# **Application Experiments**

## 1 What are they?

An application experiment typically involves solving a practical problem or determining an unknown quantity by performing experiments. Students need to solve these experimental problems using at least two different methods and then compare the results. Often they need to perform additional experiments or make informed estimates to determine some physical quantities.

## 2 Why do you want to use them?

Application experiments have the following desirable features:

- Deal with realistic problems, not idealized. Application experiments are open-ended problems and could be ill-defined. They are more in tune with the kinds of activities practicing scientists pursue.
- Help students connect different ideas To solve a problem students usually need to use more than one idea, often from different physics topics.
- Develop decision-making abilities. Students need to make decisions about practical issues, such as, whether they can ignore a particular force in the problem. They also need to decide which assumptions might work, or fail in the given situation.
- Connection between physics and everyday life Most of the problems have practical applications and all of them use simple apparatus.
- Help students develop divergent thinking All problems require students to design at least two different experiments.
- Help students develop evaluation abilities Students need to explain the discrepancies between the results of two experiments.

# 3 How and where do you use them?

Application experiments are performed by students after an explanation of a phenomenon or a relationship between physical quantities has been well-established. A group of students can discuss possible methods of solving the problem, and decide which methods are more suitable. They perform at least two experiments to solve the task, and then compare the results.

Application experiments can be used in the following contexts:

• In a laboratory.

Students are given an experimental task which they have to solve using ideas and relationships that have been developed earlier.

- As a laboratory practical exam. Students design an experiment to determine an unknown quantity.
- As a video problem.

Some experimental problems have been videotaped (see the task titled "Video Problems"). Students can collect and analyze data from the two experiments in each video and determine an unknown physical quantity. These can be used in a laboratory or as homework assignments.

## 4 How do you score them?

We present an example of an application experiment, a model solution and an example of student work. After this we present the rubrics we use, the scores on various abilities, and reasons as to why particular scores were given.

### Sample design task:

Design at least two independent experiments to determine the coefficient of static friction between your shoe and the sample of carpet/linoleum provided. Equipment: Spring scale, ruler, protractor, carpet or wood surface, tape.

Include in your report the following for each independent experiment:

- a Draw a sketch of your experimental design.
- b Write an outline of the procedure you will use.
- c Decide what assumptions about the objects, interactions, and processes you need to make to solve a problem. How might these assumptions affect the result?
- d Draw a free-body diagram for the shoe. Include an appropriate set of co-ordinate axes. Use the free-body diagram to devise the mathematical procedure to solve the problem.
- e What are the possible sources of experimental uncertainty? How would these affect the result? How could you minimize them?
- f Perform the experiment and record your observations in an appropriate format. What is the outcome of your experiment?
- g When finished with both experiments, compare the two values you obtained for the coefficient of static friction. What are possible reasons for the difference?
- h Suggest specific improvements in the experiments.
- i Decide why this activity was included in the lab. Briefly describe two real life situations in which you need to figure out things similar to this experiment

#### Model solution:

In both methods, we first estimate the maximum value of force of static friction between the shoe and the carpet.

#### Method 1

Place the shoe horizontally on the carpet. Attach the spring scale to the shoe and pull on the scale. The shoe does not move at first. Keep pulling the scale harder till the shoe just begins to slide. The spring scale reading just before the shoe moved is the maximum force of static friction between the surfaces  $F_{f surface-shoe}^{max}$ 



The free-body diagram when the shoe just starts to move:



Applying Newton's 2nd law for the horizontal and vertical components, and use the relation between the normal force and the frictional force:

$$F_f^{max} - F_{scale-shoe} = 0$$
  

$$F_N - mg = 0$$
  

$$F_f^{max} = \mu F_N$$

We get  $\mu = F_{scale-shoe}/mg$ .

We use the scale to measure the mass of the shoe, the spring scale reading gives  $F_{spring-shoe}$ 

#### Assumptions:

The shoe does not rotate when it is pulled – we are treating it as a point particle. If this assumption did not hold, and the she actually rotated, the force due to the scale on the shoe is not perfectly horizontal. The shoe will begin sliding only when the horizontal force , which is a component of of the scale reading is equal to  $F_f^{max}$ . If we use the scale reading as  $F_f^{max}$ , our value of  $\mu$  will be greater.

Experimental uncertainties:

According to the weakest link rule, the uncertainty in the mass measuring scale is  $\pm 0.5g$ and that in the spring scale is  $\pm 0.05N$ . There is also an uncertainty in deciding the point at which the scale reading must be noted. The spring scale uncertainty is much larger. To minimize the uncertainty we repeated the experiment four times.

$$m = 320g \pm 0.5g = 0.32kg \pm 0.0005kg$$

$$Trial1: F_{scale-shoe} = 1.7N$$
  

$$Trial2: F_{scale-shoe} = 1.6N$$
  

$$Trial3: F_{scale-shoe} = 1.7N$$
  

$$Trial4: F_{scale-shoe} = 1.8N$$

Average  $F_{scale-shoe} = 1.7 \pm 0.05 N = 3\%$ . So the error in  $\mu$  will be  $\pm 3\%$ .

$$\mu = 1.7N/((0.32kg)(9.8m/s^2)) = 0.558 \pm 0.016$$

#### Method 2

Place the shoe on the carpet and start tilting the carpet. The shoe starts to slide down the carpet at a particular angle. We use the angle at which the shoe just starts sliding to determine  $\mu$ . We show a schematic picture of the experimental set-up and a free body diagram for the shoe.

Assumptions:

The shoe slides straight down and does not rotate. Also we assume that as the shoe slides down, the carpet does not get press. If it did then  $\mu$  will not be uniform over its surface. We cannot determine apriori if our value of  $\mu$  will be greater or smaller if this assumption were not valid.

$$F_N = mg \cos \theta$$
  

$$F_f^{max} = \mu F_N = mg \sin \theta$$
  

$$\mu = tan\theta$$

We measure the angle between the horizontal table and the tilted carpet using the protractor. The main experimental uncertainty is from the protractor reading. The protractor



has a least count of 1°, so our uncertainty in angle is  $\pm 0.05^{\circ}$ . We determined the angle at which the shoe just starts sliding four times.

| Trial 1: | $\theta$ | = | $24^{\circ}$ |
|----------|----------|---|--------------|
| Trial 2: | $\theta$ | = | $27^{\circ}$ |
| Trial 3: | $\theta$ | = | $26^{\circ}$ |
| Trial 4: | $\theta$ | = | $27^{\circ}$ |

Average angle at which the carpet slides is  $26^{\circ} \pm 0.05^{\circ}$ .  $\mu = tan(26^{\circ}) = 0.48 \pm 0.011$ The first method gives  $\mu = 0.558 \pm 0.016$  and the second method gives  $\mu = 0.48 \pm 0.011$ . The percentage difference is 13%. One reason for the difference could be that the carpet was not a smooth and uniform surface. As the shoe moved, the carpet got "squashed" in

certain places. This could have changed  $\mu$ . Shortcomings of the experiment:

The procedure assumed that the two surfaces are uniform. It would help if we attached the carpet to a hard surface such as a piece of wood. Sample student work:



these assumptions could affect the results wive might find friction to be more than it is ble we are neglecting air resistance fs = M Nsurf-shoe d) NSurf-shoe > Foull-shoe Nourf-shoe = Fearth-shoe = May ay = O Nourf-shoe = Fearthshoe = Mshoe g Jarpet-shoe Fearth-Shae fs= MM shoe g e). when we put forward, the back of the shoe altectura now much firetron is actura stoe; the exact reading of the scale these affect our results we would find for outd be ; affect precise calculations -FU-BACK CTOD OF SHOEL CHUELER · Add ---cated the results  $f) f_{s} = 3.3 N$ 3.3N=u(.367kg)(10N/kg) N=.899 Mshoe=.367Kg 9=10 N/Kg a) Experiment 2 Nood b) we will continue to lift the board vertically until night before the shoe moves c) the carpet-wood are one system, neglect air resistance; these assumptions could affect air results we might find friction to be more than it



## Scores using rubrics:

| Scientific Ability | 0                  | 1                  | 2                  | 3                   |
|--------------------|--------------------|--------------------|--------------------|---------------------|
| Is able to design  | The experiment     | The experiment     | The experiment     | The experiment      |
| a reliable experi- | does not solve the | attempts to solve  | attempts to solve  | solves the prob-    |
| ment that solves   | problem.           | the problem but    | the problem but    | lem and has a       |
| the problem .      |                    | due to the nature  | due to the nature  | high likelihood of  |
| (Score twice, once |                    | of the design the  | of the design      | producing data      |
| for each method.)  |                    | data will not lead | there is a mod-    | that will lead to a |
|                    |                    | to an accurate     | erate chance the   | reliable solution.  |
|                    |                    | solution.          | data will not lead |                     |
|                    |                    |                    | to an accurate     |                     |
|                    |                    |                    | solution.          |                     |

Method 1, SCORE: 3 Method 2, SCORE: 3

Both procedures are appropriate and correct.

| Scientific Ability | 0                  | 1                 | 2                 | 3                 |
|--------------------|--------------------|-------------------|-------------------|-------------------|
| Is able to use     | At least one       | All of the chosen | All of the cho-   | All of the cho-   |
| available equip-   | of the chosen      | measurements      | sen measurements  | sen measurements  |
| ment to make       | measurements       | can be made, but  | can be made, but  | can be made and   |
| measurements.      | cannot be made     | no details are    | the details about | all details about |
| (Score twice, once | with the available | given about how   | how they are done | how they are done |
| for each method.)  | equipment.         | it is done.       | are vague or in-  | are provided and  |
|                    |                    |                   | complete.         | clear.            |

### Method 1, SCORE: 2

Method 2, SCORE: 2

In method 1, it is not very clear from the description what is to be measured when the shoe starts moving. In method 2, it is not clear how the angle is exactly measured.

| Scientific Ability | 0                  | 1                  | 2                 | 3                  |
|--------------------|--------------------|--------------------|-------------------|--------------------|
| Is able to make a  | No discussion is   | A judgment is      | An acceptable     | An acceptable      |
| judgment about     | presented about    | made about the     | judgment is made  | judgment is made   |
| the results of     | the results of the | results, but it is | about the result, | about the result,  |
| the experiment.    | experiment         | not reasonable or  | but the reason-   | with clear reason- |
| (Score twice, once |                    | coherent.          | ing is flawed or  | ing. The effects   |
| for each method.)  |                    |                    | incomplete.       | of assumptions     |
|                    |                    |                    |                   | and experimental   |
|                    |                    |                    |                   | uncertainties are  |
|                    |                    |                    |                   | considered.        |

Method 1, SCORE: 0 Method 2, SCORE: 0 There is no judgment about whether the values obtained for  $\mu$  are reasonable.

| Scientific Ability | 0                  | 1                   | 2                   | 3                  |
|--------------------|--------------------|---------------------|---------------------|--------------------|
| Is able to evalu-  | No attempt is      | A second inde-      | A second inde-      | A second inde-     |
| ate the results by | made to evaluate   | pendent method      | pendent method      | pendent method     |
| means of an inde-  | the consistency of | is used to evaluate | is used to eval-    | is used to eval-   |
| pendent method     | the result using   | the results. How-   | uate the results.   | uate the results.  |
|                    | an independent     | ever there is lit-  | Some discussion     | The discrepancy    |
|                    | method.            | tle or no discus-   | about the dif-      | between the two    |
|                    |                    | sion about the dif- | ferences in the     | methods, and       |
|                    |                    | ferences in the re- | results is present, | possible reasons   |
|                    |                    | sults due to the    | but there is little | are discussed. A   |
|                    |                    | two methods.        | or no discussion    | percentage differ- |
|                    |                    |                     | of the possible     | ence is calculated |
|                    |                    |                     | reasons for the     | in quantitative    |
|                    |                    |                     | differences.        | problems.          |

**SCORE: 1**. Even though two independent methods are used to solve the task, there is very little discussion about the discrepancies between the two results.

| Scientific Ability  | 0                 | 1                 | 2                   | 3                |
|---------------------|-------------------|-------------------|---------------------|------------------|
| Is able to identify | No attempt is     | An attempt is     | Some shortcom-      | All major short- |
| the shortcomings    | made to identify  | made to identify  | ings are identified | comings of the   |
| in an experimen-    | any shortcomings  | shortcomings,     | and some im-        | experiment are   |
| tal design and      | of the experimen- | but they are de-  | provements are      | identified and   |
| suggest specific    | tal design.       | scribed vaguely.  | suggested, but      | specific sug-    |
| improvements.       |                   | No specific sug-  | not all aspects     | gestions for     |
|                     |                   | gestions are made | of the design are   | improvement are  |
|                     |                   | for improvements. | considered.         | made.            |

**SCORE: 2.** Some shortcomings are suggested. A main shortcoming, namely, the compression of the surface of the carpet as the shoe moves, is not addressed.

| Scientific Ability | 0                 | 1                  | 2                  | 3                   |
|--------------------|-------------------|--------------------|--------------------|---------------------|
| Is able to choose  | Mathematical      | A mathematical     | Correct and com-   | Mathematical        |
| a productive       | procedure is ei-  | procedure is de-   | plete mathemati-   | procedure is fully  |
| mathematical       | ther missing, or  | scribed, but it is | cal procedure is   | consistent with     |
| procedure for      | the equations     | incomplete, due    | described but an   | the design. All     |
| solving the exper- | written down are  | to which the final | error is made in   | quantities are cal- |
| imental problem    | irrelevant to the | answer cannot be   | the numerical cal- | culated correctly.  |
| (Score twice, once | design.           | calculated.        | culations.         | Final answer is     |
| for each method.)  |                   |                    |                    | meaningful.         |

Method 1, SCORE: 3 Method 2, SCORE: 3 Both mathematical procedures are appropriate. The free body diagrams are correct.

| Scientific Ability | 0                | 1                  | 2                   | 3               |
|--------------------|------------------|--------------------|---------------------|-----------------|
| Is able to iden-   | No attempt is    | An attempt is      | Most assumptions    | All assumptions |
| tify the assump-   | made to identify | made to identify   | are correctly iden- | are correctly   |
| tions made in us-  | any assumptions. | assumptions, but   | tified.             | identified.     |
| ing the mathe-     |                  | most are missing,  |                     |                 |
| matical procedure  |                  | described vaguely, |                     |                 |
| (Score twice, once |                  | or incorrect.      |                     |                 |
| for each method.)  |                  |                    |                     |                 |

## Method 1, SCORE: 3 Method 2, SCORE: 1 All important assumptions are addressed in method 1. In method 2, two important as-

sumptions, namely that the shoe only slides down the incline without rotating and  $\mu$  does not change due to the compression of the carpet, are missing.

| Scientific Ability | 0                | 1                | 2                 | 3               |
|--------------------|------------------|------------------|-------------------|-----------------|
| Is able to deter-  | No attempt is    | An attempt is    | The effects of    | The effects of  |
| mine specifically  | made to deter-   | made to deter-   | most assumptions  | all assumptions |
| the way in which   | mine the effects | mine the effects | are determined    | are correctly   |
| assumptions        | of assumptions.  | of some assump-  | correctly, though | determined.     |
| might affect the   |                  | tions, but most  | a few contain     |                 |
| results (Score     |                  | are missing, de- | errors, incon-    |                 |
| twice, once for    |                  | scribed vaguely, | sistencies, or    |                 |
| each method.)      |                  | or incorrect.    | omissions.        |                 |

Method 1, SCORE: 2

Method 2, SCORE: 2

The effects of most assumptions are correctly determined. In both methods, the effect of assuming that the shoe is a point particle (with no rotation) is not addressed.

| Scientific Ability | 0                | 1                  | 2                   | 3                |
|--------------------|------------------|--------------------|---------------------|------------------|
| Is able to iden-   | No attempt is    | An attempt is      | Most experimen-     | All experimental |
| tify sources of    | made to identify | made to identify   | tal uncertainties   | uncertainties    |
| experimental un-   | experimental     | experimental       | are correctly iden- | are correctly    |
| certainty (Score   | uncertainties.   | uncertainties, but | tified.             | identified.      |
| twice, once for    |                  | most are missing,  |                     |                  |
| each method.)      |                  | described vaguely, |                     |                  |
|                    |                  | or incorrect.      |                     |                  |

## Method 1, SCORE: 1

Method 2, SCORE: 2

In method 1, the main source of uncertainty is the spring scale reading. This arises from both the least count of the scale, and in being able to decide exactly at which point the scale reading must be noted. There is also a small uncertainty in the measurement of the mass of the shoe. The student has identified only some of these uncertainties, and they are described vaguely. In method 2, the experimental uncertainties arise from the measurement of the angle by the protractor, and deciding the point at which the angle should be measured. There is also a small uncertainty in the measurement of the mass of the shoe. The student has identified the main uncertainties, but not all.

| Scientific Ability | 0                | 1                  | 2                 | 3                |
|--------------------|------------------|--------------------|-------------------|------------------|
| Is able to eval-   | No attempt is    | An attempt is      | Most experimen-   | All experimental |
| uate specifically  | made to evaluate | made to evaluate   | tal uncertainties | uncertainties    |
| how experimental   | experimental     | experimental       | are evaluated     | are correctly    |
| uncertainties may  | uncertainties.   | uncertainties, but | correctly, though | evaluated.       |
| affect the data    |                  | most are missing,  | a few contain     |                  |
| (Score twice, once |                  | described vaguely, | minor errors,     |                  |
| for each method.)  |                  | or incorrect.      | inconsistencies,  |                  |
|                    |                  |                    | or omissions.     |                  |

### Method 1, SCORE: 1 Method 2, SCORE: 1

The student has attempted to evaluate how uncertainties affect data, but they are described vaguely. There is no attempt at using the weakest link rule to estimate these uncertainties.

|                    |                    | 1                 |                    |                    |
|--------------------|--------------------|-------------------|--------------------|--------------------|
| Scientific Ability | 0                  | 1                 | 2                  | 3                  |
| Is able to min-    | No evidence of     | Some evidence     | Evidence of ef-    | Precise data       |
| imize experimen-   | any effort to make | of an attempt to  | fective data tak-  | collection in all  |
| tal uncertainties. | precise measure-   | take precise mea- | ing such as multi- | aspects afforded   |
| (Score twice, once | ments from video   | surements. Most   | ple measurements   | by the video.      |
| for each method.)  |                    | major sources or  | etc. One major     | Attention to re-   |
|                    |                    | uncertainty are   | omission or some   | ducing all obvious |
|                    |                    | ignored or poorly | small oversights   | sources of random  |
|                    |                    | addressed         |                    | and systematic     |
|                    |                    |                   |                    | uncertainty in     |
|                    |                    |                   |                    | data collection.   |

#### Method 1, SCORE: 1

Method 1, SCORE: 1

The student mentions some efforts at trying to minimize experimental uncertainties, but there is not much evidence of it in the data.

| Scientific Ability | 0                  | 1                 | 2                  | 3                 |
|--------------------|--------------------|-------------------|--------------------|-------------------|
| Is able to record  | Data is either ab- | Some important    | All important      | All important     |
| and represent      | sent or incompre-  | data is absent or | data is present,   | data is present,  |
| data in a mean-    | hensible.          | incomprehensible. | but is recorded    | organized, and    |
| ingful way (Score  |                    |                   | in a way that re-  | recorded clearly. |
| twice, once for    |                    |                   | quires some effort |                   |
| each method.)      |                    |                   | to comprehend.     |                   |

### Method 1, SCORE: 3

Method 2, SCORE: 3

All important data are recorded in an organized manner.

| Scientific Ability | 0               | 1                  | 2                  | 3                   |
|--------------------|-----------------|--------------------|--------------------|---------------------|
| Is able to analyze | No attempt is   | An attempt is      | The analysis is    | The analysis is     |
| data appropri-     | made to analyze | made to analyze    | appropriate but it | appropriate, com-   |
| ately (Score       | the data.       | the data, but      | contains minor er- | plete, and correct. |
| twice, once for    |                 | it is either seri- | rors or omissions. |                     |
| each method.)      |                 | ously flawed or    |                    |                     |
|                    |                 | inappropriate.     |                    |                     |

# Method 1, SCORE: 3

Method 2, SCORE: 3

The data analysis is appropriate.

| Scientific Ability | 0                 | 1               | 2                 | 3                 |
|--------------------|-------------------|-----------------|-------------------|-------------------|
| Is able to com-    | Diagrams are      | Diagrams are    | Diagrams and/or   | Diagrams and/or   |
| municate the de-   | missing and/or    | present but un- | experimental      | experimental pro- |
| tails of an ex-    | experimental pro- | clear and/or    | procedure are     | cedure are clear  |
| perimental proce-  | cedure is missing | experimental    | present but with  | and complete.     |
| dure clearly and   | or extremely      | procedure is    | minor omissions   |                   |
| completely (Score  | vague.            | present but im- | or vague details. |                   |
| twice, once for    |                   | portant details |                   |                   |
| each method.)      |                   | are missing.    |                   |                   |

SCORE: 3