Observational Experiments

1 What are they?

An observational experiment is an experiment that students perform when they are investigating a new phenomenon. Thus, they do not make predictions or have expectations about its outcome. Students need to collect data, analyze them and find a pattern in the data. They then need to explain the reasons for the pattern (if applicable), and/or construct a qualitative or quantitative relationship.

2 Why do you want to use them?

Observational experiments have the following desirable features:

- Concrete experiences These experiments provide concrete experiences as part of the learning cycle.
- Open-mindedness Students learn to learn to approach data without knowing whether they are right or wrong.
- Decision-making

Students learn to make decisions about representing data, considering outliers, deciding what pattern they want to look for.

- Epistemic cognition Students learn to deal with situations when there is no right answer. They learn how to choose a productive way to investigate complex phenomena.
- Real data Students learn to deal with the complexities of real data.

3 How and where do you use them?

Observational experiments can be used in the following contexts:

- In a lecture while developing ideas in a new topic. The instructor performs the experiment, students record data, decide what variables are important, and try to find patterns in the data by plotting graphs.
- In the lecture, laboratory or recitation/workshop. The data from such experiments (performed by someone else) are provided. Students analyze them and look for patterns.
- In the lecture, laboratory or recitation/workshop. The data and analysis are provided. Students construct explanations for the trends in the data.

- In the laboratory. Students perform these experiments in the lab (before learning about them in lecture), collect and analyze data, find patterns, and construct explanations or mathematical relationships to describe the patterns.
- As a homework problem. Data for an experiment are provided and students are asked to analyze the data and find patterns in them.

4 What are some types

Observational experiments can be used to introduce any new area of physics. They can be either qualitative or quantitative. As described in the previous section, some or all parts of an observational experiment can be used for example, students can collect and analyze data, and/or find patterns, and/or construct explanations.

5 How do you score them?

We present an example of an observational experiment, a model solution and an example of student work. After this we present the rubrics we use, the scores on various abilities, and reasons as to why particular scores were given.

Sample design task:

You have a sealed hollow metal sphere with an unknown gas inside. You also have a thermometer, a pressure gauge, a hot plate, some ice and a container containing water. Design an experiment to determine if there is a relationship between pressure and temperature of the unknown gas when its volume is kept constant.

The metal sphere can be submerged in the container of water such that the water provides a temperature bath for the sphere and its contents. Use the ice and the hot plate to construct baths at different temperatures.

Write in your report :

- a) Describe your experimental design with a labeled diagram. Include how will you vary and measure the pressure and temperature.
- b) What assumptions are you making in your design?
- c) Mention what the independent and dependent variables are.
- d) What are sources of experimental uncertainty and how can you minimize them?
- e) Record your observations in an appropriate format. Make a table and a graph if necessary.
- f) Use Excel to analyze and find a best-fit function for your data.
- g) What pattern did you find from your observations? Write a verbal description and a mathematical relationship.

- (h) Describe what happens to the gas microscopically as the water in the bath becomes warmer.
- (i) Based on the relationship you developed in g), can you consider the gas in the sphere as an ideal gas? Explain why or why not.
- (j) Draw a graphical representation of the process using the P and T, P and V and V and T axes as the water in the bath becomes warmer.
- (k) Use this relationship to predict the value of the lowest temperature to which you can cool that this gas.

Model solution:

We will immerse the sealed metal sphere in a bath of ice. We will then slowly heat the bath using a hot plate. We will measure the temperature of the bath using a thermometer. We will try to ensure conditions of thermal equilibrium between the bath and the air inside the sphere: we stir the bath, we wait before measuring the temperature, the sphere is made of metal which is a good conductor. Thus we will assume that the temperature of the air in the sealed sphere is the same as the thermometer reading. The pressure of air is measured by the gauge attached to the sealed sphere.

Our data is shown below. We plot a graph of temperature (independent variable) versus pressure (dependent variable).

We can fit a straight line to the graph. This shows that there is a linear relationship between pressure (in mm of Hg) and temperature (in Celsius).

The graph does not pass through the origin. If we extend the graph towards lower temperatures, we see that it intersects the temperature axis with a negative intercept of ?273 C. At this point, the pressure is zero. From kinetic theory, pressure of a gas is related

Temperatue (° C)	Pressure(mm Hg)
10	750
15	750
20	750
25	750
30	750
35	750
40	750
45	750
50	750
55	750
60	750
65	750
70	750
75	750
80	750
85	750
90	750
95	750

to the speed of the molecules. So, the lowest possible pressure is zero, which means the lowest possible temperature is 273 C.

Sample student work:

Scores using rubrics:

Scientific Ability	0	1	2	3
Is able to design	The experiment	The experiment	The experiment	The experiment
a reliable experi-	does not in-	involves the phe-	investigates the	investigates the
ment that inves-	vestigate the	nomenon but due	phenomenon and	phenomenon and
tigates the phe-	phenomenon.	to the nature of	it is likely the	there is a high
nomenon.		the design it is	data will contain	likelihood the
		likely the data	interesting pat-	data will con-
		will not contain	terns, but due	tain interesting
		any interesting	to the nature of	patterns. All
		patterns.	the design some	features of the
			features of the	patterns have a
			patterns will not	high likelihood of
			be observable.	being observable.

SCORE: 3. The experiment clearly investigates the phenomenon.

Scientific Ability	0	1	2	3
Is able to de-	The chosen mea-	The chosen mea-	The chosen mea-	The chosen mea-
cide what is to	surements will	surements will	surements will	surements will
be measured and	not produce	produce data	produce data that	produce data
identify indepen-	data that can be	that can be used	can be used to	that can be
dent and depen-	used to achieve	at best to par-	achieve the goals	used to achieve
dent variables.	the goals of the	tially achieve	of the experi-	the goals of the
	experiment.	the goals of the	ment. However,	experiment. In-
		experiment.	independent and	dependent and
			dependent vari-	dependent vari-
			ables are not	ables are clearly
			clearly distin-	distinguished.
			guished.	

SCORE: 3.

Scientific Ability	0	1	2	3
Is able to use	At least one	All chosen mea-	All chosen mea-	All chosen mea-
available equip-	of the chosen	surements can	surements can be	surements can be
ment to make	measurements	be made, but no	made, but the de-	made and all de-
measurements	cannot be made	details are given	tails of how it is	tails of how it is
	with the available	about how it is	done are vague or	done are clearly
	equipment.	done.	incomplete.	provided.

SCORE: 3. The chosen measurements can be made with the given equipment. The diagram and the description clearly mention how and where the measurements are done.

The student mentions where to place the thermometer.

Scientific Ability	0	1	2	3
Is able to describe	No description is	A description is	A description	Clearly describes
what is observed	mentioned.	mentioned but	exists, but it is	what happens in
without trying to		it is incomplete.	mixed up with	the experiments.
explain		Or, most of the	explanations or	
		observations are	other elements	
		mentioned in the	of the experi-	
		context of prior	ment. Or some	
		knowledge.	observations are	
			mentioned in the	
			context of prior	
			knowledge.	

SCORE: 2. The student starts (in part g) describing the pattern found (P proportional to T), but then uses the ideal gas equation (prior knowledge) to elaborate the details.

Scientific Ability	0	1	2	3
Is able to iden-	No attempt is	An attempt is	Some shortcom-	All major short-
tify the shortcom-	made to identify	made to identify	ings are identified	comings of the
ings in an experi-	any shortcomings	shortcomings, but	and some im-	experiment are
mental design and	of the experimen-	they are described	provements are	identified and
suggest improve-	tal design.	vaguely and no	suggested, but	specific sug-
ments.		suggestions for	not all aspects	gestions for
		improvements are	of the design are	improvement are
		made.	considered.	made.

SCORE: 0. No mention is made of shortcomings.

Scientific Ability	0	1	2	3
Is able to con-	No attempt	An attempt is	The relationship	The relationship
struct a math-	is made to	made, but the	represents the	represents the
ematical (if	construct a re-	relationship does	trend but no	trend accurately
applicable) re-	lationship that	not represent the	analysis of how	and completely
lationship that	represents a trend	trend.	well it agrees	and an analysis
represents a trend	in the data.		with the data	of how well it
in data			is included (if	agrees with the
			applicable), or	data is included
			some features of	(if applicable).
			the relationship	
			are missing.	

SCORE: 3.

		-	-	-
Scientific Ability	0	1	2	3
Is able to iden-	No attempt is	An attempt is	Most assumptions	All assumptions
tify the assump-	made to identify	made to identify	are correctly iden-	are correctly
tions made in de-	any assumptions.	assumptions, but	tified.	identified.
vising the expla-		most are missing,		
nation		described vaguely,		
		or incorrect.		

SCORE: 3.

Scientific Ability	0	1	2	3
Is able to iden-	No attempt is	An attempt is	Most experimen-	All experimental
tify sources of ex-	made to identify	made to identify	tal uncertainties	uncertainties
perimental uncer-	experimental	experimental	are correctly iden-	are correctly
tainty	uncertainties.	uncertainties, but	tified.	identified.
		most are missing,		
		described vaguely,		
		or incorrect.		

SCORE: 3.

Scientific Ability	0	1	2	3
Is able to eval-	No attempt is	An attempt is	Most experimen-	All experimental
uate specifically	made to evaluate	made to evaluate	tal uncertainties	uncertainties
how experimental	experimental	experimental	are evaluated	are correctly
uncertainties may	uncertainties.	uncertainties, but	correctly, though	evaluated.
affect the data		most are missing,	a few contain	
		described vaguely,	minor errors,	
		or incorrect.	inconsistencies,	
			or omissions.	

SCORE: 0.

Scientific Ability	0	1	2	3
Is able to min-	No evidence of	Some evidence	Evidence of ef-	Precise data
imize experimen-	any effort to make	of an attempt to	fective data tak-	collection in all
tal uncertainties.	precise measure-	take precise mea-	ing such as multi-	aspects afforded
	ments from video	surements. Most	ple measurements	by the video.
		major sources or	etc. One major	Attention to re-
		uncertainty are	omission or some	ducing all obvious
		ignored or poorly	small oversights	sources of random
		addressed		and systematic
				uncertainty in
				data collection.

SCORE: 1. The student mentions that multiple trials must be done but there is no attempt to do so.

Scientific Ability	0	1	2	3
Is able to record	Data are either	Some important	All important	All important
and represent	absent or incom-	data are absent or	data are present,	data are present,
data in a mean-	prehensible.	incomprehensible.	but recorded in a	organized, and
ingful way			way that requires	recorded clearly.
			some effort to	
			comprehend.	

SCORE: 3.

Scientific Ability	0	1	2	3
Is able to ana-	No attempt is	An attempt is	The analysis is	The analysis is
lyze data appro-	made to analyze	made to analyze	appropriate but it	appropriate, com-
priately	the data.	the data, but	contains minor er-	plete, and correct.
		it is either seri-	rors or omissions.	
		ously flawed or		
		inappropriate.		

SCORE: 2. A straight line is found as the best-fit line to the data but there is no mention of how good a fit the line is to the data (for example, the R-value is missing).

Scientific Ability	0	1	2	3
Is able to com-	Diagrams are	Diagrams are	Diagrams and/or	Diagrams and/or
municate the de-	missing and/or	present but un-	experimental	experimental pro-
tails of an exper-	experimental pro-	clear and/or	procedure are	cedure are clear
imental procedure	cedure is missing	experimental	present but with	and complete.
clearly and com-	or extremely	procedure is	minor omissions	
pletely	vague.	present but im-	or vague details.	
		portant details		
		are missing.		

SCORE: 3.

	11-17-04 Physics Lab
	Lab 9 i Gases pressure gaze sphere w/gas bucket bot plate
	First we will submerge gas sphere bittlet Hol, bucket of ice Watter. Every 5°C we will record the pressure and temperature. " Then we will take the bucket of water and warm it with the hot plate, while at the same time recording the pressure and temperature change of sphere of gas, every 5° the bucket HoO goes tipen. When measuring the temp. of the bucket HoO, keep the thermometer close to sphere of gas to get most accurate reading.
(d	Assumptions: femp. of bucket water is same as sphere
	of gas, Assume thermometer and pressure gage are accurate. Sphere is made of a "good" metal, lit is a good thermoconductor so sphere of gas reaches the same temperature as bucket that
c)	Independent: Temperature Dependent: Pressure
	See attached graphs Sources & Uncertainty- inaccurate measuring teurces (pressure gause & chermometer), and multiple Minimise by using more accurate instruments, and malo

see graph The pattern we observed was that as the temperature increased, the pressure increased gues us the conclusion that this. and plessure are directly femperature proportional PV=nRT Because volume and #of moles (n) and R are constant, we can thus conclude mathematically that P=T, the temp of the bucket that increases, AS h)| so does the temp of the gas sphere thus the gas molecules gain more energy and dherefore move around at a quicker rate. The likelihood of collisions consequently increases as the molecules more around fasters which increases pressure. y Based on g, you can conclude that the gas inside the sphere is not an ideal gas "because the temperature and pressure are not exactly equal. p in bucket gets warmen HaO AS y = 2,8143x + 719,83 $0 = 2,8143 \times +719,83$ -719.83 = × = -255.775859 °C & Lowest temp you could actually lower gas to. 2.8143

<u>T</u> (C)	P (mm Hg)
17	760
22	780
27	790
32	810
37	820
42	835
47	850
52	865
57	880
62	890
67	905
72	920