



# A.A. 2022-2023

# Corso di Laurea Magistrale in GEOSCIENZE

# Metodi Elettromagnetici in Geofisica (6 CFU) - MEMAG -

# **<u>UD-1</u>: Introduzione**

## Docente: Emanuele Forte

Tel. 040/5582271-2274

e-mail: eforte@units.it



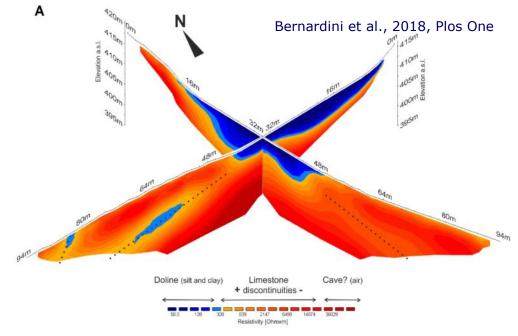
# What is Geophysics?

"*Geophysics* is the application of physical principles and methods to problems in Earth Sciences"

and/or

"Geophysics is a branch of experimental physics dealing with the earth" (SEG)

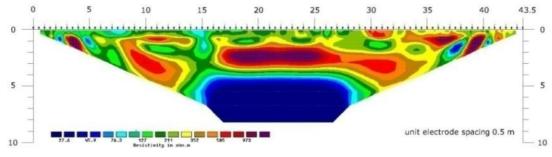
We describe "Methods" because Applied geophysics deals with **specific techniques and instruments** developed for different applications and based on peculiar **physical parameters (properties)** of the subsurface.


To select the **most appropriate geophysical method** to investigate a certain task/problem many integrated aspects need to be considered:

> What are the relevant *physical parameters*? (density, EM velocity, electrical resistivity, ...)

- > What *spatial scales* are relevant?
- > What about the achievable resolution (i.e. level of detail)
- > What are the *field conditions* and *noise* level? (e.g. urban, offshore, ...)
- > Which *acquisition geometries* are optimal? (e.g. 1D vs 2D vs 3D)
- ➢ Is there useful *a priori information*?
- ➢ Is there a *cheaper* alternative?




Unfortunately, the answer to these questions will depend strongly on the particular task/problem and it is strictly site-dependent!



A detailed analysis is mandatory in order to asses the actual applicability of a method in a specific geological context.

Direct extrapolations can be very dangerous!

Collepino Spring Wenner array inverse model resistivity section



Ercoli et al., 2012, Journal of Applied Geophysics

#### UD1



#### Why electromagnetic methods?

#### **Rock & Mineral Resistivities**

- · Largest range of values for all physical properties.
- Native Silver = 1.6 x 10<sup>-8</sup> Ohm-m (Least Resistive)
- Pure Sulphur = 10<sup>16</sup> Ohm-m (Most Resistive)

| Table 12.1 Resistivities of s | ome rocks and minerals | Minerals and ores<br>silver 1.6 × 10                   |                                  |  |  |  |  |  |
|-------------------------------|------------------------|--------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Rocks, minerals, ores         | Resistivity (ohm-m)    | graphite, massive ore                                  | 10-4-10-3                        |  |  |  |  |  |
| Sediments                     |                        | galena (PbS)                                           | 10-3-102                         |  |  |  |  |  |
| chalk                         | 50-150*                | magnetite ore                                          | 1-105                            |  |  |  |  |  |
|                               |                        | sphalerite (ZnS)                                       | 10 <sup>3</sup> -10 <sup>6</sup> |  |  |  |  |  |
| clay                          | 1-100                  | pyrite                                                 | 1 × 100                          |  |  |  |  |  |
| gravel                        | 100-5000               | chalcopyrite                                           | $1 \times 10^{-5} - 0.3$         |  |  |  |  |  |
| limestone                     | 50-10 <sup>2</sup>     | quartz                                                 | 1010-2×1014                      |  |  |  |  |  |
| marl                          | 1-100                  | rock salt                                              | 10-1013                          |  |  |  |  |  |
| quartzite                     | 10-10 <sup>8</sup>     |                                                        |                                  |  |  |  |  |  |
| shale                         | 10-1000                | Waters and effect of water an                          | d salt content                   |  |  |  |  |  |
| sand                          | 500-5000               | pure water                                             | $1 \times 10^{6}$                |  |  |  |  |  |
| sandstone                     | 1-10 <sup>8</sup>      | natural waters                                         | 1-103                            |  |  |  |  |  |
|                               |                        | sea water                                              | 0.2                              |  |  |  |  |  |
| gneous and metamorphic        | rocks                  | 20% salt                                               | 5 × 10-2                         |  |  |  |  |  |
| basalt                        | 10-107                 | granite, 0% water                                      | 1010                             |  |  |  |  |  |
| gabbro                        | 1000-10 <sup>6</sup>   | granite, 0.19% water                                   | $1 \times 10^{6}$                |  |  |  |  |  |
| granite                       | 100-106                | granite, 0.31% water                                   | $4 \times 10^{3}$                |  |  |  |  |  |
| marble                        | 100-10 <sup>8</sup>    |                                                        |                                  |  |  |  |  |  |
| schist                        | 10-104                 | *Values or ranges, which have come from several source |                                  |  |  |  |  |  |
| slate                         | 100-107                | are only approximate.                                  |                                  |  |  |  |  |  |

#### Table 1.1 Geophysical methods and their main applications

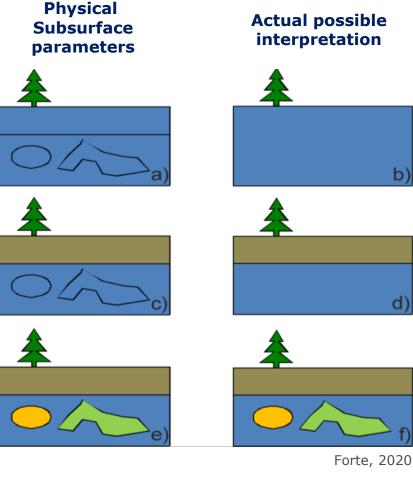
| Geophysical                           | Chapter | hapter Dependent physical Applications (se |   |   |   |   | ee key | belo | w) |   |   |    |
|---------------------------------------|---------|--------------------------------------------|---|---|---|---|--------|------|----|---|---|----|
| method                                | number  | property                                   | 1 | 2 | 3 | 4 | 5      | 6    | 7  | 8 | 9 | 10 |
| Gravity                               | 2       | Density                                    | Р | Р | s | s | s      | s    | !  | ! | s | !  |
| Magnetic                              | 3       | Susceptibility                             | Р | Р | Р | s | !      | m    | !  | Р | Р | !  |
| Seismic refraction                    | 4,5     | Elastic moduli; density                    | Р | Р | m | Р | s      | S    | !  | ! | ! | !  |
| Seismic reflection                    | 4.6     | Elastic moduli: density                    | Р | Р | m | s | s      | m    | 1  | 1 | 1 | 1  |
| Resistivity                           | 7       | Resistivity                                | m | m | Р | Р | Р      | Р    | Р  | S | Р | m  |
| Spontaneous potential                 | 8       | Potential differences                      | ! | ! | Р | m | Р      | m    | m  | m | ! | !  |
| Induced polarization                  | 9       | Resistivity: capacitance                   | m | m | Р | m | s      | m    | m  | m | m | m  |
| Electromagnetic (EM)                  | 10      | Conductance; inductance                    | s | Р | Р | Р | Р      | Р    | Р  | Р | Р | m  |
| EM-VLF                                | 11      | Conductance: inductance                    | m | m | Р | m | S      | S    | S  | m | m | 1  |
| EM – ground                           | 12      | Permitivity; conductivity                  | ! | ! | m | Р | Р      | Р    | s  | Р | Р | Р  |
| penetrating radar<br>Magneto-telluric | 11      | Resistivity                                | s | Р | Р | m | m      | !    | !  | ! | ! | !  |

 $\mathbf{P}$  = primary method; s = secondary method; m = may be used but not necessarily the best approach, or has not been developed for this application; (!) = unsuitable

| Rock type                       | Resistivity (Ωm)       |  |  |  |  |
|---------------------------------|------------------------|--|--|--|--|
| Clay and marl                   | 1–67                   |  |  |  |  |
| Top soil                        | 67–100                 |  |  |  |  |
| Clayey soil                     | 100-133                |  |  |  |  |
| Sandy soil                      | 670-1,330              |  |  |  |  |
| Limestone                       | 67–1,000               |  |  |  |  |
| Lignite                         | 9–200                  |  |  |  |  |
| Sandstone                       | 33-6,700               |  |  |  |  |
| Sand and gravel                 | 100-180                |  |  |  |  |
| Schist                          | 10–1,000               |  |  |  |  |
| Granite                         | 25-1,500               |  |  |  |  |
| Basalt                          | $10^3 - 10^6$          |  |  |  |  |
| Quartzite                       | $10^2 - 2 \times 10^8$ |  |  |  |  |
| Surface water (in igneous rock) | 30–500                 |  |  |  |  |
| Sea water                       | 0.20                   |  |  |  |  |
| Saline water 3 %                | 0.15                   |  |  |  |  |
| Saline water 20 %               | 0.05                   |  |  |  |  |
| Groundwater (in igneous rock)   | 30-150                 |  |  |  |  |
|                                 | Telford et al., 1976   |  |  |  |  |

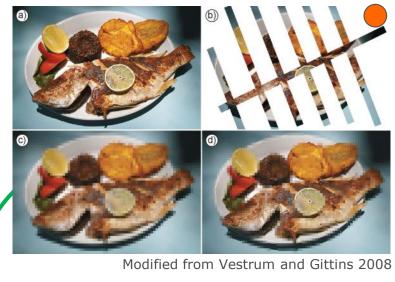
# From a large **resistivity** contrast

#### → a wide applicability

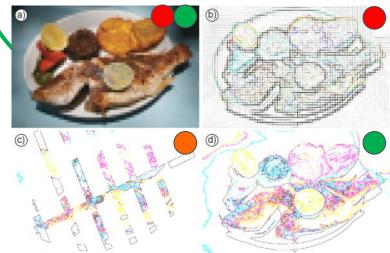

#### Applications

- 1 Hydrocarbon exploration (coal, gas, oil)
- 2 Regional geological studies (over areas of 100s of km<sup>2</sup>)
- 3 Exploration/development of mineral deposits
- 4 Engineering site investigations
- 5 Hydrogeological investigations
- 6 Detection of sub-surface cavities
- 7 Mapping of leachate and contaminant plumes
- 8 Location and definition of buried metallic objects
- 9 Archaeogeophysics
- 10 Forensic geophysics

Telford et al., 2004



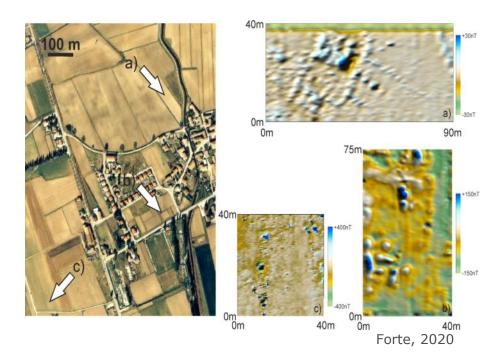

# Is it a method suitable? ... It depends!



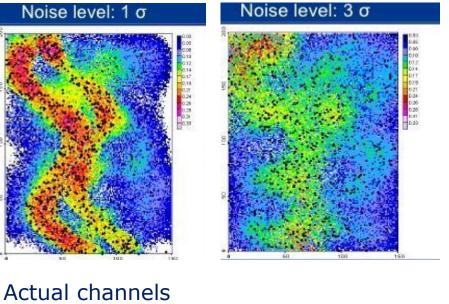

#### By the geophysical contrast (anomaly)

### By data density, resolution, geometry




#### By the applied processing and its parameters




Modified from Vestrum and Gittins 2008 Forte, 2020 MEMAG A.A. 2022-2023 5



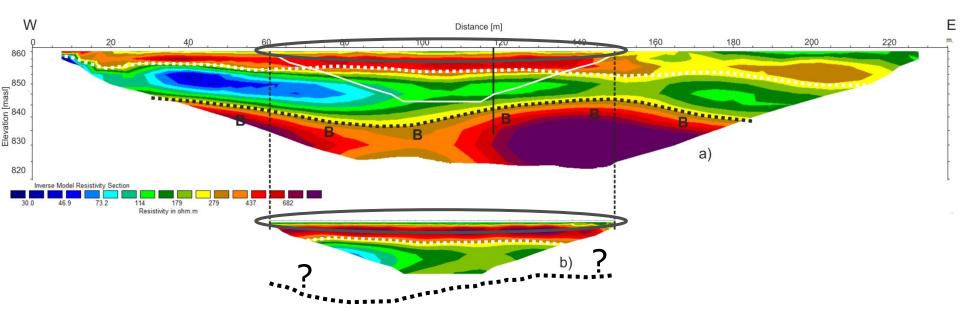
# Is it a method suitable? ... It depends!



By the site characteristics/conditions



# Signal to noise ratio (S/N)


Demyanov et al., 2018, Mathematical Geosciences

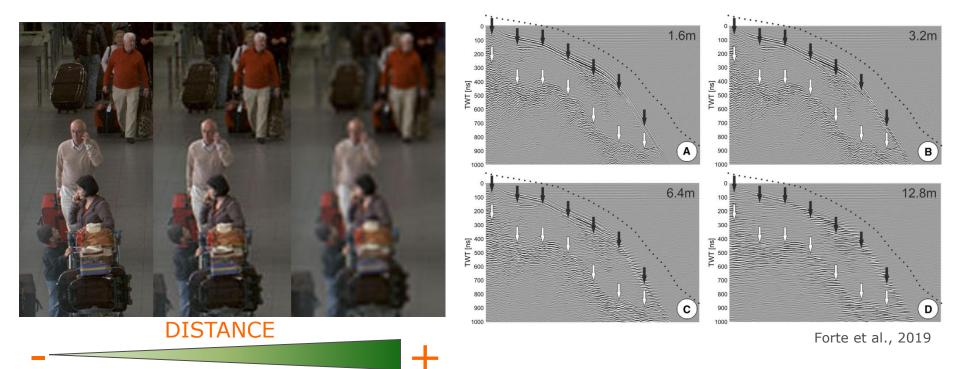


UD1

#### What about scales?

The same geophysical method can be adapted (up to a point) to different scales, but...




**All the parameters** of the experiments (i.e. of geophysical surveys) have to be tailored on the target:

For instance, just by increasing the number of measurements, we cannot assure an actual increasing of the resolution or imaging. Moreover, just by adopting a more sophisticated (... and longer, more expensive) algorithm, we cannot assure better results.



#### What about resolution?

# Keeping constant all the other parameters, the resolution always decreases for increasing penetration depths (i.e. distance)!



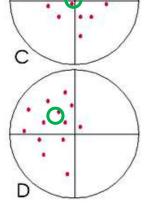
The same occurs when sampling (spatial and or temporal) and frequencies decrease

MEMAG A.A. 2022-2023 8

UD1



## What about data **accuracy** and **precision**?




#### Precision: how close the measured values are to each other → A,B more PRECISE than C,D.

#### Accuracy: how measurements are close to the true value → A,C more ACCURATE than B,D.

Precision and Accuracy depend by the instrument you are measuring with.

*The precision is related to the repetiveness of a measure The degree of accuracy is half a unit each side of the unit of measure* 



Q

В

ATTENTION: When we measure something several times and all values are close, they may all be wrong if there is a Bias  $\rightarrow$  systematic coherent error/noise

MOREOVER: in geophysics often we don't know the true value  $\rightarrow$  How to estimate the data accuracy? MEMAG A.A. 2022-2023 9



# UD1

#### **Errors and Noises**

*Lest men suspect your tale untrue, keep probability in view, J. Gay* 

#### What is Noise?

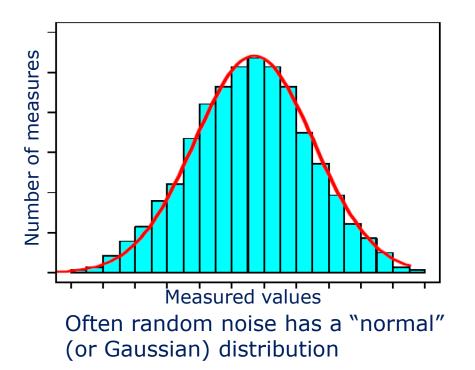
As geophysicists, the data at our disposal will always contain some features that we will not bother to explain. If we accepted our data as being absolutely precise and reproducible, then no model whose response disagreed with the observations even to the slightest degree could be correct. But **we don't believe that our data are exact and exactly reproducible**. And further, because we cannot calculate the exact response of our Earth models (because we cannot afford to put all the physics on the computer) and because we have only approximate models anyway (we cannot use an infinite number of parameters), there are likely to be deterministic aspects of the data that we cannot or do not want to explain.

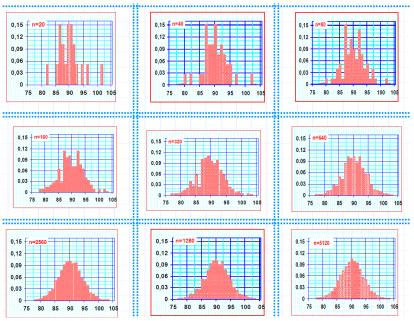
Scales and Snieder, 1998, Geophysics

#### Therefore, "NOISE" is the undesirable part of data that does not give any information. The information is instead often referred as "SIGNAL" or simply "DATA". This concept is strictly related with the concept of measurement

This concept is strictly related with the concept of measurement ERRORS, considering  $\varepsilon = x - x_m$ 

Sometimes, in geophysics, some parts of the recorded SIGNAL are no longer used to obtain information of the subsurface and are thus considered as noise (e.g. spontaneous – self - electric potentials in active electrical methods or surface seismic waves – Ground roll – in reflection seismics).





#### **Random noises**

Random (or incoherent) noises is due to not controllable and not unidirectional (i.e. with a null mean value) errors within a series of measurements. Such a noise is responsible of the variability of the measures around a mean value with constant experimental conditions.



Subg et al., 2015 - AEU Sperimentally...



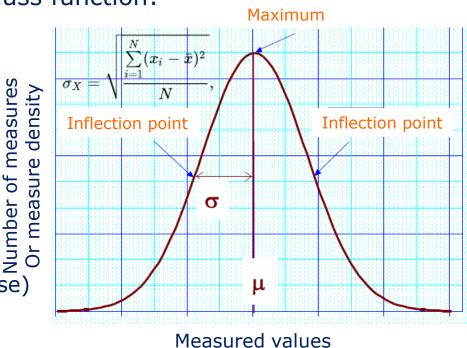




#### **Random noises**

Therefore if we consider a normal distribution of the errors we can made statistical calculations on it e.g. the Gauss function:

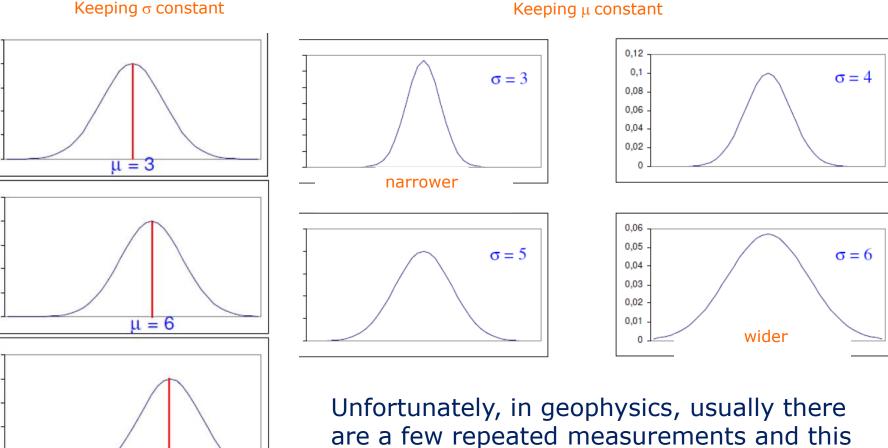
$$\mathsf{F}(\mathsf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$


- $\sigma$  Is the **standard deviation**
- $\mu$  Is the **mean** of all the measured values

We remark that the random errors (or noise)

 $\epsilon = x - \mu$  have a behavior such that:

- Smaller errors are more frequent than large ones
- Positive and negative errors have (statistically) the same frequency.
- By increasing the total number of measurements the curve will be closer to the Gaussian function.








## **Errors and Noises Random noises**

 $\mu = 9$ 



Keeping  $\mu$  constant

statistically approach is no longer applicable. → So the **STACKING** strategy is often adopted.



#### **Random noises**

Simpler **stacking** is just the **arithmetic mean** of all the repeated measurements:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{x_{1+} x_{2+} \dots x_N}{N}$$

The deviation is the difference between the i-th measure and the mean:

$$d_i = \bar{x} - x_i$$

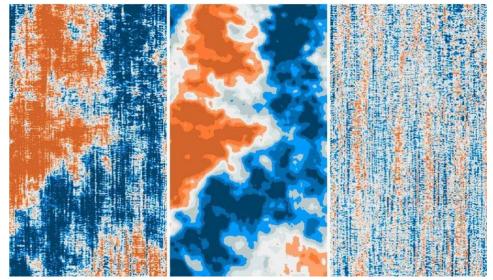
An estimate of the reliability (quality) of measurements is given by the **standard deviation**:

$$\sigma_{x} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (d_{i})^{2}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$
 Variance  $\sigma_{x}^{2} = \frac{1}{N} \sum_{i=1}^{N} (d_{i})^{2}$ 

By increasing the number of stacked values (N) it is possible to increase the Signalto-Noise ratio (only if the noise is random!) by a factor:

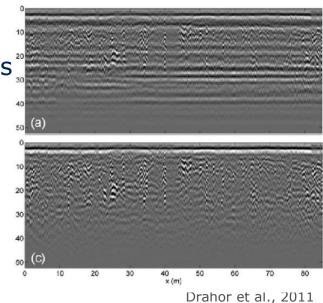
 $S/Nincrement = \sqrt{N}$ 

Weighted staking can give better results when Noise is somehow correlated. Weighting factor should be proportional to the signal amplitude divided by the noise variance  $\sigma^2$ MEMAG A.A. 2022-2023 14




**Coherent noise** is any noise component which is somehow predictable and/or repetitive

It can be coherent in terms of:


- 1) Time repetitiveness
- 2) Spatial and geometrical repetitiveness
- 3) Spectral repetitiveness
- 4) Magnitude and other attributes
- 5) Physical repetitiveness (e.g. due to a peculiar phenomenon)

On the base of one or more of such criteria, coherent noises can be removed/attenuated



Original data

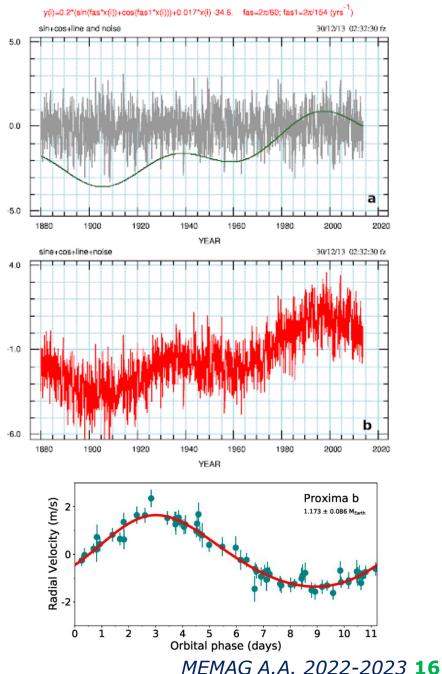
Filtered data extracted C and R noise MEMAG A.A. 2022-2023 15





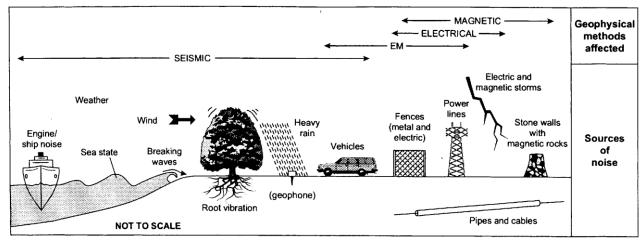


In geophysics very often more than the uncertainties of a measure the noise is crucial.


function, noise (°C

nodel data

# Stacking of data — the notion that averaging over repeated


realizations of an experiment (stacking) reduces noise (compared to signal) presupposes that the noise in the different experiments is uncorrelated because only then do we get the desired noise-suppression. The criterion here is that: **the correlation in the noise is zero** for the different repeated measurements.

Unfortunately, not always noise is actually separable from the signal. Moreover, often we cannot be sure which are actually the noise components within a "noisy" signal.





Noise types and characteristics depend by the geophysical method applied, i.e. by the physical parameters sampled.

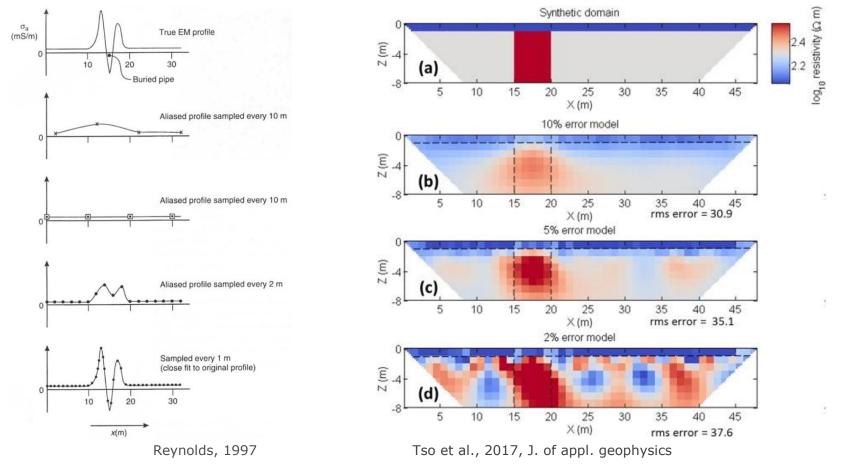


Keep in mind that: 1) N(x,y,z,t,...)

Reynolds, 2011

Figure 1.10 Schematic illustrating some common sources of geophysical noise

- 2) There are "natural" noises and other due to human activities
- 3) Noises can be caused by the measure equipment
- 4) Noises can be inserted in the dataset during processing/inversion steps


#### Special types of "noises" are:

- Interference (i.e. interaction between different signals or between signal with noise)
- *Bias* (related to direct current DC component shifting the signal)
- *Clutter* (related to unwanted echoes especially in GPR systems)



### Data sampling

How many samples? It depends by the objectives of the survey... and often is unpredictable!



UD1



#### **Data sampling**

Geophysical data are always digitized, i.e. discretized during the acquisition process. Data exist only at fixed time and space discrete intervals  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$ ,  $\Delta t$ ,... spaced by constant or variable values

Therefore, sampling is an irreversible process reducing analog signals, which contain an infinite number of values, into smaller and numerically manageable discrete series (Proakis and Manolakis 2006). However, such procedure causes an inevitable and unrecoverable loss of information between sampled values, which prevents the exact reconstruction of the input analog signal from the recorded discrete series and can cause significant signal distortions if the sampling is not properly set.

Sampling can be define as a function of time, space or other variables.

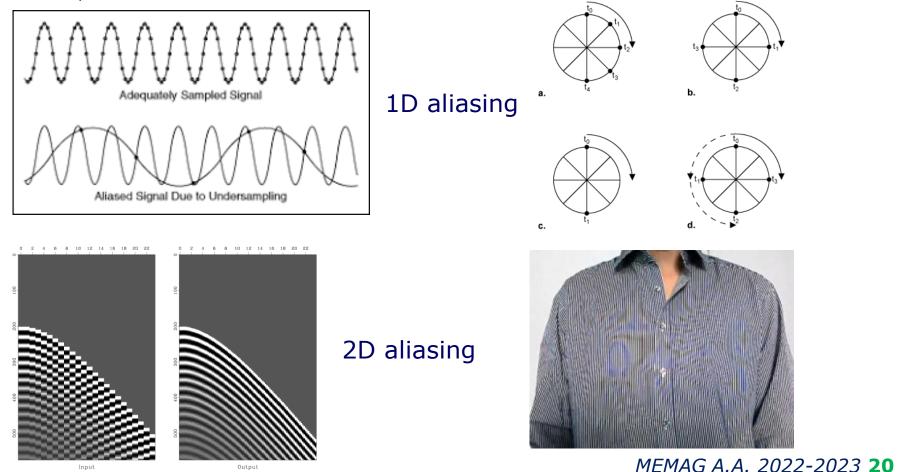
At the base there are the sampling theorems (Nyquist-Shannon): Considering time sampling at constant  $\Delta t$  intervals and  $T=n\Delta t$ 

The maximum frequency (a.k.a. Nyquist freq.) that can be correctly reproduced is  $f_{max} = f_N = \frac{1}{2\Delta t} = \frac{n}{2T}$  equal to

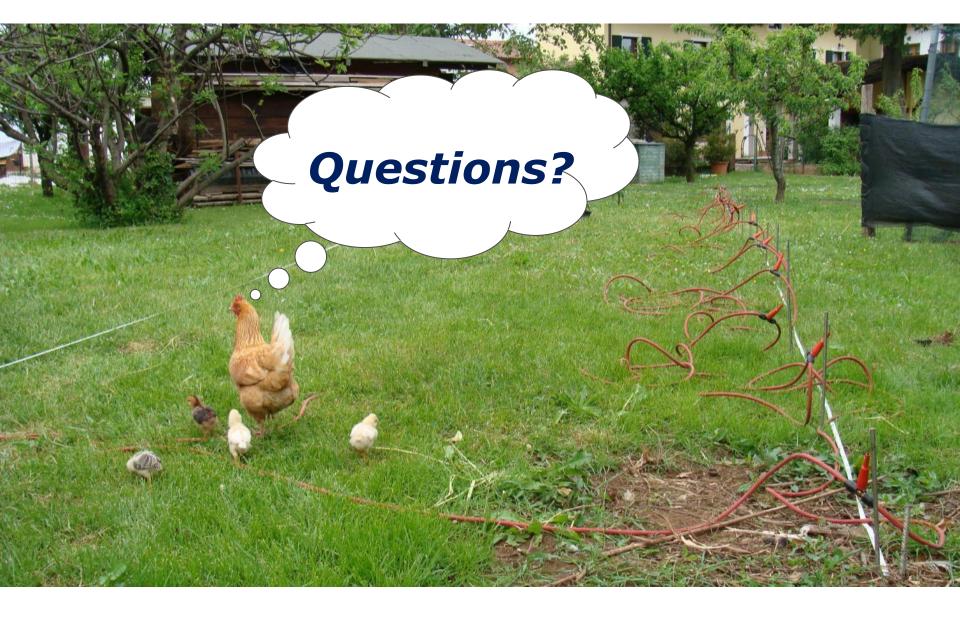
The frequency resolution is equal to

The minimum frequency that can be correctly reproduced is equal to

$$\Delta f = \frac{1}{T} = \frac{1}{n\Delta t} = \frac{f_s}{n} \quad \text{Where} \quad f_s = \frac{1}{\Delta t}$$


$$f_{min} = \frac{2}{n\Delta t} = \frac{2}{T}$$




### UD1

#### **Data sampling**

Outside from these limits spurious and erroneous information can arise  $\rightarrow$  ALIASING Different types of aliasing can occur, related to frequency, space, kinematic or dynamic phenomena,...







MEMAG A.A. 2022-2023 **21** 

UD1