, this includes the visualization of groups of similar items. But the 

Self-Organizing Map is not a tool that will produce an explicit partitioning of a dataset into a 
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precise number of groups. This also explains why the concept of a "cluster" is not well 

defined for the Self-Organizing Map. The maps do not show sharp cluster borders and there is 

no obvious centroid. Of course, one can theoretically think of each node on the map as a 

cluster centroid. The cluster corresponding to each node could then be said to include all 

dataset items mapping to this node. But this is not a sound approach in the practical 

application of the SOM. It tempts the user to use small maps of only k nodes, expecting that 

this will produce k clusters in the same way k-means does. The results with such small maps, 

however, are very poor. The heart of the algorithm is the neighbourhood function and the 

concept of adjusting not only the best matching unit but also its surrounding units. This will 

create "neighbourhoods" of similar nodes - but only if the space on the map is sufficiently 

large to allow this. An interesting point regarding the topological preservation is that this 

refers not only to the intra-cluster relationships but also to the inter-cluster relationships. In 

other words, not only the distances of objects within a cluster are meaningful, but also the 

distances between clusters. For example, one may expect two nearby clusters to be more 

similar than two distant clusters. 

 

5.2 Application to Iris dataset 

 

The following application is just a pure explicative one, regarding a small dataset with only 

four dimensions; moreover, it is intended to be useful to illustrate SOM machinery. 

The iris dataset contains 150 items of four of the most prominent characteristics of the iris 

flower: petal length, petal width, sepal length, sepal width. Each item is classified in one of 

the three classes Setosa, Virginica or Versicolor. 

SOM results are reported in the following: 

 
Component 1

4.3 4.8 5.2 5.7 6.1 6.6 7.0 7.5 7.9

Component 2

2.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4

Component 3

1.0 1.7 2.5 3.2 4.0 4.7 5.4 6.2 6.9

Component 4

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5  
 

 

Figure 11: Componentl: petal length; Component2: petal width; Component3: sepal length; 

Component4: sepal width. Each of the four screens displays the spread of the values of the 

respective component on the map. 
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Some conclusions can be drawn immediately: sepal length and sepal width have a very 

similar mapping and hence one of it is redundant in the description of the iris flower and it 

can be eliminated; petal length and sepal length have a strong correlation in the range of low 

values and hence one can always expect to have a small sepal length in presence of a small 

petal length (or viceversa). Such a kind of conclusions is very obvious ones in this case, but 

their relevance grows when one faces with bigger and more complex datasets. 

The following picture reports a labelling of the preceding SOM, based on the pertaining class 

of each of the mapped items.  

 

 
 

 

Figure 12: Note the contiguous mapping of similar records: Setosa, Virginica and Versicolor 

are each mapped on a particular region of the map. 
 

 

Considerations on the relative distance of different kinds of items can be drawn better if one 

considers the U-Matrix representation [34]: 
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Figure 13: U-Matrix reports on each unit of the map the mean value of the distances between 

its weight vector and m the weight vectors of its neighest neighbors. Yellow units are much 

closer than red units. 

 

 

As can be seen, Setosa are separated by a red region from Virginica and Versicolor: then 

Setosa are more similar than Versicolor and Virginica do and they form a possible well 

defined cluster. 

 

 

6. Exhaustive Example: Multi Objective Robust Design Optimization of an 

AIRFOIL 

 

Using the Multi Objective Robust Design theory developed, we perform a more realistic 

optimization case consisting in the design of a non-symmetric airfoil based on the RAE28222 

geometry, using as flow solver the Navier-Stokes version of MUFLO and AIRFOIL codes 

[29], which uses as turbulence model the Johnson-Coakley equations (fig. 14). Also in this 

case the upper and lower side of the profile are defined by two 10-degree Bèzier curves, and 

the co-ordinates of their control points become the variables of the optimization (fig. 14) 

 

 

 

  

 
 

Figure 14: Airfoil mesh with MUFLO (a) and airfoil parameterization using Bezier curves 

(b). 

 

The uncertainties are relative to the Mach number (M=0.73±0.05) and to the angle of attack 

(a=2°±0.5°). 

The optimization goal is to find out an airfoil geometry which yields better results respect to 

performances and stability, taking in account of the two uncertainties parameters (angle of 

attack and free Mach number). From a mathematical point of view the optimization problem 

becomes: 
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 We set seven constraints to the optimization problem: the thickness is fixed to be higher than 

12% of the chord length, and the new configuration should present values better than or equal 

to the original RAE2822 airfoil corresponding to the mean and variance of drag, lift and 

pitching momentum coefficients. 

In table 1 we report the lift and drag mean and standard deviation values relative to the real 

RAE2822 airfoil and to the data extrapolated by adaptive DACE with a different number of 

training points. 

Table 1 Comparison of real and extrapolated mean and deviation performances. 

 
RAE2822 Cl mean Cd mean Sigma Cl Sigma Cd %err  σcl %err  σcd Training 

points 

Real 0.677 0.173 2.24 2.00    

RS 0.671 0.179 1.71 1.80 23.7% 10.0% 5 

RS 0.675 0.179 2.28 1.90 1.8% 5.0% 7 

RS 0.674 0.176 2.21 2.00 1.3% <1% 9 

RS 0.675 0.176 2.26 2.00 <1% <1% 11 

 

Since the relative errors are less than 1% using 9 training points, we have decided to use this 

extrapolation method in the optimization, in order to reduce the total number of computations 

required: in this way, for any configuration proposed by the optimization algorithm, the Lift 

and Drag Surfaces in function of Mach number and angle alpha, needed to express the 

objectives of the robust design optimization, are obtained by only 9 CFD simulations instead 

of more than 120. The general strategy to achieve the objective functions for each 

configuration (airfoil shape) by means of the DACE method consists of the following steps: 

 

1. to set the starting data base of 5 training data (evaluated by CFD analysis); 

2. to extrapolated CL, CD, CM, functions by mean of DACE and evaluate the objective 

functions (mean(CL), mean(CD), mean(CM), var(CL), var(CD), var(CM));  

3. to get the location (star-location) of the extrapolated value that is associate with the 

highest error value (Eq. 22); 

4. to evaluate a CFD analysis corresponding to the star-location and update the database; 

5. achieve the objective function trough the database updated and compare the values of 

two consecutive steps; 

6. to stop the process stops if the difference between the objective functions is lower 

than an tolerance ( in  this case 1%);  

 

Taking attention to the preceding scheme it is possible to understand that thanks to the 

adaptive method, in automatic way, we can define the minimum number of training data to 

achieve the best extrapolated function. The more complicate the function is and the more 
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training data we need in order to extrapolate a correct function. Facing any kind of problem 

we don’t know how complex the function is, but through the adaptive method it is possible to 

recognize when it is worth to apply many high fidelity analysis. Using an extrapolating 

method based on quadratic function, for example, the only feasible thing to do would be to set 

a big data base in order to try to get anyway a good Response Surface, but sometimes this 

approach could be a waste of time and very expensive to apply. 

 

6.1 Results 

 

MOGA [30] (Multi Objective Genetic Algorithm) has been used to solve the Multi Objective 

Robust Design Optimization of airfoils in transonic field and modeFrontier is the software 

used to implement MOGA. The problem has been set with 40 individuals per generation and 

16 generations. In Figure 15 the trend of the objective functions during the optimization 

process is shown: it is possible to notice that the desirable trends have been reached. In 

particular it is possible to underline that a remarkable improvement has been achieved 

regarding the standard deviation of drag coefficient. In fact, the peculiarity to face an 

optimization of airfoils in transonic field according to the principles of Robust Design is to be 

able to look for stable solutions but at the same time with as much performances as possible. 

In this case it is evident that even if the RAE2822 was designed to have the highest 

performances achievable corresponding to the operating condition considered, it has been 

possible to find more stable solutions especially concerning the drag coefficient value. This 

result is directly linked to the high variability of the positions of the possible shock waves that 

are present in transonic field as the operating conditions slightly changes. 

Having defined 4 objectives, according the Pareto theory, the final solution is not unique but 

will be a set of solutions, which are the best compromises between the different objectives 

(the Pareto frontier). Fig. 16 compares the configurations that belong to the Pareto frontier 

(mean lift versus mean drag, and variance of lift versus variance of drag). It is possible to 

check that the optimization has been completed with success: in fact note the position of the 

original design (RAE2822) compared with the others solutions.  

Another interesting way to visualise the Pareto Frontier is the use of the Self Organizing 

Maps, in which it is possible to clear the local correlation between the objectives in the Pareto 

Frontier space (Fig. 17). For example, a clear correlation is visualised between the stability 

and the performance of the drag coefficient, especially for the zone where the best mean drag 

coefficient is considered. Different considerations could derive from the observation of the 

correlations between stability and mean performance of the lift coefficient: low mean lift 

performances doesn’t correspond to stable solutions and low performances for lift stability 

correspond to mean values for the lift performance. These results give value to the 

considerations that the better approach to the Robust Design is the use of the Multi Objective 

theory: the final results is not trivial, and the Pareto Frontier contains different physical 

behaviour for the airfoils. 

The importance to have a suitable tool for the visualisation of the results, especially in the 

case of multidimensional approach, is confirmed from Fig. 18, where the Self Organizing 

Maps, are used to visualize the iteration between the design variable v13 and the drag 

coefficient stability, inside the configuration of the Pareto frontier. It is evident the direct 

correlation between variables and objective: high values for the variables correspond to bed 

stability performance, and with low variable values it is possible to observe good drag 

stability performance. It is important to note that variable v13 is a design variable for the 
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upper surface of the airfoil, just where the shock way is present, and where physically the 

correlation with the stable behaviour is well known.  

Using the Pareto Frontier approach for the Multi Objective Robust Design optimisation, it is 

well known that the final solution is not unique, but the algorithm finds the set of the best 

compromises between the different objectives. For choosing the final solution for the design, 

normally a Multi Criteria Decision Making tool has to be used, in order to take the solution 

which is the best compromise not only in the numerical optimization point of view, but for 

the designer ideas too.  

In Fig. 19 we report the comparison of the chosen design obtained by the optimization. We 

choose the best solution for drag coefficient stability. As it is possible to note in fig.19, the 

Drag response surface for alpha and Mach (re-computed by 121 CFD computations to 

validate the results of the optimization), presents a mean value lower and also the standard 

deviation is lower, i.e. the solution have improved the mean performance and also the 

behaviour is more stable. From table 2 it is also possible to note that all the objectives and 

constraints have been respected. 

 

 

 
 

Figure 15: Convergence histories during the optimization phase (original RAE2822 solution 

performances represent by green profile)  
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Figure16: Pareto Frontier representation in comparison with the original RAE2822 solution.  

 

 

 

  

  
 

Figure 17: Visualization of the Pareto Frontier by mean Self Organizing Maps.  
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Figure 18: Visualization of the iteration between the variable v13 with the drag coefficient 

stability.  

 

 
 

 

Figure 19: Comparison between the original RAE2822 geometry and the best for drag 

coefficient stability on the Pareto Frontier (Sol. 1496). On the left geometry comparison, on 

the right drag coefficient comparison surface.  

 

Table 2: Comparison of original RAE and best configuration mean and deviation 

performances. 

 RAE2822 Sol. 1406 

Mean Cl 6.10E-1 6.06E-1 

Mean Cd 1.73E-2 1.61E-2 

Mean Cm -8.88E-2 -8.72E-2 

σσσσ Cl 5.45E-2 5.42E-2 

σσσσ Cd 6.10E-3 4.67E-3 

σσσσ Cm 8.27E-3 7.06E-3 
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