SISSA

Advanced Analysis - A

Academic year 2019-2020

Proposed problems

1. Let X be a separable Banach space and Y a subspace of X. Show that Y , endowed with the induced norm, is separable.

2. Let X be a Banach space and Y a finite-dimensional subspace of X . Show that Y is closed.

3. Let (M, d) be a compact metric space. Show that M is complete and separable.

4. Let (M, d) be a complete metric space and $\{A_n, n \in \mathbb{N}\}\$ a countable family of open and dense subsets of M. Show that the set

$$
A \doteq \bigcap_{n \in \mathbb{N}} A_n
$$

is dense in M.

5. Let H be a real Hilbert space and $a \in H$ a nonzero vector. Show that for every $x \in H$, we have

$$
dist(x, \{a\}^{\perp}) = \frac{|(x, a)|}{\|a\|}.
$$

6. Consider the Hilbert speace ℓ^{∞} with its usual norm $\|\cdot\|_{\ell^{\infty}}$ and the sets $c_0 \doteq$ ${(a_n) \in \ell^{\infty} : a_n \to 0}$ and $c = {(a_n) \in \ell^{\infty} : a_n \to a \in \mathbb{R}}$. Show that c_0 and c are closed separable subspaces of ℓ^{∞} .

7. Consider the Hilbert space ℓ^2 and a real sequence (a_n) such that $a_n > 0$ for every $n \in \mathbb{N}$ and $a_n \to +\infty$. Show that the set

$$
A \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 \le 1 \right\}
$$

is a precompact subset of ℓ^2 .

8. Let H be a Hilbert space and C_1 , C_2 two nonempty, closed and convex subsets such that $C_1 \subset C_2$. Given $x \in H$, call $P_{C_i}x$ the projection of x on C_i and $d(x, C_i)$ the distance of x from C_i $(i = 1, 2)$. Show that

$$
||P_{C_1}x - P_{C_2}x||^2 \le 2\left(d(x, C_1)^2 - d(x, C_2)^2\right), \quad \forall x \in H.
$$

9. Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$ an operator such that $||T|| \leq 1$. Show that

(a) $Tx = x$ if and only if $(Tx, x) = ||x||^2$;

(b)
$$
ker(I - T) = ker(I - T^*)
$$
.

10. Find a Banach space X and a subset $S \subseteq X$ such that S is strongly closed but not weakly closed.

11. Find a Banach space X, a bounded closed subset $S \subseteq X$ and a continuous function $f : S \to \mathbb{R}$ such that

$$
\sup_{x \in S} f(x) = +\infty.
$$

12. Let X be a Banach space and $K \subseteq X$ a compact subset. Show that any sequence in K which converges weakly, actually converges strongly.

13. Let (X, d) be a metric space. Given two subsets $A, B \subseteq X$, set

dist $(A, B) \doteq \inf \{d(x, y) : x \in A, y \in B\}.$

a) Given $x \in X$ and positive numbers $0 < \rho < r$, show that there exists $\delta > 0$ such that

$$
dist(B(x,\rho),B(x,r)^c) \ge \delta.
$$

b) Given a proper, nonempty, closed subset $C \subseteq X$, show that there exists a ball $B(x, r)$ in X such that $dist(B(x, r), C) > 0$.

14. Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$ a compact operator. Let (x_n) be a sequence in X weakly converging to x in X. Show that the sequence (Tx_n) converges strongly to Tx in Y.

15. Let $\alpha > 0$ and consider the sewuence of functions given by

$$
u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.
$$

Study the convergence of (u_n) in the strong and weak (weak* if $p = \infty$) topology of $L^p(\mathbb{R}^d)$ for $p \in [1,\infty]$.

- **16.** Let H be a Hilbert space, $T \in \mathcal{L}(H)$ and T^* the adjoint of T.
	- (a) Show that $||T^*T|| = ||TT^*|| = ||T||^2$.
	- (b) Show that T^*T and TT^* are selfadjoint operators.

17. Let H be a Hilbert space and $\{M_k, k \in \mathbb{N}\}\$ a countable collection of finitedimensional subspaces of H. Call P_k the orthogonal projector on M_k ($k \in \mathbb{N}$) and set

$$
P \doteq \sum_{k=1}^{\infty} 2^{-k} P_k.
$$

Show that P is a compact operator in $\mathcal{L}(H)$.

18. Consider the sequence of functions given by

$$
u_n(x,y) = \left(\cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right)\right)(1 + e^{-ny^2}), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.
$$

Study the convenrgence of (u_n) in the strong and weak topology of $L^p(I)$ (weak* if $p = \infty$).

19. Let H be a complex Hilber space, $T \in \mathcal{L}(H)$ and (x_n) a sequence in H weakly converging to $x \in H$. Show that the sequence (Tx_n) converges weakly to Tx .

20. Given $x \in \mathbb{R}$, let $B(x, 1)$ be the open unit ball of center x in R. Consider a sequence (x_n) in R and define the sequence of functions $u_n \doteq \chi_{B(x_n,1)}$, where χ denotes the characteristic function. Study the strong and weak convergence of the sequence (u_n) in the space $L^2(\mathbb{R})$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit), in the following cases:

- (a) $x_n \to 0;$
- (b) $|x_n| \to +\infty$.

21. Let H be a Hilbert space endowed with the inner product $\langle \cdot, \cdot \rangle$ and D a subset of H such that $\text{lsp}(D)$ is dense in H. Show that, given a bounded sequence (x_n) in H, such that $\langle x_n, y \rangle \to \langle x_n, y \rangle$ for any $y \in D$, then $x_n \to x$.

22. Let $I = [0, 1] \subseteq \mathbb{R}$ and consider the Hilbert space $X = L^2(I, \mathbb{R})$. Set

$$
(Tu)(x) \doteq \int_0^x u(t) \, dt.
$$

Show that $T \in \mathcal{L}(X)$ and find the adjoint T^* of T .

23. Consider the set $E \doteq \{e^n, n \in \mathbb{N}\}\$ in ℓ^2 defined by

$$
e^n(k) = \delta_{n,k}.
$$

Show that E is a Hilbert basis in ℓ^2 .

24. Let U be a bounded family in $L^1(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R})$. Show that the family $\{\rho \star u, u \in \mathcal{U}\}\$ is equicontinuous.

25. Let H be a Hilbert space and $T \in \mathcal{L}(H)$. Show that T is compact if and only if the adjoint T^* is compact.

26. Let H be a Hilbert space on $\mathbb{C}, \{e_k, k \in \mathbb{N}\}\$ an orthonormal system in H and (λ_k) an element of $\ell^1(\mathbb{C})$. Set

$$
Tx \doteq \sum_{k=1}^{\infty} \lambda_k(x, e_k) e_k.
$$

Show that T is a compact operator in $\mathcal{L}(H)$.

27. Consider the Hilbert space $E \doteq L^2(\mathbb{R}^n, \mathbb{C})$ and let $K \in L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$. Define

$$
(T_K u)(x) \doteq \int_{\mathbb{R}^n} K(x, y) u(y) \, dy.
$$

Show that $T_K \in \mathcal{L}(E)$ and that T_K is selfadjoint if and only if $K(x, y) = \overline{K(y, x)}$ for any pair $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

28. Let H be a Hilbert space and (u_n) an orthonormal sequence in H. Show that (u_n) converges weakly to zero.

29. Let $p \in [1,\infty]$ and $f \in L^p(\mathbb{R})$. Show that for every $\delta > 0$ we have

$$
\operatorname{meas}\left(\{x:|f(x)|>\delta\}\right) \le \delta^{-p} \|f\|_p^p.
$$

30. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure, $p \in [1, \infty]$, (u_n) a sequence in $L^p(E)$ and $u \in L^p(E)$ such that $u_n \rightharpoonup u$ for $p < \infty$ or $\stackrel{*}{\rightharpoonup}$ if $p = \infty$. Prove that the sequence (u_n) is equiintegrable.

31. Let H be a real Hilbert space, $M \subseteq X$ a closed subspace and P the orthogonal projector on M . Show that P is selfadjoint.

32. Consider the space $X = C_0(\mathbb{R}^d) \doteq \overline{C_c(\mathbb{R}^d)}^{\|\cdot\|_{\infty}}$. Given $S \in X'$ define $U \doteq \{ O \subseteq \mathbb{R}^d \text{ open: } \langle S, u \rangle_{X',X} = 0 \; \forall u \in X \text{ with } \text{supp } u \subseteq O \}$.

Then introduce

- $N \doteq \begin{pmatrix} \end{pmatrix}$ O∈U O (domain of nullity of S); supp $S \doteq \mathbb{R}^d \setminus N$ (support of S).
- (i) Given $a \in \mathbb{R}^d$, set

$$
T_a(u) = u(a).
$$

Show that $T_a \in X'$ and find its norm and support.

(ii) Let (a_n) be a sequence in \mathbb{R}^d , consider the sequence $(S_n) = (T_{a_n})$ and the series

$$
S = \sum_{n=1}^{\infty} 3^{-n} S_n.
$$

- (a) Show that $S \in X'$ and find its norm and support.
- (b) Show that there exists a subsequence (S_{n_k}) weakly* converging in X'.

33. Consider the sequence of functions given by $u_n(t) = \sin(nt)$, with $n \in \mathbb{N}$ and **EXECUTE:** The sequence of (u_n) in the uniform topology of $C(I)$, in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit).

34. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) a sequence in \mathbb{R}^+ . Set

$$
\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) \, d\theta, \quad \forall n \in \mathbb{N}, \ \forall u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 0^+$ and study the convergence of the sequence (f_n) in the strong and weak* topology of X' (that is to say establish if the sequence converges in such topologies and, in the affirmative case, find the limit).

35. Given $\alpha \in \mathbb{R}$ and $R > 0$, consider the function u defined on \mathbb{R}^d by

$$
u(x) = \begin{cases} |x|^{\alpha}, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$

Establish for which $p \in [1, +\infty]$ we have $u \in L^p(B_{\mathbb{R}^d}(0, R)).$

36. Let $E \subseteq \mathbb{R}^d$ be a measurable set, $p, q \in [1, \infty[$ and $u \in L^p(E) \cap L^q(E)$. Given $\alpha \in [0,1]$, set

$$
\frac{1}{r} \doteq \frac{1-\alpha}{p} + \frac{\alpha}{q}.
$$

Show that $u \in L^r(E)$ and that

$$
||u||_{L^r(E)} \le ||u||_{L^p(E)}^{1-\alpha} \cdot ||u||_{L^q(E)}^{\alpha}.
$$

37. Let $I \doteq [0, 1]$ and consider the sequence of functions given by

$$
u_n(t) = e^{-nt}, \quad t \in I, \quad n \in \mathbb{N}.
$$

Study the convergence of the sequence (u_n) in the following spaces:

- (i) $C^0(I)$ endowed with the uniform topology;
- (*ii*) $L^1(I)$ endowed with the strong topology;
- (*iii*) $L^1(I)$ endowed with the weak topology;
- (iv) $L^{\infty}(I)$ endowed with the strong topology;
- (v) $L^{\infty}(I)$ endowed with the weak* topology.

38. Let $E \subseteq \mathbb{R}$ be a measurable set with finie measure and let $m \in L^{\infty}(E)$. Set

$$
(Tu)(x) \doteq m(x) \cdot u(x) \text{ for a.e. } x \in E.
$$

Given $p, q \in [1, \infty],$ with $p \ge q$, show that $T \in \mathcal{L}(L^p(E), L^q(E))$ and provide an estimate of its norm.

39. Let $X = C_c(\mathbb{R})$ and $T: X \to X$ be a linear application such that

$$
||Tu||_{L^1} \le ||u||_{L^1};
$$
 $||Tu||_{L^2} \le ||u||_{L^1}$ $\forall u \in X.$

Given $r \in [1,2]$, show that there exists $\tilde{T} \in \mathcal{L}(L^1, L^r)$ such that $\|\tilde{T}\|_{\mathcal{L}(L^1, L^r)} \leq 1$ and $\tilde{T}|_X = T$.

40. Consider the sequence of functions given by

$$
u_n(x, y) = \cos(nx)e^{-ny}
$$
, $(x, y) \in I \doteq [0, 2\pi] \times [0, 2\pi]$, $n \in \mathbb{N}$.

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

41. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform topology and consider the family of subsets of \mathbb{R}^2 given by

$$
A_{\alpha} \doteq \{(x, y) \in \mathbb{R}^2 : y > \alpha |x|, \ x^2 + y^2 < \alpha^{-2} \}, \quad \alpha > 0.
$$

Set

$$
T_{\alpha}u \doteq \int_{A_{\alpha}} u(x, y) \, dx dy, \quad \alpha > 0.
$$

- (a) Show that $T_{\alpha} \in X'$ for every $\alpha > 0$ and find its norm and support.
- (b) Study the convergence of the family $(T_\alpha)_{\alpha>0}$ in the strong and weak* topology of X' when $\alpha \to 0+$ and when $\alpha \to +\infty$.

42. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $Y = L^2(I)$. Set

$$
(Tu)(x) \doteq \int_{x^2}^x u(t) dt.
$$

- (a) Show that $T \in \mathcal{L}(X)$ and establish if $T(B_1^X)$ is relatively compact in X.
- (b) Show that $T \in \mathcal{L}(Y)$ and establish if $T(B_1^Y)$ is relatively compact in Y.

43. Consider the sequence of functions given by

$$
u_n(x, y) = \sin\left(\frac{n^2x}{n+1}\right) e^{y/n}, \quad (x, y) \in I \doteq [0, 2\pi] \times [0, 2\pi], \quad n \in \mathbb{N}.
$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$; in the strong and in the weak* topology of $L^{\infty}(I)$.

44. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform norm and consider the family of subsets of \mathbb{R}^2 given by

$$
A_{\alpha} \doteq \{(x, y) \in \mathbb{R}^2 : x > 0, y > \alpha |x|, x^2 + y^2 < \alpha^2 \}, \quad \alpha > 0.
$$

Set

$$
T_{\alpha}u\doteq\frac{1}{\alpha^{2}}\int_{A_{\alpha}}u(x,y)\,dxdy,\quad\alpha>0.
$$

- (a) Show that $T_{\alpha} \in X'$ for any $\alpha > 0$ and find its norm and support.
- (b) Establish if the family $(T_\alpha)_{\alpha>0}$ converges in the strong and weak* topology of X' when $\alpha \to 0+$ and, in affirmative case, determine the limit T_0 .
- (c) Find norm and support of T_0 .

45. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $\alpha(x) \doteq \min\{1, 2x\}.$ Set

$$
(Tu)(x) \doteq \int_0^{\alpha(x)} |u(t)|^2 dt.
$$

Establish if $T \in \mathcal{L}(X)$ and if $T(B_1^X)$ is relatively compact in X.

46. Consider the following family of Cauchy problems:

$$
\begin{cases}\ny' = \frac{1}{1+t y} & t > 0 \\
y(0) = 1 + \frac{1}{n} & n \in \mathbb{N}.\n\end{cases}
$$

- (a) Show that for every $n \in \mathbb{N}$ there exists a solution $y_n(\cdot)$ defined on the whole \mathbb{R}^+ .
- (b) Show that the sequence (y_n) amdits a subsequence uniformly converging on each compact subinterval of \mathbb{R}^+ .

47. Consider the sequence of functions given by

$$
u_n(x, y) = \sin\left(\frac{nx}{n+1}\right)(1 + e^{-n|y|}), \quad (x, y) \in I \doteq [-1, 1] \times [-1, 1], \quad n \in \mathbb{N}.
$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

48. Let $I = [0, 1], X = C^{0}(I)$ and $m \in X$. Set

$$
(T_m u)(x) \doteq m(x)u(x), \quad u \in X, \ x \in I.
$$

Show that $T_m \in \mathcal{L}(X)$ and that it is compact if and only if $m(x) = 0$ for every $x \in I$.

49. Let \overline{B} the closed unit ball in R, endowed with the euclidean norm $\|\cdot\|$. Define

$$
u_n(x) \doteq |\sin(||x||)|^{\frac{1}{n}} \quad n \in \mathbb{N}.
$$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}\$ on \overline{B} .

50. Consider the sequence of functions given by

$$
u_n(x,y) = \frac{e^{-\frac{ny}{n+1}}}{(1 + e^{-nx^2})}, \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.
$$

Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology and in the weak* topology of $L^{\infty}(I)$.

51. Let $\varphi \in C_c(\mathbb{R})$ and (a_n) a sequence in \mathbb{R} . Define

$$
u_n(x) \doteq \varphi(x - a_n), \qquad x \in \mathbb{R}, \quad n \in \mathbb{N}.
$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$.

b) Study the relative compactness of the sequence (u_n) in the strong and in the weak topology of L^p (weak* if $p = \infty$). That is to say: establish if and for which $p \in [1,\infty]$ there exists a converging subsequence in such topologies.

52. Let $I = [0, 1] \subset \mathbb{R}$ and $B \doteq \{ u \in C^1(I) : ||u'||_{L^2(I)} \le 1 \}.$ a) Show that B is an equicontinuous family.

b) Given a sequence (u_n) in $\{u \in B : u(0) = 0, u(1) = 1\}$, show that there exist $u \in C⁰(I)$ and a subsequence (u_{n_k}) which converges uniformly to u.

c) Show by a counterexample that property b) does not hold in B.

53. Let \overline{B} the closed unit ball in \mathbb{R}^d , endowed with the euclidean norm $\|\cdot\|$. Set

$$
u_n(x) \doteq e^{-n||x||} \quad n \in \mathbb{N}.
$$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}\$ on \overline{B} .

54. Consider the sequence of functions given by

$$
u_n(x,y) = \min\left\{n, |x|^{-\frac{1}{2}}\right\} \sin\left(\frac{ny}{n+1}\right), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.
$$

Study the convergence of (u_n) in the strong and weak topology (weak* if $p = \infty$) of $L^p(I)$.

55. Let $\varphi \in C_c(\mathbb{R})$ with supp $\varphi \subseteq [-1,1], \varphi \geq 0$ e $\int_{\mathbb{R}} \varphi dt = 1$. Consider the Dirac sequence given by

$$
\rho_n(t) \doteq n\varphi(nt) \quad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}
$$

and let (a_n) be a sequence in R. Set

$$
u_n(t) \doteq \rho_n(x - a_n) \qquad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}.
$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$ and for every $n \in \mathbb{N}$.

b) Considering the cases $a_n = n$ and $a_n = n^{-2}$, study the convergence of the sequence (u_n) in the strong and weak topology of L^p (weak* if $p = \infty$).

56. Let $I = [0, 1] \subset \mathbb{R}$, $X = C^{0}(I)$ and $Y = L^{1}(I)$. Set

$$
Tu(x) \doteq \int_0^x xyu(y) \, dy.
$$

- a) Show that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- b) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, explaining the reasons.

57. Let $(\rho_n)_{n\in\mathbb{N}}$ be a regularizing sequence in R. Study the equiintegrability of the following families:

a) $f_n = \rho_n$, $n \in \mathbb{N}$; **b**) $g_n = \rho'_n$, $n \in \mathbb{N};$ c) $h_n \doteq \rho_1 \star \rho_n$, $n \in \mathbb{N}$.
c) $h_n \doteq \rho_1 \star \rho_n$, $n \in \mathbb{N}$.

58. Let $\alpha > 0$ and consider the sequence of functions given by

$$
u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.
$$

Study the strong and weak (weak* if $p = \infty$) convergence of (u_n) in the spaces $L^p(\mathbb{R}^d)$ for $p \in [1,\infty]$.

59. Let $Q \doteq [-1, 1]^3 \subseteq \mathbb{R}^3$ and set

$$
f(x_1, x_2, x_3) = \begin{cases} (x_1 \, x_2^2 \, x_3^3)^{-1}, & x_1 \, x_2 \, x_3 \neq 0 \\ 0, & x_1 \, x_2 \, x_3 = 0. \end{cases}
$$

- Establish for which $p \in [1,\infty]$ we have $f \in L^p(\mathbb{R}^3)$;
- establish for which $p \in [1,\infty]$ we have $f \in L^p(Q)$;

- establish for which $p \in [1,\infty]$ we have $f \in L^p(\mathbb{R}^3 \setminus Q)$.

60. Let $E \subseteq \mathbb{R}$ be a measurable set, $p_i \in [1, \infty]$, $f_i \in L^{p_i}(E)$ for $i = 1, \ldots, n$, and $r \in [1,\infty]$ given by

$$
\frac{1}{r} \doteq \sum_{i=1}^{n} \frac{1}{p_i}.
$$

Show that

$$
\prod_{i=1}^{n} f_i \in L^r(E)
$$

and that the following inequality holds:

$$
\left\| \prod_{i=1}^n f_i \right\|_{L^r(E)} \leq \prod_{i=1}^n \|f_i\|_{L^{p_i}(E)}.
$$

61. Let $(\rho_n)_{n \in \mathbb{N}}$ be a regularizing family in \mathbb{R} and $f \in C^0(\mathbb{R})$. Set

$$
f_n(x) \doteq (\rho_n \star f)(x), \quad x \in \mathbb{R}.
$$

Show that the definition is well posed and that the sequence (f_n) converges uniformly to f on any compact subset $K \subseteq \mathbb{R}$.

62. Let $I = [-1, 1] \subseteq \mathbb{R}$ and (u_n) a sequence in $C^2(\mathbb{R})$ such that

- (a) u_n is convex on R for every $n \in \mathbb{N}$;
- (b) There exists $K \geq 0$ such that $|u_n(0)| + |u'_n(t)| \leq K$ for every $t \in I$ and for every $n \in \mathbb{N}$.
- (1) Show that the sequence (u'_n) is relatively compact in $L^1(I)$.
- (2) Show that there exists a subsequence (u_{n_k}) and a map $u \in C^0(I)$ such that (u_{n_k}) converges uniformly to u on I.

63. Let $I = [0, 1] \subseteq \mathbb{R}$ and $\{e_n, n \in \mathbb{N}\}\$ a Hilber basis $L^2(I)$. Set

$$
(e_m \otimes e_n)(x, y) \doteq e_m(x)e_n(y); \quad m, n \in \mathbb{N}, \ (x, y) \in I \times I.
$$

Show that the family $\{e_m \otimes e_n; m, n \in \mathbb{N}\}\$ is a Hilbert basis in $L^2(I \times I)$.

64. Let $I \doteq [-1, 1] \subseteq \mathbb{R}$ and consider the sequence of functions given by:

$$
u_n(t) = e^{-n} \cdot e^{nt^2}; \quad t \in I, \quad n \in \mathbb{N}.
$$

Study the convergence of the sequence (u_n) in the following spaces:

- (*i*) $C^0(I)$ with uniform topology;
- (*ii*) $L^1(I)$ with strong topology;
- (*iii*) $L^1(I)$ with weak topology;
- $(iv) L[∞](I)$ with strong topology;
- (v) $L^{\infty}(I)$ with weak* topology.

65. For every $n \in \mathbb{N}$ set

$$
f_n(x) = \sin\left(\frac{x}{n}\right); \quad g_n(x) = \sin\left(n^2x\right); \quad h_n(x) = \sin\left(\frac{nx}{n+1}\right); \quad x \in [0, 2\pi].
$$

Study the equicontinuity of the sequences $\{f_n, n \in \mathbb{N}\}, \{g_n, n \in \mathbb{N}\}\in \{h_n, n \in \mathbb{N}\}\$ on $[0, 2\pi]$.

66. Let $I = [0, 1] \subset \mathbb{R}$ and, for every $n \in \mathbb{N}$, consider the subintervals of the form

$$
I_n^m \doteq \left[\frac{m}{n}, \frac{m+1}{n}\right[, \quad m = 0, 1, \dots, n-1.
$$

Then set

$$
u_n(t) \doteq (-1)^m \text{ for } t \in I_n^m.
$$

Study the strong and weak convergence of the sequence (u_n) in $L^2(I)$.

67. Let D be te unit disk in $\mathbb C$. Study the equicontinuity of the following families of functions in $C(D)$:

(i)
$$
\{f_a(z) = e^{iaz}, a \in \mathbb{R}\};
$$

\n(ii) $\{f_a(z) = e^{i\frac{z}{a}}, a \in \mathbb{R} \ a \neq 0\};$
\n(iii) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| > 1\};$
\n(iv) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| < 1\}.$

68. Let $X = C([0, 1], \mathbb{R})$ and (a_n) a sequence in [0, 1]. Set

$$
\langle f_n, u \rangle \doteq u(a_n), \ \forall n \in \mathbb{N}, \ \forall u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and that there exists a subsequence (f_{n_k}) which converges in the topology $\sigma(X', X)$.

9

69. Study the equicontinuity of the following families in $C(I)$ ($I \subseteq \mathbb{R}$)).

(i) ${f_a(x) = e^{ax}, a \in \mathbb{R}}$, $I = \mathbb{R}$; (ii) ${f_a(x) = a(1-x)^2, a \in \mathbb{R}^+\}, I = [-1, 1];$ (iii) ${f_a(x) = x^{-a}, a \in \mathbb{R}^+, }, I =]1, +\infty[;$ (iv) ${f_a(x) = x^{-a}, a \in \mathbb{R}^+, }, I =]0, +\infty[$.

70. Let $p \in [1, \infty]$. Consider the space $X = L^p([0, 1])$ and set

$$
(Tu)(x) = \int_0^x u(t) dt.
$$

- (i) Show that $T \in \mathcal{L}(X)$ and that $||T||_{\mathcal{L}(X)} \leq (\rho^{\frac{1}{p}})^{-1}$.
- (ii) Given a sequence (u_n) in X weakly converging to u in X, show that the sequence $(T u_n)$ converges strongly to Tu in X.
- **71.** Let $C > 0$, $p \in [1, \infty)$, $\alpha \in [0, 1]$ and $B \doteq \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Consider the set $U = \{u \in C(B) : u(0) = 0, |u(x) - u(y)| \le C|x - y|^{\alpha} \,\forall x, y \in B\}.$

Show that U is relatively compact in $L^p(B)$.

72. Let $I \doteq [0, 1]$ and (u_n) a sequence in $C^1([0, 1])$ such that

$$
|u_n(0)| + \int_I |u'_n(t)| dt \le 1 \quad \forall n \in \mathbb{N}.
$$

Show that there exist a subsequence (u_{n_k}) and a map $u \in L^1(I)$ such that $u_{n_k} \to u$ strongly in $L^1(I)$.

73. Let $E \subseteq \mathbb{R}^d$ be ameasurable set such that $0 < m(E) < +\infty$. For every $p \in [1, +\infty[$ and for every $f \in L^p(E)$ set

$$
N_p[f] \doteq \left(\frac{1}{m(E)} \int_E |f(x)|^p\right)^{\frac{1}{p}}.
$$

Show that $N_p[\cdot]$ is a norm on $L^p(E)$ and that, if $1 \le p \le q < +\infty$, we have

$$
N_p[f] \le N_q[f] \qquad \forall f \in L^q(E).
$$

74. Let X be a Banach space and set $\mathcal{K}(X) \doteq \{T \in \mathcal{L}(X) : T \text{ is compact}\}\.$ Show that $\mathcal{K}(X)$ is closed in $\mathcal{L}(X)$.

75. Let $X = C_0(\mathbb{R}^2)$ and (a_n) a sequence in \mathbb{R}^+ . For every $n \in \mathbb{N}$ and for every $u \in X$ set

$$
T_n(u) = \int_{-a_n}^{+a_n} u(x, nx) dx.
$$

Show that $T_n \in X'$ for every $n \in \mathbb{N}$ a find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X' in the cases $a_n = 1 + n^2$ and $a_n = e^{-\frac{1}{n}}$.

76. Let $I = [0, 1]$ and H an equicontinuous subset of $C^0(I)$. Show that \overline{H} is equicontinuous.

77. Let $I = [0, 1], B_r = B(0, r)$ the ball in \mathbb{R}^d of center zero and radius $r, p \in [1, \infty],$ $X_p \doteq L^p(B_1)$ and $Y \doteq C^0(I, \mathbb{R})$. Given $u \in X_p$ and $t \in I$, set

$$
(Tu)(t) \doteq \int_{B_t} u(y) \, dy.
$$

Show that $T \in \mathcal{L}(X_n, Y)$ for every p and establish for which p it is compact.

78. For $(x, y) \in I \doteq [-1, 1] \times [-1, 1]$, consider the sequence of functions given by

$$
u_n(x,y) = \left(\cos\left(\frac{nx^2}{n+1}\right)\sin(nx)\right)(1 + e^{-ny^2}), \quad n \in \mathbb{N}.
$$

Study the convergence of (u_n) in the strong and weak topology (weak* if $p = \infty$) of $L^p(I)$.

79. Let (a_n) and (b_n) sequence in \mathbb{R}^+ and set $R_n \doteq [-a_n, a_n] \times [-b_n, b_n] \subseteq \mathbb{R}^2$ and

$$
u_n(x, y) \doteq \chi_{R_n}(x, y), \quad (x, y) \in \mathbb{R}^2.
$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(\mathbb{R}^2)$ and in the strong and weak^{*} topology of $L^{\infty}(\mathbb{R}^2)$ in the following cases:

1. $a_n = n, b_n = n^{-1};$ 2. $a_n = n, b_n = n^{-\frac{1}{2}};$ 3. $a_n = \frac{n}{n+1}, b_n = n^{-1};$ 4. $a_n = \frac{n}{n+1}, b_n = \frac{n}{n+1}.$

80. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) , (b_n) sequences in \mathbb{R}^+ . Define

$$
\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, b_n \sin \theta) d\theta, \quad n \in \mathbb{N}, u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 1, b_n \to 0$ and study the convergence of the sequence (f_n) in the strong and weak* topology of X' .

81. Let $I = [0, 1], M > 0$ and (u_n) a sequence in $C^1(I)$ such that

1. $\int_I |u_n(t)|^2 \leq M \ \forall n \in \mathbb{N};$

2.
$$
u'_n(t) + t \ge 0 \ \forall t \in I, \forall n \in \mathbb{N}.
$$

Show that the sequence (u_n) is relatively compact in $L^1(I)$.

82. Let (x_n) be a sequence in a Hilbert space H endowed with the inner product $\langle \cdot, \cdot \rangle$. Show that, if the sequence $(\langle x_n, y \rangle)$ converges for every $y \in H$, then the sequence (x_n) converges weakly.

83. Let $I = [0, 1]$ and call X the Banach space $C(I)$, endowed with the uniform norm. Introduce the space

 $Y \doteq \{u \in X, u \text{ differentiable on } I \text{ with } u' \in X\}$

and set

$$
||u||_Y \doteq ||u||_{\infty} + ||u'||_{\infty}, \ u \in Y.
$$

Prove that $(Y, \|\cdot\|_Y)$ is a Banach space.

Let α be a nonzero element of X and set

$$
(Tu)(x) \doteq \alpha(x)u'(x) \quad u \in Y, \ x \in I.
$$

- (i) Prove that $T \in \mathcal{L}(Y, X)$ and find its norm.
- (ii) Establish if T is compact and justify the answer.

84. Let H be a Hilbert space. For $T \in \mathcal{L}(H)$ denote by $R(T)$ and $N(T)$, respectively, the range and the kernel of T . Calling T^* the adjoint of T , prove that $N(T) = (R(T^*))^{\perp}$ and $\overline{(R(T))} = (N(T^*))^{\perp}$.

85. Let $B_r = B(0, r)$ be the ball in \mathbb{R}^d of center zero and radius r and $X = C_0(\mathbb{R})$. Let m be a map in $C(\mathbb{R})$, with $m(x) \geq 0$ for every $x \in \mathbb{R}$, and, for every $t > 0$, set

$$
T_t(u) \doteq t^{-d} \int_{B_t} m(y) u(y) dy.
$$

Prove that $T_t \in X'$ for every $t > 0$ and find its norm and support. Study the convergence of T_t as $t \to 0^+$ in the strong and weak* topology of X'.

86. Let $I = [0,1]$ and (u_n) , (v_n) be two bounded sequences in $L^2(I)$. Assume in addition that the maps $I \ni x \mapsto u_n(x)$ and $I \ni x \mapsto v_n(x)$ are continuous and monotone non decreasing for every $n \in \mathbb{N}$; then define

$$
f_n(x, y) \doteq u_n(x)v_n(y), \quad (x, y) \in Q \doteq I \times I.
$$

Prove that f_n lies in $L^2(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

87. Let $I = [0, 1], Q \doteq I \times I$ and $(a_n), (b_n)$ sequences in $]0, 1]$. Define the family of sets $R_n \doteq [0, a_n] \times [0, b_n] \subseteq Q$ and set

$$
u_n(x, y) \doteq (1 + \sin(nx))(1 + e^{-ny}) \chi_{R_n}(x, y), \quad (x, y) \in Q.
$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(Q)$ and in the strong and weak* topology of $L^{\infty}(Q)$ in the following cases:

1. $a_n = n^{-2}, b_n = 1 - n^{-1};$ 2. $a_n = 1 - n^{-2}, b_n = 1 - n^{-1}.$

88. Let H be a complex Hilbert space with inner product (\cdot, \cdot) . Prove that we have

$$
4(x, y) = (\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \quad \forall x, y \in H.
$$

89. Let $I = [0, 1]$ and call X the Banach space $C(I)$, endowed with the uniform norm. Let $g \in C(I \times I)$ and set

$$
(Tu)(x) \doteq \int_I g(x, y)u(y) dy \quad u \in X, \ x \in I.
$$

- (i) Prove that $T \in \mathcal{L}(X)$ and estimate its norm.
- (ii) Establish if T is compact and justify the answer.
- (iii) Compute the norm of T in the case $g(x, y) = e^{x+y}$.

90. Let $X = C_0(\mathbb{R}^2)$ and, for every $n \in \mathbb{N}$, consider the set

$$
R_n \doteq \,]-n, n[\times]-n^{-1}, n^{-1}[\subseteq \mathbb{R}^2.
$$

Given $u \in X$ and $n \in \mathbb{N}$ set

$$
(T_n u)(x) = \frac{1}{n} \int_{R^n} e^{-(x^2 + y^2)} u(x, y) \, dx \, dy.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X'.

91. Let $Q = [0, 1]^d \subseteq \mathbb{R}$ and consider (u_n) , (v_n) , two relatively compact sequences in $L^2(Q)$. Define

$$
f_n(x) \doteq u_n(x)v_n(x), \quad x \in Q, \ n \in \mathbb{N}.
$$

Prove that f_n lies in $L^1(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

92. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be map of class C^1 such that $\varphi(0) = 0$ and $1 \leq \varphi'(t) \leq 2$ for every $t > 0$. Let $I = [0, 1]$ and (u_n) a sequence in $L^1(\mathbb{R})$.

- (i) Prove that the sequence (v_n) defined by $v_n(t) = u_n(\varphi(t))$ for $t \in I$ and $n \in \mathbb{N}$ lies in $L^1(I)$.
- (ii) Assuming that $u_n \to u$ strongly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.
- (iii) Assuming that $u_n \rightharpoonup u$ weakly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.

93. Let $Q = [0,1] \times [0,1]$ and X the Banach space $C^{0}(Q)$, endowed with the uniform norm. Set

$$
(T_n u) \doteq \int_0^1 n e^{-nx} u(x, x^2) dx, \quad u \in X.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak* topology of X' .

94. Let H be a Hilbert space, $T \in \mathcal{L}(H)$ and (T_n) a sequence in $\mathcal{L}(H)$.

- (*i*) Prove that $T_n \to T$ if and only if $T_n^* \to T^*$.
- (ii) Prove that the sequence $(T_n x)$ converges weakly to Tx for every $x \in H$ if and only if the sequence (T_n^*x) converges weakly to T^*x for every $x \in H$.

95. Let $I = [0, 1] \subseteq \mathbb{R}$ and $X = C^0(I)$. Given a map $m \in L^2(I)$, set

$$
Tu(x) \doteq \int_0^{x^2} m(y)u(y) \, dy.
$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

96. Let $Q = \begin{bmatrix} 0, 1 \end{bmatrix}^d \subseteq \mathbb{R}$. Consider two relatively compact families U and V in $C^0(Q)$ and define

$$
F \doteq \{ f : f(x) = \sin(u(x) \cdot v(x)), \ x \in Q, u \in U, v \in V \}.
$$

Prove that F is a relatively compact family in $C^0(Q)$.

97. Let $I = [0, 1] \subseteq \mathbb{R}, p > 1$ and $X = L^{\infty}(I)$. Given a map $m \in L^{p}(I)$, set

$$
Tu(x) \doteq \int_0^x m(y)u(y) \, dy.
$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

98. Let X be the Banach space $C_0(\mathbb{R}^2)$, endowed with the uniform norm, and let (g_n) be a sequence in $C_b(\mathbb{R}^2)$ such that

$$
0 \le g_n(x, y) \le (1 + x^2 + y^2)^{-1} \quad \forall (x, y) \in \mathbb{R}^2, \forall n \in \mathbb{N}
$$

$$
g_n \longrightarrow g
$$
 in $C_b(\mathbb{R}^2)$.

Set

and

$$
(T_n u) \doteq \int_{\mathbb{R}} g_n(x, x) u(x, x) \, dx, \quad u \in X.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak* topology of X'.

99. Let $f \in L^2(\mathbb{R})$ and set

$$
(Tu)(x) \doteq \int_{\mathbb{R}} f(x - y)u(y) \, dy.
$$

Establish for which indices $p, q \in [1, +\infty]$ we have $T \in \mathcal{L}(L^p(\mathbb{R}), L^q(\mathbb{R}))$.

100. Let $I = [0, 1] \subseteq \mathbb{R}$, $X = C^{0}(I)$ and $Y = L^{1}(I)$. Set

$$
Tu(x) \doteq \int_0^x xy u(y) \, dy.
$$

- a) Prove that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- b) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, justifying the answer.