SISSA

Advanced Analysis - A

Academic year 2019-2020

Proposed problems

1. Let X be a separable Banach space and Y a subspace of X. Show that Y, endowed with the induced norm, is separable.

2. Let X be a Banach space and Y a finite-dimensional subspace of X. Show that Y is closed.

3. Let (M, d) be a compact metric space. Show that M is complete and separable.

4. Let (M, d) be a complete metric space and $\{A_n, n \in \mathbb{N}\}$ a countable family of open and dense subsets of M. Show that the set

$$A \doteq \bigcap_{n \in \mathbb{N}} A_n$$

is dense in M.

5. Let *H* be a real Hilbert space and $a \in H$ a nonzero vector. Show that for every $x \in H$, we have

$$\operatorname{dist}(x, \{a\}^{\perp}) = \frac{|(x, a)|}{\|a\|}.$$

6. Consider the Hilbert speace ℓ^{∞} with its usual norm $\|\cdot\|_{\ell^{\infty}}$ and the sets $c_0 \doteq \{(a_n) \in \ell^{\infty} : a_n \to 0\}$ and $c \doteq \{(a_n) \in \ell^{\infty} : a_n \to a \in \mathbb{R}\}$. Show that c_0 and c are closed separable subspaces of ℓ^{∞} .

7. Consider the Hilbert space ℓ^2 and a real sequence (a_n) such that $a_n > 0$ for every $n \in \mathbb{N}$ and $a_n \to +\infty$. Show that the set

$$A \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 \le 1 \right\}$$

is a precompact subset of ℓ^2 .

8. Let H be a Hilbert space and C_1 , C_2 two nonempty, closed and convex subsets such that $C_1 \subset C_2$. Given $x \in H$, call $P_{C_i}x$ the projection of x on C_i and $d(x, C_i)$ the distance of x from C_i (i = 1, 2). Show that

$$||P_{C_1}x - P_{C_2}x||^2 \le 2\left(d(x, C_1)^2 - d(x, C_2)^2\right), \quad \forall x \in H.$$

9. Let *H* be a complex Hilbert space and $T \in \mathcal{L}(H)$ an operator such that $||T|| \leq 1$. Show that

(a) Tx = x if and only if $(Tx, x) = ||x||^2$;

(b)
$$ker(I - T) = ker(I - T^*)$$
.

10. Find a Banach space X and a subset $S \subseteq X$ such that S is strongly closed but not weakly closed.

11. Find a Banach space X, a bounded closed subset $S \subseteq X$ and a continuous function $f: S \to \mathbb{R}$ such that

$$\sup_{x \in S} f(x) = +\infty.$$

12. Let X be a Banach space and $K \subseteq X$ a compact subset. Show that any sequence in K which converges weakly, actually converges strongly.

13. Let (X, d) be a metric space. Given two subsets $A, B \subseteq X$, set

 $\operatorname{dist}(A, B) \doteq \inf\{d(x, y) : x \in A, y \in B\}.$

a) Given $x \in X$ and positive numbers $0 < \rho < r$, show that there exists $\delta > 0$ such that

 $\operatorname{dist}(B(x,\rho), B(x,r)^c) \ge \delta.$

b) Given a proper, nonempty, closed subset $C \subseteq X$, show that there exists a ball B(x,r) in X such that dist(B(x,r), C) > 0.

14. Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$ a compact operator. Let (x_n) be a sequence in X weakly converging to x in X. Show that the sequence (Tx_n) converges strongly to Tx in Y.

15. Let $\alpha > 0$ and consider the sewuence of functions given by

$$u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.$$

Study the convergence of (u_n) in the strong and weak (weak^{*} if $p = \infty$) topology of $L^p(\mathbb{R}^d)$ for $p \in [1, \infty]$.

16. Let *H* be a Hilbert space, $T \in \mathcal{L}(H)$ and T^* the adjoint of *T*.

(a) Show that $||T^*T|| = ||TT^*|| = ||T||^2$.

(b) Show that T^*T and TT^* are selfadjoint operators.

17. Let H be a Hilbert space and $\{M_k, k \in \mathbb{N}\}$ a countable collection of finitedimensional subspaces of H. Call P_k the orthogonal projector on M_k $(k \in \mathbb{N})$ and set

$$P \doteq \sum_{k=1}^{\infty} 2^{-k} P_k$$

Show that P is a compact operator in $\mathcal{L}(H)$.

18. Consider the sequence of functions given by

$$u_n(x,y) = \left(\cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right)\right)(1 + e^{-ny^2}), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

Study the convenience of (u_n) in the strong and weak topology of $L^p(I)$ (weak* if $p = \infty$).

19. Let *H* be a complex Hilber space, $T \in \mathcal{L}(H)$ and (x_n) a sequence in *H* weakly converging to $x \in H$. Show that the sequence (Tx_n) converges weakly to Tx.

20. Given $x \in \mathbb{R}$, let B(x, 1) be the open unit ball of center x in \mathbb{R} . Consider a sequence (x_n) in \mathbb{R} and define the sequence of functions $u_n \doteq \chi_{B(x_n,1)}$, where χ denotes the characteristic function. Study the strong and weak convergence of the sequence (u_n) in the space $L^2(\mathbb{R})$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit), in the following cases:

- (a) $x_n \to 0;$
- (b) $|x_n| \to +\infty$.

21. Let *H* be a Hilbert space endowed with the inner product $\langle \cdot, \cdot \rangle$ and *D* a subset of *H* such that lsp(D) is dense in *H*. Show that, given a bounded sequence (x_n) in *H*, such that $\langle x_n, y \rangle \to \langle x_n, y \rangle$ for any $y \in D$, then $x_n \to x$.

22. Let $I = [0,1] \subseteq \mathbb{R}$ and consider the Hilbert space $X = L^2(I,\mathbb{R})$. Set

$$(Tu)(x) \doteq \int_0^x u(t) \, dt.$$

Show that $T \in \mathcal{L}(X)$ and find the adjoint T^* of T.

23. Consider the set $E \doteq \{e^n, n \in \mathbb{N}\}$ in ℓ^2 defined by

$$e^n(k) = \delta_{n,k}$$

Show that E is a Hilbert basis in ℓ^2 .

24. Let \mathcal{U} be a bounded family in $L^1(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R})$. Show that the family $\{\rho \star u, u \in \mathcal{U}\}$ is equicontinuous.

25. Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Show that *T* is compact if and only if the adjoint T^* is compact.

26. Let *H* be a Hilbert space on \mathbb{C} , $\{e_k, k \in \mathbb{N}\}$ an orthonormal system in *H* and (λ_k) an element of $\ell^1(\mathbb{C})$. Set

$$Tx \doteq \sum_{k=1}^{\infty} \lambda_k(x, e_k) e_k.$$

Show that T is a compact operator in $\mathcal{L}(H)$.

27. Consider the Hilbert space $E \doteq L^2(\mathbb{R}^n, \mathbb{C})$ and let $K \in L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$. Define

$$(T_K u)(x) \doteq \int_{\mathbb{R}^n} K(x, y) u(y) \, dy.$$

Show that $T_K \in \mathcal{L}(E)$ and that T_K is selfadjoint if and only if $K(x,y) = \overline{K(y,x)}$ for any pair $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$.

28. Let *H* be a Hilbert space and (u_n) an orthonormal sequence in *H*. Show that (u_n) converges weakly to zero.

29. Let $p \in [1, \infty]$ and $f \in L^p(\mathbb{R})$. Show that for every $\delta > 0$ we have

$$\max \left(\{ x : |f(x)| > \delta \} \right) \le \delta^{-p} \| f \|_p^p.$$

30. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure, $p \in [1, \infty]$, (u_n) a sequence in $L^p(E)$ and $u \in L^p(E)$ such that $u_n \rightharpoonup u$ for $p < \infty$ or $\stackrel{*}{\rightharpoonup}$ if $p = \infty$. Prove that the sequence (u_n) is equiintegrable.

31. Let *H* be a real Hilbert space, $M \subseteq X$ a closed subspace and *P* the orthogonal projector on *M*. Show that *P* is selfadjoint.

32. Consider the space $X = C_0(\mathbb{R}^d) \doteq \overline{C_c(\mathbb{R}^d)}^{\|\cdot\|_{\infty}}$. Given $S \in X'$ define $U \doteq [O \subseteq \mathbb{R}^d \text{ append}(S, u)] = -0$ for C = X with supply C = 0.

$$U \doteq \{ O \subseteq \mathbb{R}^u \text{ open: } \langle S, u \rangle_{X', X} = 0 \ \forall u \in X \text{ with supp } u \subseteq O \}.$$

Then introduce

- $N \doteq \bigcup_{O \in U} O \text{ (domain of nullity of } S); \qquad \operatorname{supp} S \doteq \mathbb{R}^d \setminus N \text{ (support of } S).$
- (i) Given $a \in \mathbb{R}^d$, set

$$T_a(u) = u(a).$$

Show that $T_a \in X'$ and find its norm and support.

(ii) Let (a_n) be a sequence in \mathbb{R}^d , consider the sequence $(S_n) = (T_{a_n})$ and the series

$$S = \sum_{n=1}^{\infty} 3^{-n} S_n$$

- (a) Show that $S \in X'$ and find its norm and support.
- (b) Show that there exists a subsequence (S_{n_k}) weakly^{*} converging in X'.

33. Consider the sequence of functions given by $u_n(t) = \sin(nt)$, with $n \in \mathbb{N}$ and $t \in I \doteq [0, 2\pi]$. Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit).

34. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) a sequence in \mathbb{R}^+ . Set

$$\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) \, d\theta, \quad \forall n \in \mathbb{N}, \ \forall u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 0+$ and study the convergence of the sequence (f_n) in the strong and weak^{*} topology of X' (that is to say establish if the sequence converges in such topologies and, in the affirmative case, find the limit).

35. Given $\alpha \in \mathbb{R}$ and R > 0, consider the function u defined on \mathbb{R}^d by

$$u(x) = \begin{cases} |x|^{\alpha}, & x \neq 0\\ 0, & x = 0. \end{cases}$$

Establish for which $p \in [1, +\infty]$ we have $u \in L^p(B_{\mathbb{R}^d}(0, R))$.

36. Let $E \subseteq \mathbb{R}^d$ be a measurable set, $p, q \in [1, \infty[$ and $u \in L^p(E) \cap L^q(E)$. Given $\alpha \in [0, 1]$, set

$$\frac{1}{r} \doteq \frac{1-\alpha}{p} + \frac{\alpha}{q}.$$

Show that $u \in L^r(E)$ and that

$$||u||_{L^{r}(E)} \leq ||u||_{L^{p}(E)}^{1-\alpha} \cdot ||u||_{L^{q}(E)}^{\alpha}$$

37. Let $I \doteq [0, 1]$ and consider the sequence of functions given by

$$u_n(t) = e^{-nt}, \quad t \in I, \quad n \in \mathbb{N}.$$

Study the convergence of the sequence (u_n) in the following spaces:

- (i) $C^0(I)$ endowed with the uniform topology;
- (*ii*) $L^1(I)$ endowed with the strong topology;
- (*iii*) $L^1(I)$ endowed with the weak topology;
- (iv) $L^{\infty}(I)$ endowed with the strong topology;
- (v) $L^{\infty}(I)$ endowed with the weak* topology.

38. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure and let $m \in L^{\infty}(E)$. Set

$$(Tu)(x) \doteq m(x) \cdot u(x)$$
 for a.e. $x \in E$.

Given $p,q \in [1,\infty[$, with $p \ge q$, show that $T \in \mathcal{L}(L^p(E), L^q(E))$ and provide an estimate of its norm.

39. Let $X = C_c(\mathbb{R})$ and $T: X \to X$ be a linear application such that

$$||Tu||_{L^1} \le ||u||_{L^1}; \qquad ||Tu||_{L^2} \le ||u||_{L^1} \quad \forall u \in X.$$

Given $r \in [1,2]$, show that there exists $\tilde{T} \in \mathcal{L}(L^1, L^r)$ such that $\|\tilde{T}\|_{\mathcal{L}(L^1, L^r)} \leq 1$ and $\tilde{T}|_X = T$.

40. Consider the sequence of functions given by

$$u_n(x,y) = \cos(nx)e^{-ny}, \quad (x,y) \in I \doteq [0,2\pi] \times [0,2\pi], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

41. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform topology and consider the family of subsets of \mathbb{R}^2 given by

$$A_{\alpha} \doteq \left\{ (x,y) \in \mathbb{R}^2 : y > \alpha |x|, \ x^2 + y^2 < \alpha^{-2} \right\}, \quad \alpha > 0.$$

Set

$$T_{\alpha}u \doteq \int_{A_{\alpha}} u(x,y) \, dx dy, \quad \alpha > 0.$$

- (a) Show that $T_{\alpha} \in X'$ for every $\alpha > 0$ and find its norm and support.
- (b) Study the convergence of the family $(T_{\alpha})_{\alpha>0}$ in the strong and weak* topology of X' when $\alpha \to 0+$ and when $\alpha \to +\infty$.

42. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $Y = L^2(I)$. Set

$$(Tu)(x) \doteq \int_{x^2}^x u(t) \, dt.$$

- (a) Show that $T \in \mathcal{L}(X)$ and establish if $T(B_1^X)$ is relatively compact in X. (b) Show that $T \in \mathcal{L}(Y)$ and establish if $T(B_1^Y)$ is relatively compact in Y.

43. Consider the sequence of functions given by

$$u_n(x,y) = \sin\left(\frac{n^2x}{n+1}\right)e^{y/n}, \quad (x,y) \in I \doteq [0,2\pi] \times [0,2\pi], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I); in the strong and in the weak* topology of $L^{\infty}(I)$.

44. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform norm and consider the family of subsets of \mathbb{R}^2 given by

$$A_{\alpha} \doteq \{(x,y) \in \mathbb{R}^2 : x > 0, \ y > \alpha | x |, \ x^2 + y^2 < \alpha^2 \}, \quad \alpha > 0.$$

 Set

$$T_{\alpha}u \doteq \frac{1}{\alpha^2} \int_{A_{\alpha}} u(x, y) \, dx dy, \quad \alpha > 0.$$

- (a) Show that $T_{\alpha} \in X'$ for any $\alpha > 0$ and find its norm and support.
- (b) Establish if the family $(T_{\alpha})_{\alpha>0}$ converges in the strong and weak* topology of X' when $\alpha \to 0+$ and, in affirmative case, determine the limit T_0 .
- (c) Find norm and support of T_0 .

45. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $\alpha(x) \doteq \min\{1, 2x\}$. Set

$$(Tu)(x) \doteq \int_0^{\alpha(x)} |u(t)|^2 dt$$

Establish if $T \in \mathcal{L}(X)$ and if $T(B_1^X)$ is relatively compact in X.

46. Consider the following family of Cauchy problems:

$$\begin{cases} y' = \frac{1}{1+ty} & t > 0\\ y(0) = 1 + \frac{1}{n} & n \in \mathbb{N}. \end{cases}$$

- (a) Show that for every $n \in \mathbb{N}$ there exists a solution $y_n(\cdot)$ defined on the whole \mathbb{R}^+ .
- (b) Show that the sequence (y_n) amdits a subsequence uniformly converging on each compact subinterval of \mathbb{R}^+ .

47. Consider the sequence of functions given by

$$u_n(x,y) = \sin\left(\frac{nx}{n+1}\right)(1+e^{-n|y|}), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

48. Let I = [0, 1], $X = C^0(I)$ and $m \in X$. Set

$$(T_m u)(x) \doteq m(x)u(x), \quad u \in X, \ x \in I.$$

Show that $T_m \in \mathcal{L}(X)$ and that it is compact if and only if m(x) = 0 for every $x \in I$.

49. Let \overline{B} the closed unit ball in \mathbb{R} , endowed with the euclidean norm $\|\cdot\|$. Define

$$u_n(x) \doteq |\sin(||x||)|^{\frac{1}{n}} \quad n \in \mathbb{N}.$$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}$ on \overline{B} .

50. Consider the sequence of functions given by

$$u_n(x,y) = \frac{e^{-\frac{1}{n+1}}}{(1+e^{-nx^2})}, \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology and in the weak* topology of $L^{\infty}(I)$.

51. Let $\varphi \in C_c(\mathbb{R})$ and (a_n) a sequence in \mathbb{R} . Define

$$u_n(x) \doteq \varphi(x - a_n), \qquad x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$.

b) Study the relative compactness of the sequence (u_n) in the strong and in the weak topology of L^p (weak* if $p = \infty$). That is to say: establish if and for which $p \in [1, \infty]$ there exists a converging subsequence in such topologies.

52. Let $I = [0, 1] \subset \mathbb{R}$ and $B \doteq \{u \in C^1(I) : ||u'||_{L^2(I)} \leq 1\}$. a) Show that B is an equicontinuous family.

b) Given a sequence (u_n) in $\{u \in B : u(0) = 0, u(1) = 1\}$, show that there exist $u \in C^0(I)$ and a subsequence (u_{n_k}) which converges uniformly to u.

c) Show by a counterexample that property b) does not hold in B.

53. Let \overline{B} the closed unit ball in \mathbb{R}^d , endowed with the euclidean norm $\|\cdot\|$. Set

$$u_n(x) \doteq e^{-n\|x\|} \quad n \in \mathbb{N}.$$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}$ on \overline{B} .

54. Consider the sequence of functions given by

$$u_n(x,y) = \min\left\{n, |x|^{-\frac{1}{2}}\right\} \sin\left(\frac{ny}{n+1}\right), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

Study the convergence of (u_n) in the strong and weak topology (weak^{*} if $p = \infty$) of $L^p(I)$.

55. Let $\varphi \in C_c(\mathbb{R})$ with supp $\varphi \subseteq [-1, 1]$, $\varphi \ge 0$ e $\int_{\mathbb{R}} \varphi \, dt = 1$. Consider the Dirac sequence given by

$$\varphi_n(t) \doteq n\varphi(nt) \quad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}$$

and let (a_n) be a sequence in \mathbb{R} . Set

$$u_n(t) \doteq \rho_n(x - a_n) \qquad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}.$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$ and for every $n \in \mathbb{N}$.

b) Considering the cases $a_n = n$ and $a_n = n^{-2}$, study the convergence of the sequence (u_n) in the strong and weak topology of L^p (weak* if $p = \infty$).

56. Let $I = [0, 1] \subset \mathbb{R}$, $X = C^0(I)$ and $Y = L^1(I)$. Set

$$Tu(x) \doteq \int_0^x xyu(y) \, dy.$$

- **a)** Show that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- **b)** Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, explaining the reasons.

57. Let $(\rho_n)_{n \in \mathbb{N}}$ be a regularizing sequence in \mathbb{R} . Study the equiintegrability of the following families:

a) $f_n = \rho_n, \quad n \in \mathbb{N};$ b) $g_n = \rho'_n, \quad n \in \mathbb{N};$ c) $h_n \doteq \rho_1 \star \rho_n, \quad n \in \mathbb{N}.$

58. Let $\alpha > 0$ and consider the sequence of functions given by

$$u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.$$

Study the strong and weak (weak^{*} if $p = \infty$) convergence of (u_n) in the spaces $L^p(\mathbb{R}^d)$ for $p \in [1, \infty]$.

59. Let $Q \doteq [-1, 1]^3 \subseteq \mathbb{R}^3$ and set

$$f(x_1, x_2, x_3) = \begin{cases} \left(x_1 \, x_2^2 \, x_3^3\right)^{-1}, & x_1 \, x_2 \, x_3 \neq 0\\ 0, & x_1 \, x_2 \, x_3 = 0. \end{cases}$$

- Establish for which $p \in [1, \infty]$ we have $f \in L^p(\mathbb{R}^3)$;
- establish for which $p \in [1, \infty]$ we have $f \in L^p(Q)$;
- establish for which $p \in [1, \infty]$ we have $f \in L^p(\mathbb{R}^3 \setminus Q)$.

60. Let $E \subseteq \mathbb{R}$ be a measurable set, $p_i \in [1, \infty]$, $f_i \in L^{p_i}(E)$ for $i = 1, \ldots, n$, and $r \in [1, \infty]$ given by

$$\frac{1}{r} \doteq \sum_{i=1}^{n} \frac{1}{p_i}$$

Show that

$$\prod_{i=1}^{n} f_i \in L^r(E)$$

and that the following inequality holds:

$$\left\|\prod_{i=1}^{n} f_{i}\right\|_{L^{r}(E)} \leq \prod_{i=1}^{n} \|f_{i}\|_{L^{p_{i}}(E)}$$

61. Let $(\rho_n)_{n\in\mathbb{N}}$ be a regularizing family in \mathbb{R} and $f\in C^0(\mathbb{R})$. Set

$$f_n(x) \doteq (\rho_n \star f)(x), \quad x \in \mathbb{R}.$$

Show that the definition is well posed and that the sequence (f_n) converges uniformly to f on any compact subset $K \subseteq \mathbb{R}$.

- **62.** Let $I = [-1, 1] \subseteq \mathbb{R}$ and (u_n) a sequence in $C^2(\mathbb{R})$ such that
 - (a) u_n is convex on \mathbb{R} for every $n \in \mathbb{N}$;
 - (b) There exists $K \ge 0$ such that $|u_n(0)| + |u'_n(t)| \le K$ for every $t \in I$ and for every $n \in \mathbb{N}$.
 - (1) Show that the sequence (u'_n) is relatively compact in $L^1(I)$.
 - (2) Show that there exists a subsequence (u_{n_k}) and a map $u \in C^0(I)$ such that (u_{n_k}) converges uniformly to u on I.

63. Let $I = [0, 1] \subseteq \mathbb{R}$ and $\{e_n, n \in \mathbb{N}\}$ a Hilber basis $L^2(I)$. Set

$$(e_m \otimes e_n)(x,y) \doteq e_m(x)e_n(y); \quad m,n \in \mathbb{N}, \ (x,y) \in I \times I.$$

Show that the family $\{e_m \otimes e_n; m, n \in \mathbb{N}\}$ is a Hilbert basis in $L^2(I \times I)$.

64. Let $I \doteq [-1,1] \subseteq \mathbb{R}$ and consider the sequence of functions given by:

$$u_n(t) = e^{-n} \cdot e^{nt^2}; \quad t \in I, \quad n \in \mathbb{N}.$$

Study the convergence of the sequence (u_n) in the following spaces:

- (i) $C^0(I)$ with uniform topology;
- (*ii*) $L^1(I)$ with strong topology;
- (*iii*) $L^1(I)$ with weak topology;
- (*iv*) $L^{\infty}(I)$ with strong topology;
- (v) $L^{\infty}(I)$ with weak^{*} topology.

65. For every $n \in \mathbb{N}$ set

$$f_n(x) = \sin\left(\frac{x}{n}\right); \quad g_n(x) = \sin\left(n^2 x\right); \quad h_n(x) = \sin\left(\frac{nx}{n+1}\right); \quad x \in [0, 2\pi].$$

Study the equicontinuity of the sequences $\{f_n, n \in \mathbb{N}\}$, $\{g_n, n \in \mathbb{N}\}$ e $\{h_n, n \in \mathbb{N}\}$ on $[0, 2\pi]$.

66. Let $I = [0,1] \subset \mathbb{R}$ and, for every $n \in \mathbb{N}$, consider the subintervals of the form

$$I_n^m \doteq \left[\frac{m}{n}, \frac{m+1}{n}\right], \quad m = 0, 1, \dots, n-1.$$

Then set

$$u_n(t) \doteq (-1)^m$$
 for $t \in I_n^m$.

Study the strong and weak convergence of the sequence (u_n) in $L^2(I)$.

67. Let *D* be te unit disk in \mathbb{C} . Study the equicontinuity of the following families of functions in C(D):

(i)
$$\{f_a(z) = e^{iaz}, a \in \mathbb{R}\};$$

(ii) $\{f_a(z) = e^{i\frac{z}{a}}, a \in \mathbb{R} \ a \neq 0\};$
(iii) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| > 1\};$
(iv) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| < 1\}.$

68. Let $X = C([0,1], \mathbb{R})$ and (a_n) a sequence in [0,1]. Set

$$\langle f_n, u \rangle \doteq u(a_n), \ \forall n \in \mathbb{N}, \ \forall u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and that there exists a subsequence (f_{n_k}) which converges in the topology $\sigma(X', X)$.

69. Study the equicontinuity of the following families in C(I) $(I \subseteq \mathbb{R})$.

(i) $\{f_a(x) = e^{ax}, a \in \mathbb{R}\}, I = \mathbb{R};$ (ii) $\{f_a(x) = a(1-x)^2, a \in \mathbb{R}^+\}, I = [-1, 1];$ (iii) $\{f_a(x) = x^{-a}, a \in \mathbb{R}^+, \}, I =]1, +\infty[;$ (iv) $\{f_a(x) = x^{-a}, a \in \mathbb{R}^+, \}, I =]0, +\infty[.$ **70.** Let $p \in [1, \infty[$. Consider the space $X = L^p([0, 1])$ and set

$$(Tu)(x) = \int_0^x u(t) dt.$$

- (i) Show that $T \in \mathcal{L}(X)$ and that $||T||_{\mathcal{L}(X)} \leq \left(p^{\frac{1}{p}}\right)^{-1}$.
- (ii) Given a sequence (u_n) in X weakly converging to u in X, show that the sequence (Tu_n) converges strongly to Tu in X.
- **71.** Let C > 0, $p \in [1, \infty[, \alpha \in]0, 1[$ and $B \doteq \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Consider the set $U \doteq \{u \in C(B) : u(0) = 0, |u(x) u(y)| \le C|x y|^{\alpha} \ \forall x, y \in B\}$.

Show that U is relatively compact in $L^p(B)$.

72. Let $I \doteq [0, 1]$ and (u_n) a sequence in $C^1([0, 1])$ such that

$$|u_n(0)| + \int_I |u'_n(t)| \, dt \le 1 \quad \forall n \in \mathbb{N}.$$

Show that there exist a subsequence (u_{n_k}) and a map $u \in L^1(I)$ such that $u_{n_k} \to u$ strongly in $L^1(I)$.

73. Let $E \subseteq \mathbb{R}^d$ be a measurable set such that $0 < m(E) < +\infty$. For every $p \in [1, +\infty[$ and for every $f \in L^p(E)$ set

$$N_p[f] \doteq \left(\frac{1}{m(E)} \int_E |f(x)|^p\right)^{\frac{1}{p}}.$$

Show that $N_p[\cdot]$ is a norm on $L^p(E)$ and that, if $1 \le p \le q < +\infty$, we have

$$N_p[f] \le N_q[f] \qquad \forall f \in L^q(E).$$

74. Let X be a Banach space and set $\mathcal{K}(X) \doteq \{T \in \mathcal{L}(X) : T \text{ is compact}\}$. Show that $\mathcal{K}(X)$ is closed in $\mathcal{L}(X)$.

75. Let $X = C_0(\mathbb{R}^2)$ and (a_n) a sequence in \mathbb{R}^+ . For every $n \in \mathbb{N}$ and for every $u \in X$ set

$$T_n(u) = \int_{-a_n}^{+a_n} u(x, nx) \, dx.$$

Show that $T_n \in X'$ for every $n \in \mathbb{N}$ a find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X' in the cases $a_n = 1 + n^2$ and $a_n = e^{-\frac{1}{n}}$.

76. Let I = [0,1] and H an equicontinuous subset of $C^0(I)$. Show that \overline{H} is equicontinuous.

77. Let I = [0, 1], $B_r = B(0, r)$ the ball in \mathbb{R}^d of center zero and radius $r, p \in [1, \infty]$, $X_p \doteq L^p(B_1)$ and $Y \doteq C^0(I, \mathbb{R})$. Given $u \in X_p$ and $t \in I$, set

$$(Tu)(t) \doteq \int_{B_t} u(y) \, dy.$$

Show that $T \in \mathcal{L}(X_p, Y)$ for every p and establish for which p it is compact.

78. For $(x, y) \in I \doteq [-1, 1] \times [-1, 1]$, consider the sequence of functions given by

$$u_n(x,y) = \left(\cos\left(\frac{nx^2}{n+1}\right)\sin\left(nx\right)\right)(1+e^{-ny^2}), \quad n \in \mathbb{N}$$

Study the convergence of (u_n) in the strong and weak topology (weak^{*} if $p = \infty$) of $L^p(I)$.

79. Let (a_n) and (b_n) sequence in \mathbb{R}^+ and set $R_n \doteq [-a_n, a_n] \times [-b_n, b_n] \subseteq \mathbb{R}^2$ and

$$u_n(x,y) \doteq \chi_{R_n}(x,y), \quad (x,y) \in \mathbb{R}^2.$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(\mathbb{R}^2)$ and in the strong and weak* topology of $L^{\infty}(\mathbb{R}^2)$ in the following cases:

1. $a_n = n, b_n = n^{-1};$ 2. $a_n = n, b_n = n^{-\frac{1}{2}};$ 3. $a_n = \frac{n}{n+1}, b_n = n^{-1};$ 4. $a_n = \frac{n}{n+1}, b_n = \frac{n}{n+1}.$

80. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and $(a_n), (b_n)$ sequences in \mathbb{R}^+ . Define

$$\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, b_n \sin \theta) \, d\theta, \quad n \in \mathbb{N}, \ u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 1, b_n \to 0$ and study the convergence of the sequence (f_n) in the strong and weak^{*} topology of X'.

81. Let I = [0, 1], M > 0 and (u_n) a sequence in $C^1(I)$ such that

1. $\int_{I} |u_n(t)|^2 \le M \ \forall n \in \mathbb{N};$

2.
$$u'_n(t) + t \ge 0 \ \forall t \in I, \forall n \in \mathbb{N}.$$

Show that the sequence (u_n) is relatively compact in $L^1(I)$.

82. Let (x_n) be a sequence in a Hilbert space H endowed with the inner product $\langle \cdot, \cdot \rangle$. Show that, if the sequence $(\langle x_n, y \rangle)$ converges for every $y \in H$, then the sequence (x_n) converges weakly.

83. Let I = [0, 1] and call X the Banach space C(I), endowed with the uniform norm. Introduce the space

$$Y \doteq \{u \in X, u \text{ differentiable on } I \text{ with } u' \in X\}$$

and set

$$||u||_Y \doteq ||u||_{\infty} + ||u'||_{\infty}, \ u \in Y.$$

Prove that $(Y, \|\cdot\|_Y)$ is a Banach space.

Let α be a nonzero element of X and set

$$(Tu)(x) \doteq \alpha(x)u'(x) \quad u \in Y, \ x \in I.$$

- (i) Prove that $T \in \mathcal{L}(Y, X)$ and find its norm.
- (ii) Establish if T is compact and justify the answer.

84. Let *H* be a Hilbert space. For $T \in \mathcal{L}(H)$ denote by R(T) and N(T), respectively, the range and the kernel of *T*. Calling T^* the adjoint of *T*, prove that $N(T) = (R(T^*))^{\perp}$ and $\overline{(R(T))} = (N(T^*))^{\perp}$.

85. Let $B_r = B(0, r)$ be the ball in \mathbb{R}^d of center zero and radius r and $X \doteq C_0(\mathbb{R})$. Let m be a map in $C(\mathbb{R})$, with $m(x) \ge 0$ for every $x \in \mathbb{R}$, and, for every t > 0, set

$$T_t(u) \doteq t^{-d} \int_{B_t} m(y) u(y) \, dy.$$

Prove that $T_t \in X'$ for every t > 0 and find its norm and support. Study the convergence of T_t as $t \to 0+$ in the strong and weak* topology of X'.

86. Let I = [0, 1] and (u_n) , (v_n) be two bounded sequences in $L^2(I)$. Assume in addition that the maps $I \ni x \mapsto u_n(x)$ and $I \ni x \mapsto v_n(x)$ are continuous and monotone non decreasing for every $n \in \mathbb{N}$; then define

$$f_n(x,y) \doteq u_n(x)v_n(y), \quad (x,y) \in Q \doteq I \times I.$$

Prove that f_n lies in $L^2(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

87. Let I = [0, 1], $Q \doteq I \times I$ and (a_n) , (b_n) sequences in [0, 1]. Define the family of sets $R_n \doteq [0, a_n] \times [0, b_n] \subseteq Q$ and set

$$u_n(x,y) \doteq (1 + \sin(nx))(1 + e^{-ny})\chi_{R_n}(x,y), \quad (x,y) \in Q.$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(Q)$ and in the strong and weak* topology of $L^{\infty}(Q)$ in the following cases:

1. $a_n = n^{-2}, b_n = 1 - n^{-1};$ 2. $a_n = 1 - n^{-2}, b_n = 1 - n^{-1}.$

88. Let H be a complex Hilbert space with inner product (\cdot, \cdot) . Prove that we have

$$4(x,y) = (\|x+y\|^2 - \|x-y\|^2) - i(\|x+iy\|^2 - \|x-iy\|^2) \quad \forall x, y \in H.$$

89. Let I = [0,1] and call X the Banach space C(I), endowed with the uniform norm. Let $g \in C(I \times I)$ and set

$$(Tu)(x) \doteq \int_{I} g(x,y)u(y) \, dy \quad u \in X, \ x \in I.$$

- (i) Prove that $T \in \mathcal{L}(X)$ and estimate its norm.
- (ii) Establish if T is compact and justify the answer.
- (iii) Compute the norm of T in the case $g(x, y) = e^{x+y}$.

90. Let $X = C_0(\mathbb{R}^2)$ and, for every $n \in \mathbb{N}$, consider the set

$$R_n \doteq] - n, n[\times] - n^{-1}, n^{-1}[\subseteq \mathbb{R}^2.$$

Given $u \in X$ and $n \in \mathbb{N}$ set

$$(T_n u)(x) = \frac{1}{n} \int_{R^n} e^{-(x^2 + y^2)} u(x, y) \, dx dy.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X'.

91. Let $Q = [0,1]^d \subseteq \mathbb{R}$ and consider (u_n) , (v_n) , two relatively compact sequences in $L^2(Q)$. Define

$$f_n(x) \doteq u_n(x)v_n(x), \quad x \in Q, \ n \in \mathbb{N}.$$

Prove that f_n lies in $L^1(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

92. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be map of class C^1 such that $\varphi(0) = 0$ and $1 \le \varphi'(t) \le 2$ for every t > 0. Let I = [0, 1] and (u_n) a sequence in $L^1(\mathbb{R})$.

- (i) Prove that the sequence (v_n) defined by $v_n(t) \doteq u_n(\varphi(t))$ for $t \in I$ and $n \in \mathbb{N}$ lies in $L^1(I)$.
- (ii) Assuming that $u_n \to u$ strongly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.
- (iii) Assuming that $u_n \rightharpoonup u$ weakly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.

93. Let $Q = [0,1] \times [0,1]$ and X the Banach space $C^0(Q)$, endowed with the uniform norm. Set

$$(T_n u) \doteq \int_0^1 n \, e^{-nx} \, u(x, x^2) \, dx, \quad u \in X.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak* topology of X'.

94. Let *H* be a Hilbert space, $T \in \mathcal{L}(H)$ and (T_n) a sequence in $\mathcal{L}(H)$.

- (i) Prove that $T_n \to T$ if and only if $T_n^* \to T^*$.
- (ii) Prove that the sequence $(T_n x)$ converges weakly to Tx for every $x \in H$ if and only if the sequence $(T_n^* x)$ converges weakly to $T^* x$ for every $x \in H$.

95. Let $I = [0,1] \subseteq \mathbb{R}$ and $X = C^0(I)$. Given a map $m \in L^2(I)$, set

$$Tu(x) \doteq \int_0^{x^2} m(y)u(y) \, dy.$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

96. Let $Q = [0,1]^d \subseteq \mathbb{R}$. Consider two relatively compact families U and V in $C^0(Q)$ and define

$$F \doteq \{ f : f(x) = \sin(u(x) \cdot v(x)), \ x \in Q, u \in U, v \in V \}.$$

Prove that F is a relatively compact family in $C^0(Q)$.

97. Let $I = [0,1] \subseteq \mathbb{R}$, p > 1 and $X = L^{\infty}(I)$. Given a map $m \in L^p(I)$, set

$$Tu(x) \doteq \int_0^\infty m(y)u(y) \, dy$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

98. Let X be the Banach space $C_0(\mathbb{R}^2)$, endowed with the uniform norm, and let (g_n) be a sequence in $C_b(\mathbb{R}^2)$ such that

$$0 \le g_n(x,y) \le (1+x^2+y^2)^{-1} \quad \forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}$$
13

$$g_n \longrightarrow g$$
 in $C_b(\mathbb{R}^2)$.

 Set

and

$$(T_n u) \doteq \int_{\mathbb{R}} g_n(x, x) u(x, x) \, dx, \quad u \in X.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak^{*} topology of X'.

99. Let $f \in L^2(\mathbb{R})$ and set

$$(Tu)(x) \doteq \int_{\mathbb{R}} f(x-y)u(y) \, dy.$$

Establish for which indices $p, q \in [1, +\infty]$ we have $T \in \mathcal{L}(L^p(\mathbb{R}), L^q(\mathbb{R}))$.

100. Let $I = [0, 1] \subseteq \mathbb{R}$, $X = C^0(I)$ and $Y = L^1(I)$. Set

$$Tu(x) \doteq \int_0^x xyu(y) \, dy.$$

- **a)** Prove that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- **b)** Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, justifying the answer.