presa, ecc. | pl. ATA

vestire e alloggio, e di legge o testamento

al nutrimento. | gene alimento. | Mante gli alimenti. || -amer

tare. | -ario, ag. * mento o cibo. | cond cibi. | m. At Colui a

| -atore, m. -atrice, muove e fornisce. ||-

Nutrizione. | Alimer Alimentario. || -oso, m. (a

+alim o, non h asfodelo o altro, ch la fame. | (àlimo). *

| -urgia, f. *ξργον alimentari.

+alimònia, f per sua colpa dal

alinea, m. *A povers

+aliòsso, m. vano i ragazzi. Ta

aliòtico, m. A Basti aliòtide, f. *αλιος

orecchie. S Orecc

aliòtto, m., di so la spalla.

nt. ALIA. Muover l'ali, Svolazzare, A-

tematico ar. Al-Kuarismi che apprese dagl'Indiani l'abbaco e l'insegnò in Spagna circa l'820). Aritme-

tica col sistema arabo. | Pratica dell'aritmetica.

ali are, nt. ALIA. Muover l'ali, degl' in-leggiare. Volare. | Aggirarsi, degl' in-

namorati, Ronzare. | +-eggiare, nt., frq. Aliare;

àlias, av. I. Altrimenti, Con altro nome. | In altro

Allbi, (l. Altrove). m. M. Dichiarazione di essersi

algoso, v. sotto algo. | +alia, v. ala.

Andare errando.

messo il delitto.

tempo, Già, Ex, Quondamo.

alicòrno, m. Liocorno, ani-

edicamento fatto col dente o

icula, f. *ALĬCŬLA. 47. Tu-

te le spalle usata dai Romani.

dada, f. *ar. AL IDADA.

Regolo mobile

rnato nel centro d'uno stru-

o fatto per misurare gli

: Dioptra, Traguardo.

l corno dell'unicorno.

algóre

Alicula.

algore, m. *ALGOR- ORIS. Freddo grande. | Sta-+algorişmo, -itmo, m. *sp. ALGUARISMO cifra arabica (dal ma-

trovato in luogo diverso da quello in cui fu com-

alicante, m. Squisito vino spagnolo, dal luo-

alice, f. *HALEC -ĒCIS. Acciuga. || -etta, m. dm.

alinada am & . - V ...

La nozione di algoritmo

Eugenio G. Omodeo

- Università di Trieste -

Trieste, 04/10/2022

Computabilità = Teoria delle funzioni ricorsive

Certo, se la funzione ricorsiva generale è l'equivalente formale della computabilità effettiva, la sua formulazione può svolgere un ruolo nella storia della matematica combinatoria secondo solo a quello della formulazione del concetto di numero naturale.

(Emil L. Post, 1944)

(Emil Leon Post, 1897–1954)

Etimologia del vocabolo "algoritmo"

L'origine di questa parola si ricollega al nome del grande matematico arabo Muhammad ibn-Mūsà vissuto alla corte di Baghdad nei primi decenni del secolo IX. Nativo di Hwarizm, regione dell'Asia centrale, egli fu soprattutto noto come al-Huwarīzmī, nome latinizzato poi in Algorismus. Il termine finí per significare ogni procedimento di calcolo puramente schematico.

Esempi basilari

Oltre ai procedimenti per effettuare le operazioni di somma, sottrazione, moltiplicazione, divisione, innumerevoli altri ne vengono escogitati di continuo,

sia NUMERICI che SIMBOLICI

Qualche esempio:

- calcolo del resto di una divisione fra numeri interi
- ► calcolo del massimo comun divisore e minimo comune multiplo
- estrazione della radice quadrata (o cubica) di un numero
- ▶ individuazione dell' N-esimo numero primo
- \blacktriangleright determinazione dell'*N*-esima cifra di π
- confronto alfabetico fra due parole
- operazioni su polinomi

Un esempio classico: l'algoritmo di Euclide – l

Problema: Cerchiamo il massimo comun divisore di due numeri (naturali, di cui almeno uno diverso da 0).

Procedimento risolutivo: Indichiamo con X ed Y i due operandi

- ▶ Se Y = 0, il M.C.D. cercato è X;
- ▶ altrimenti si calcoli il resto della divisione di X per Y, ossia quel numero r tale che per un opportuno q (detto quoziente), valga che

$$X = q \cdot Y + r \quad \text{con } 0 \leqslant r < Y$$

 Riduciamo il problema originario a quello di cercare il M.C.D. tra Y ed r

Un esempio classico: l'algoritmo di Euclide – II

Esempio: Prendiamo come dati d'ingresso: X = 132 ed Y = 252

X	Y	
132	252	
252	132	
132	120	
120	12	
12	0	\checkmark

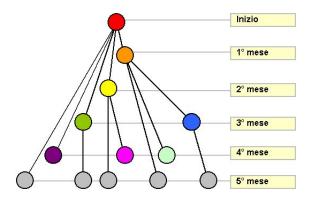
Altro esempio storico: progressione di Fibonacci – l

II "maestro d'abaco" Leonardo Fibonacci (Pisa, 1175-1235 ca.) si pose il seguente

Problema: Un tale mise una coppia di conigli in un luogo completamente circondato da un muro, per scoprire quante coppie di conigli discendessero da questa in un anno: per natura le coppie di conigli generano ogni mese un'altra coppia e cominciano a procreare a partire dal secondo mese dalla nascita.

Vedi http://utenti.guipo.it/base5/fibonacci/fibonacci.htm

Altro esempio storico: progressione di Fibonacci – II



Progressione: (1); 1, 2, 3, 5, 8, 13; 21, 34, 55, 89, 144, 233, 377;

Altro esempio storico: progressione di Fibonacci - III

Procedimento risolutivo: Indichiamo con N il numero dei mesi (per es. N = 12)

- ▶ Se N = 0 oppure N = 1, il numero di coppie è 1 ;
- ▶ altrimenti, riduciamo il problema a due problemi analoghi, riguardanti N − 1 ed N − 2 rispettivamente;
- una volta risolti separatamente i due sotto-problemi, si sommino i due risultati per ottenere la soluzione del problema originario

Software e programmazione

I linguaggi in cui si realizza il software possono essere

- Turing-completi
- di nicchia, e.g.:
 - grammatiche, automi
 - linguaggi per basi di dati
 - linguaggi di markup

Software e programmazione

I linguaggi in cui si realizza il software possono essere

- Turing-completi
- di nicchia, e.g.:
 - grammatiche, automi
 - linguaggi per basi di dati
 - linguaggi di markup

Altra classificazione:

- linguaggi di rapida prototipazione
- linguaggi di *produzione*
 - e.g., orientati agli oggetti

• Per semplicità, supponiamo che la base *b* soddisfi

$$1 < b \leqslant 36$$
.

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

• Per semplicità, supponiamo che la base *b* soddisfi

$$1 < b \leqslant 36$$
.

 Per rappresentare le cifre, ci serviremo di questa sequenza di caratteri:

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

• Cominciare ponendo numerale = ""

• Per semplicità, supponiamo che la base *b* soddisfi

$$1 < b \leqslant 36$$
.

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,

• Per semplicità, supponiamo che la base b soddisfi

$$1 < b \leqslant 36$$
.

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,
 - ightharpoonup calcolare quoz = N/b;

• Per semplicità, supponiamo che la base b soddisfi

$$1 < b \leqslant 36$$
.

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,
 - ▶ calcolare quoz = N/b; res = $N (N/b) \cdot b$;

• Per semplicità, supponiamo che la base b soddisfi

$$1 < b \leqslant 36$$
.

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,
 - ► calcolare quoz = N/b; res = $N (N/b) \cdot b$;
 - inserire cifre[res] all'inizio di numerale;

• Per semplicità, supponiamo che la base b soddisfi

$$1 < b \le 36$$
.

 Per rappresentare le cifre, ci serviremo di questa sequenza di caratteri:

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,
 - ► calcolare quoz = N/b; res = $N (N/b) \cdot b$;
 - inserire cifre[res] all'inizio di numerale;

fintantoché $N \neq 0$.

• Per semplicità, supponiamo che la base b soddisfi

$$1 < b \le 36$$
.

 Per rappresentare le cifre, ci serviremo di questa sequenza di caratteri:

'0'	'1'	 '9'	'a'	'b'	 'z'
0	1	 9	10	11	 35

- Cominciare ponendo numerale = ""
- Poi, ripetutamente,
 - ► calcolare quoz = N/b; res = $N (N/b) \cdot b$;
 - inserire cifre[res] all'inizio di numerale;

fintantoché $N \neq 0$.

• Risultato: La seq. di caratteri assemblata in numerale.

