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In the previous chapter we discussed a number of phenomena which cannot be
explained within the framework of classical physics. As a result of this experimental
evidence, revolutionary concepts had to be introduced such as those of quantisation
and of wave—particle duality.

Attempts to construct a theoretical structure which incorporates these concepts in
a satisfactory way met first with great difficulties, until a new theory, called quantum
mechanics, was elaborated between the years 1925 and 1930. Quantum mechanics
provides a consistent description of matter on the microscopic scale, and can be
considered as one of the greatest intellectual achievements of the twentieth century.
Two equivalent formulations of the theory were proposed at nearly the same time.
The first, known as matrix mechanics, was developed in the years 1925 and 1926 by
W. Heisenberg, M. Born and P. Jordan. In this approach, only physically observable
quantities appear, and to each physical quantity the theory associates a matrix. These
matrices obey a non-commutative algebra, which is the essential difference between
matrix mechanics and classical mechanics. The second form of quantum mechanics,
called wave mechanics, was proposed in 1925 by E. Schrodinger, following the ideas
put forward in 1923 by L. de Broglie about matter waves. The equivalence of matrix
mechanics and wave mechanics was proved in 1926 by Schrodinger. In fact, both
matrix mechanics and wave mechanics are particular forms of a general formulation
of quantum mechanics, which was developed by P. A. M. Dirac in 1930.

The general formulation of quantum mechanics, as well as matrix mechanics,
requires a certain amount of abstract mathematics, and hence we shall defer discussion
of it until Chapter 5. Wave mechanics, on the other hand, is more suitable for a first
contact with quantum theory, and this is the approach which we shall use in most of
this book. In this chapter we shall discuss the fundamental ideas underlying quantum
mechanics in their simplest form. We begin with an analysis of wave—particle duality,
introducing the notion of a wave function and its probabilistic interpretation. We
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then go on to construct wave functions corresponding to particles having a well-
defined momentum, and to obtain localised wave functions by superposing plane
waves into wave packets. Following this, we discuss the Heisenberg uncertainty
relations which impose limits on the accuracy of simultaneous measurements of pairs
of ‘complementary’ variables, such as position and momentum, or time and energy.

Wave-particle duality

In Chapter 1 we discussed several experiments which demonstrate conclusively that
material particles possess wave-like properties, exhibiting interference and diffraction
effects. On the other hand, we saw that electromagnetic radiation, which had been
known for a long time to exhibit wave properties, can also show a particle-like
behaviour. We shall now analyse this wave—particle duality in more detail.

Let us consider an idealised experiment in which monoenergetic particles, for
example electrons, emitted by a source are directed on to a screen S; containing two
slits A and B (see Fig. 2.1). At some distance beyond this screen a second screen S is
placed, incorporating detectors which can record each electron striking the screen S;
at a given point. On detection, every electron exhibits purely particle-like properties,
that is its mass and charge are localised, being never spread over more than one
detector at a given time. In contrast, if after some time the total number of electrons
arriving at the screen S; is plotted as a function of position, a diffraction pattern is
found, which is characteristic of waves (see Fig. 2.2(a)). Thus, in a single experiment,
both the particle and wave aspects of the electron are exhibited. A realisation of this
ideal experiment by Jonsson has been described in Chapter 1. A similar experiment

Sy S,

Figure 2.1 The two-slit experiment. Monoenergetic particles from a source at P fall on a
screen S; containing slits at A and B. Detectors are placed on a second screen S; to record
the number of particles arriving at each point. A particle detector D is indicated at a position .x.
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Figure 2.2 The intensity at a position x on the screen S; (see Fig. 2.1).

(a) A diffraction pattern characteristic of waves.

(b) The intensity with slit A open and B closed.

(c) The intensity with slit B open and A closed.

(d) An intensity distribution characteristic of classical particles when A and B are both open.

can be carried out with light. In this case the light can be detected by the photoelectric
effect, showing its particle (photon) aspect, while the recorded intensity displays the
diffraction pattern characteristic of the wave theory of light.

It might at first be supposed that the diffraction pattern is in some way due to
interference between electrons (or photons) passing through the two slits. However,
if the incident intensity is reduced until at any instant there is no more than one
particle between the source and the detecting screen, the interference pattern is
still accumulated. This was demonstrated originally in 1909 by G. I. Taylor, who
photographed the diffraction pattern formed by the shadow of a needle, using a very
weak source such that the exposures lasted for months. It can be concluded that
interference does not occur between photons, but is a property of a single photon.
This was confirmed in more recent experiments performed in 1989 by A. Aspect,
P. Grangier and G. Roger. Material particles such as electrons exhibit a similar
behaviour, as was demonstrated directly in 1989 by A. Tonomura, J. Endo, T. Matsuda,
T. Kawasaki and H. Ezawa in two-slit experiments in which the accumulation of the
interference pattern due to incoming single electrons was observed (see Fig. 2.3).
It should be noted that if one slit is closed in a two-slit experiment, the diffraction
pattern does not appear, so we may infer that when both slits are open the particle
is not localised before it is detected, and hence must be considered as having passed
through both slits!
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Figure 2.3 Buildup of an interference pattern by accumulating single electrons in the two-slit
experiment of Tonomura et al.

(a) Number of electrons = 10; (b) number of electrons = 100;

(c) number of electrons = 3000; (d) number of electrons = 20 000; and

(e) number of electrons = 70 000.

(By courtesy of A. Tonomura.)
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Another way of expressing these facts is to say that while in transit the electron or
photon behaves like a wave, manifesting its particle-like property only on detection.
This is of course in complete contradiction to the classical viewpoint, which would
lead us to suppose that each particle being indivisible must pass either through one
slit or the other. Let us put this to the test by detecting the particles as they pass
through the slits. We can now record the particles which have passed through slit A
and entered the detectors on screen S,. Since all these particles passed through
slit A, slit B might as well have been closed, in which case the intensity distribution
will not show diffraction but will be as illustrated in Fig. 2.2(b). Similarly, if slit B is
open and A is closed, the intensity distribution is that shown in Fig. 2.2(c). If we add
the intensity distributions of Figs. 2.2(b) and 2.2(c) we obtain the intensity pattern
shown in Fig. 2.2(d), which is very different from the diffraction pattern obtained
in the absence of any knowledge about which slit the particles passed through (see
Fig. 2.2(a)). Hence, if the particle nature of an electron, a photon, etc., is established
by monitoring its trajectory, it cannot simultaneously behave like a wave. The wave
and particle aspects of electrons, photons, etc., are complementary.

Let us now return to the case in which there is only one particle at a time transiting
the apparatus and both slits are open. The place on the screen S; at which a given
particle will be detected cannot be predicted, because if it could be predicted this would
be equivalent to determining the trajectory, which we have seen would eliminate the
diffraction pattern. What is predictable is the intensity distribution which builds up
after a large number of individual events have occured. This suggests that for an
individual particle the process is of a statistical nature, so that one can only determine
the probability P that a particle will hit the screen S; at a certain point. By probability
in this context we mean the number of times that an event occurs divided by the total
number of events. The intensity of the pattern formed on the screen S;, in the present
case, is then proportional to the probability P.

In the classical theory of light, the intensity of light at each point is determined by
the square of the amplitude of a wave. For example, in Young’s two-slit experiment,
the light intensity on the recording screen is given by the square of the amplitude of the
wave formed by the superposition of the secondary waves arising from each slit. This
classical wave theory cannot of course be used as it stands because it does not account
for the particle aspect of light. However, it suggests, by analogy, that in quantum
mechanics a wave function or state function ¥ (x, y, z, t) can be introduced, which
plays the role of a probability amplitude. We shall see later that in general the wave
function W is a complex quantity. We then expect that the probability P(x, y, z,1)
of finding the particle at a particular point within a volume V about the point with
coordinates (x, y, z) at time ¢ is proportional to |W|?:

P(x,y,z,1) x |W(x,y,z 0. Q.1

Since probabilities are real positive numbers, we have associated in (2.1) the proba-
bility P with the square of the modulus of the wave function .

Let W, be the wave function at a particular point on the screen S, corresponding
to waves spreading from the slit A. Similarly, let Wy be the wave function at the same
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point corresponding to waves spreading from the slit B. The two intensity distributions
of Fig. 2.2(b) and (c) corresponding to experiments performed with only one open
slit are determined respectively by the probability distributions

P o |Wal>,  Ppoc|Wpl% 22)

On the other hand, when both slits are open, the wave function W is taken to be the
sum of the two contributions W, and Vg,

W= Y, + Wp. (2.3)
The corresponding probability distribution
P o |Wa + W) 2.4

then determines the intensity pattern illustrated in Fig. 2.2(a). It is important to notice
that in (2.4) the probability amplitudes W and Wp have been added and not the
probabilities P5 and Pg. If the latter were the case there would be no possibility of
obtaining interference patterns characteristic of a wave theory.

2.2 The interpretation of the wave function

In analysing the two-slit experiment, we introduced the concept that the probability
of finding a particle at a given location is proportional to the square of the modulus
of the wave function associated with the particle. This concept may be restated more
precisely in the form of a fundamental assumption made by M. Born in 1926, which
can be formulated in the following way. Let us imagine a very large number of
identical, independent systems, each of them consisting of a single particle moving
under the influence of some given external force. All these systems are identically
prepared, and this ensemble is assumed to be described by a single wave function
WV (x, y, z, t) which contains all the information that can be known about them. It is
then postulated that if measurements of the position of the particle are made on each
of the systems, the probability (that is the statistical frequency) of finding the particle
within the volume element dr = dxdydz about the point r = (x, y, z) at the time ¢ is

P(r,t)dr = |¥(r, 1)|’dr (2.5)
so that
P(r,1) = |¥(r, 1)|> = ¥*(r, )¥(r, 1) (2.6)

is the position probability density. Thus we see that the interpretation of the wave
function introduced by Born is a statistical one. For convenience, we shall often
speak of the wave function associated with a particular system, but it must always be
understood that this is shorthand for the wave function associated with an ensemble
of identical and identically prepared systems, as required by the statistical nature of
the theory.
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Since the probability of finding the particle somewhere must be unity, we deduce
from (2.5) that the wave function W (r, 1) should be normalised to unity, so that

/ |W(r, 1)|%dr = | 2.7

where the integral extends over all space. A wave function for which the integral on
the left of (2.7) is finite is said to be square integrable: such a wave function can
always be normalised to unity by multiplying it by an appropriate complex constant.

It is important to notice that since |W (r, t)|? is the physically significant quantity,
two wave functions which differ from each other by a constant multiplicative factor
of modulus one (that is, a constant phase factor of the form exp(i«), where « is a real
number) are equivalent, and satisfy the same normalisation condition.

The superposition principle

As we have seen in the previous section, in order to account for interference effects,
it must be possible to superpose wave functions. This means that if one possible state
of an ensemble of identical systems is described by a wave function ¥ and another
state of this ensemble by a wave function W», then any linear combination

V= C|‘I/| + ('2\1/2 (2.8)

where ¢| and ¢, are complex constants, is also a wave function describing a possible
state of the ensemble.
Let us write the (complex) wave functions W, and W, in the form

W= (le®, W, = [ Wyle, 2.9)
Using (2.8), we find that the square of the modulus of W is given by
[W[? = ey Wi 1* + e2Wal? + 2Refc 5| W, || W] explie) — a2)]) (2.10)

so that, in general, |W|?> # |c;¥;|> + |c2W,|?, in keeping with the discussion of
Section 2.1. It is worth stressing that although the quantity |¥/|? is unaffected if W
is multiplied by an overall phase factor exp(ir) (where « is a real constant) it does
depend on the relative phase (¢, — «>) of W, and W, through the third term on the
right of (2.10), which is an interference term.

Finally, we emphasise that unlike classical waves (such as sound waves or water
waves) the wave function W (r, t) is an abstract quantity, the interpretation of which
is of a sratistical nature. This wave function is assumed to provide a complete
description of the dynamical state of an ensemble. Indeed, we shall see later that the
knowledge of the wave function enables one to predict for each dynamical variable
(position, momentum, energy and so on) a statistical distribution of values obtained
in measurements.
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Wave functions for particles having a definite momentum

In this section we begin to investigate how wave functions can be found, considering
the simple case of free particles. The experiments exhibiting the corpuscular nature
of the electromagnetic radiation, which we discussed in Chapter 1, require that with
the electromagnetic field one associates a particle, the photon, whose energy E and
magnitude p of momentum are related to the frequency v and wavelength A of the
electromagnetic radiation by

h

E = hl), p = X (2.11)

On the other hand, we have seen in Section 1.6 that de Broglie was led to associate
matter waves with particles in such a way that the frequency v and the wavelength
A of the wave were linked with the particle energy E and the magnitude p of its
momentum by the same relations (2.11). The de Broglie relation A = h/p was
confirmed by the results of a number of experiments exhibiting the wave nature of
matter. Following de Broglie, we shall assume that the relations (2.11) hold for all
types of particles and field quanta. Introducing the angular frequency w = 2 v, the
wave number k = 2 /A and the reduced Planck constant # = h /27, we may write
the relations (2.11) in the more symmetric form

E=ho, p=hk. 2.12)

Let us consider a free particle of mass m, moving along the x-axis with a definite
momentum p = p, X, where X is a unit vector along the x-axis, and a corresponding
energy E. Assumingthat p, > 0, so thatthe particle movesin the positive x-direction,
we associate with this particle a wave travelling in the same direction with a fixed
wave number k. Such a wave is a plane wave and can be written as

W(x,1) = Aexplilkx — w(k)t]} (2.13a)

where A is a constant. This plane wave has a wavelength A = 27/ k and an angular
frequency w. Since from (2.12) k = p/h (with p = p,) and w = E/h, the wave
function (2.13a) can be expressed as

W(x,1) = Aexplilpxx — E(p)t]/h}, (2.13b)

In writing (2.13a,b) we have taken w (k) and E(p,) as functions to be specified later.
We note that the wave function (2.13) satisfies the two relations

0
—ih—WV¥ = p, ¥ 2.19)
0x
and
.0
ih—W¥ = EV 2.15)
at

the significance of which will emerge shortly.
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This one-dimensional treatment is easily extended to three dimensions. To a free
particle of mass m, having a well-defined momentum p and an energy E, we now
associate a plane wave

W(r,t) = Aexplik.r — w(k)t]}

= Aexpli[p.r — E(p)t]/h} (2.16)
where the propagation vector (or wave vector) k is related to the momentum p by
p=~hk 2.17)
with
lpl _ 27
k=kl=—=— 2.
k| == 3 (2.18)

and the angular frequency w is related to the energy by w = E/A. Again, the functions
w(k) and E(p) will be specified later. The equation (2.15) remains unchanged for
the plane wave (2.16), while (2.14) is now replaced by its obvious generalisation

—ihVW = p¥ (2.19)

where V is the gradient operator, having Cartesian components (d/dx, 3/dy, 3/92).
The relations (2.15) and (2.19) show that for a free particle the energy and momentum
can be represented by the differential operators

?
Eop=ihz,  Pop=—ihV (2.20)

acting on the wave function W. It is a postulate of wave mechanics that when the
particle is not free the dynamical variables E and p are still represented by these
differential operators.

According to the discussion of Section 2.2, wave functions should be normalised
to unity if the probability interpretation is to be maintained. For one-dimensional
systems, the normalisation condition (2.7) reduces to

+00
/ |W(x, t)%dx = 1. (2.21)
—00

However, the plane wave (2.13) does not satisfy this requirement, since the integral
on the left of (2.21) is given in this case by

+00 +00
/ |W(x,0)*dx = A dx 222
—00 —00

and hence does not exist. Similarly, the three-dimensional plane wave (2.16) cannot
be normalised according to (2.7). There are two ways out of this difficulty. The first
is to give up the concept of absolute probabilities when dealing with wave functions
such as (2.13) or (2.16) which are not square integrable. Instead, |W(r, t)|dr is
then interpreted as the relative probability of finding the particle at time ¢ in a
volume element dr centred about r, so that the ratio |W(ry, 1)|?/|W(rs, t)|? gives
the probability of finding the particle within a volume element centred around r = ry,
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compared with that of finding it within the same volume element at r = r,. For the
particular case of the plane wave (2.16), we see that |¥|? = |A|?, so that there is an
equal chance of finding the particle at any point. The plane wave (2.16) therefore
describes the idealised situation of a free particle having a perfectly well-defined
momentum, but which is completely ‘delocalised’. This suggests a second way out
of the difficulty, which is to give up the requirement that the free particle should
have a precisely defined momentum, and to superpose plane waves corresponding to
different momenta to form a localised wave packet, which can be normalised to unity.
It is to this question that we now turn our attention.

Wave packets

We have seen in the preceding section that plane waves such as (2.13) or (2.16)
associated with free particles having a definite momentum are completely delocalised.
To describe a particle which is confined to a certain spatial region, a wave packet can
be formed by superposing plane waves of different wave numbers. Of course, in
this case the momentum no longer has a precise value, but we shall construct a wave
packet which ‘represents’ a particle having fairly precise values of both momentum
and position.

Let us begin by considering the one-dimensional case. In order to describe a
free particle confined to a region of the x-axis, we superpose plane waves of the
form (2.13), where we now allow p, = hk to be either positive or negative. The most
general superposition of this kind is then given by the integral

+oc k
W(x, 1) = Quh)~'" / elP =t (p)dp, (223)

—oC

where the factor (27r/)~"/? in front of the integral has been chosen for future conve-
nience. The function ¢ (p,) is the amplitude of the plane wave corresponding to the
momentum p,. In general it is a complex function, but it is sufficient for our present
purposes to discuss only the case for which ¢ (p,) is real.

Let us assume that ¢(p,) is sharply peaked about some value p, = po, falling
rapidly to zero outside an interval (po — Apy, po + Apy). Writing (2.23) in the form

+oc
W(x,t) = Q2rh)~'? / e?P Mg (p)dpy (2.24)
where
B(px) = pxx — E(p)t (2.25)

we see that | W (x, 1)| is largest when B(p,) is nearly constant in the vicinity of p, = py.
Indeed, if B(p,) were varying significantly over the interval (po — Apy, po + Apy),
the factor expliB(p.)/k] would oscillate rapidly, so that the value of the integral on
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the right of (2.24) would be small. Thus |W (x, ¢)| will only be significant in a limited
region, its maximum value occurring when the stationary phase condition

[dﬂ(px)] —0 (2.26)
dpx Py=DPo

is satisfied. This condition determines the centre of the wave packet, which upon
using (2.25) is seen to travel according to the law

x = vyt 2.27)
where
dE(p,
vy = [ (P )] . (2.28)
dp“' Pc=po

It follows from (2.27) that the centre of the wave packet moves with the constant
velocity v, which is known as the group velocity of the packet. From (2.28) and the
fact that E = Aw, and p, = hik, we see that the group velocity can also be written as

_ [ dew(k)
Vg = [—dk ]k=k0 (2.29)

with kg = po/h. We remark that this velocity is, in general, different from the phase
velocity vy, which is the velocity of propagation of the individual plane waves (2.13)
and is given for a particular plane wave A expli(kox — w(ko)t)] by

w (ko) _ E(po)
ko po

In the macroscopic limit the motion of a particle must be governed by the laws
of classical mechanics, in accordance with the correspondence principle (see Sec-
tion 1.4). In this limit the extension of the wave packet is negligible so that the group
velocity v, can be identified with the classical velocity v = py/m of the particle

Po
v= —.
m

Uph = (2.30)

Vg = (2.31)
Combining this result with (2.28) allows us to determine the functional dependence
of E(py) on p,. We have

dE(p,

dEp) _ Pe (2.32)

dp, m
so that E(p,) = p?/2m + constant. We may set the constant of integration equal
to zero because the zero of energy can be chosen arbitarily, only energy differences
being of physical interest. Hence we have
p?

E(po) = e (2.33)

It should be noted that since E = hv, the absolute value of the frequency has no
physical significance in quantum mechanics, in contrast with classical wave theory
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(e.g. sound waves). We remark that since in our case E(pg) = ptz) /2m, the phase
velocity (2.30) is given by
Po/2m _ po _ Vg

o am = (2.349)

vph =

Let us return to the expression (2.23) of the wave packet and express
E(py) = p2/2m in the form

(px — P0)2
2m
(px — po)’
2m '
Since the function ¢(p,) in (2.23) is negligible except in the interval
(po — Apx, po + Ap,) we can neglect the third term on the right of (2.35), provided
t is small enough so that

2
E(ps) = ;—r‘r’l + %(px = po) +

= E(po) + vg(px — po) + (2.35)

ﬁ(z&px)zt <« 1. (2.36)

Indeed, if the condition (2.36) is satisfied, the quantity exp[—i(p, — po)*t/2mh]
which occurs in the integrand on the right of (2.23) is approximately equal to unity.
Making this approximation, equation (2.23) reduces to

W(x, 1) = elPox—EP/h gy 1) (2.37)
where
+00
P, = @um) 2 [ eromening o ap, (238)
—00

The wave packet (2.37) is the product of a plane wave of wavelength Ao = h/|po| and
angular frequency wy = E(po)/h times a modulating amplitude or envelope function
F(x, t) such that [W(x, 1)|> = | F(x, t)|*. Since

F(x,t =0) = F(x + vgt, t) (2.39)

this envelope function propagates without change of shape with the group velocity v,
(see Fig. 2.4). It should be borne in mind that this is only true for times ¢ satisfying
the condition (2.36); at later times the shape of the wave packet will change as it
propagates.

Fourier transforms and momentum space wave function

Looking back at the wave packet (2.23), defining ¢ (x) = W (x, t = 0) and using the
results of Appendix A, we see that the functions

V() = k)2 / P (p,)dps (2.40)
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Re¥(x, 1)

=V

Figure 2.4 The function ReW (x, t) for a wave packet propagating along the x-axis, with a group
velocity vg.

and

¢ (ps) = Quh)~'? / e P My (x)dx (2.41)

are Fourier transforms of each other. More generally, at time ¢, we can introduce a
function ®(p,, t) such that

+00 .

W(x, 1) = Qrh)~'? / P d(p,, H)dp, (242
—00

and
+00 .

®(py,t) = 2mh)~'2 / e P (x, r)dx (2.43)
—00

are also mutual Fourier transforms. The function ®(p,, t) is called the wave function
in momentum space, and we see that ¢ (p,) = ®(p,,t = 0). The definition of the
momentum space wave function given by (2.43) is completely general and holds for
all types of wave function W (x, t), including the free particle wave packets which we
have been considering.

From Parseval’s theorem (see equation (A.43) of Appendix A), we infer that if the
wave function ¢ (p,) is normalised to unity in the sense that

+00
/ l(po)Pdpy =1 (2.44)

then the wave function ¥ (x) = W(x,t = 0) given by (2.40) is also normalised to
unity. Moreover, once W (x, t) is normalised to unity at z = 0, it remains normalised
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to unity at all times. Indeed,

+00 +oc +oc +00 . i
/ W*(x, W (x, Ndx = (2nh)"/ dx/ dpx/ dpeltre=rosi/h
— —0oC —0oC —0o0

oo

xe HEPO=E@DUMgx(pyg (p )

400 +00 o ,
= / dp. / dp.8(p. — p,)e IEPI=E@ON RG> yg (p,)
—0C — 00

+00
_ / ¢ (P (po)dps

=1 (2.45)

where in the second line we have introduced the Dirac delta function §(p, — p;) such
that (see (A.18))

@y /*” elP—rox/ng, — (2n)“/

[e ] —00

+x . ' ’
ell(py=pDx ldx'

= 8(py — P}) (2.46)

and used the property (A.26) in the third line. The result (2.45) expresses the
conservation of probability, which is clearly a requirement of the theory. We note
that if W(x, t) is normalised to unity, so is also the momentum space wave function
Q(px.1).

Gaussian wave packet

As an example, we shall now study the particular case in which the function ¢ (p,)
is a Gaussian function peaked about the value pg

(px — po)z]
2(Apy)?

where Ap,, which we call the width of the distribution in py, is a constant such that
|¢ (px)|? drops to 1/e of its maximum value at p, = py £ Ap, (see Fig. 2.5(a)). The
constant C in (2.47) is a normalisation constant which we shall choose in such a way
that the normalisation condition (2.44) is satisfied. Using the known result

¢(pr)=C CXP[— (2.47)

+00 N P 1/2 )
/ e e Pudu = (—) ef /4 (2.48)
o a
with u = p, — pp, @ = (Ap,)~2 and B8 = 0, we have
+oc
/ 6 (polPdp. = ICPr ' Ap,. (2.49)
—0oC

The normalisation condition (2.44) is therefore fulfilled by taking

ICI? ==~"2(Ap)~". (2.50)
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Figure 2.5 (a) The function |¢(y)}? = 7~/ exp(—y?), where y = (px — po)/Apx.
(b) The function |y (2)}? = 7~ 1/2 exp(—22), where z= (Apyx/h)x.

The constant C is determined by (2.50) apart from a phase factor of unit modulus,
which can be set equal to one, so that we can take C to be given by

C =n"Y4Ap) 12 (2.51)

Substituting ¢ (p,) given by (2.47) into (2.40) and using (2.48) and (2.51), we find
that

V) = Wx, 1 =0) = n~ a7 2(Ap,) Peim /M= (Ar /2 2.52)

Apart from the phase factor exp(ipox/h), this function is again a Gaussian. We
remark that |1 (x)|?> has a maximum at x = 0 and falls to 1/e of its maximum value
at x = +Ax, where Ax = hi/Ap, is the width of the distribution in the x variable
(see Fig. 2.5(b)). Given the above definitions of the ‘widths’ Ax and Ap,, we see
that for a Gaussian wave packet AxAp, = k. Thus if we decrease Ap, so that the
wave function in momentum space, ¢(p,), is more sharply peaked about p, = py,
then Ax will increase and ¥ (x) becomes increasingly ‘delocalised’. Conversely,
if Ap, is increased, so that ¢(p,) is ‘delocalised’ in momentum space, then v (x)
will become more strongly localised about x = 0. We shall return shortly to this
important property, which is of a general nature. We note from (2.40) and (A.26) that
in the limit in which ¢ (p,) is the delta function §(p, — po), the wave function ¥ (x)
becomes the plane wave (274)~'/2 exp(i pox /h), which is completely delocalised.

Let us now examine how the Gaussian wave packet evolves in time. Using (2.23),
(2.33), (2.47), (2.51) and (2.48) we find that

Apx/h 2

1 4+ i(Apy)3t/mh

< e 1POX/R = (Aps /Y2 /2 = ipt/2mh
P I +i(Apy)2t/mh

W(x,t) = 71_"/4[

(2.53)
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P(x, t)T P(x, )4 P(x, )4
=0 t=t =21
1 1F |
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x|=vgtl x2=2vgt,

Figure 2.6 The position probability density P(x, t) = |W(x, t)? for a Gaussian wave packet at
timest =0, t =4 and t = 2t;, plotted in arbitrary units.

and the corresponding position probability density is
Apx/h
(1 + (Apo)'?/m2h%)' /2

«ox [_ (Apx/h)*(x — vgt)z]
P T+ (apnyit/m2i

P(x,t)=|¥(x, 0 =n"'?

(2.54)

where we recall that vy; = pg/m is the group velocity of the packet. It is clear
from (2.54) that the centre of the wave packet moves uniformly with the velocity v,.
The width of the packet, defined so that P(x, t) falls to 1/e of its maximum value at
the points x — vyt = *Ax, is given by

A . 4 172
[1 + (mfhg 12] (2.55)

Ax(t) = Ap
X

and hence increases with time. However, if the time is sufficiently small so that

1y = (2.56)

(Apx)?
the second term in brackets in (2.55) is very small and the wave packet propagates
without changing its width appreciably. This is in accordance with our general
discussion (see (2.36)—(2.39)). The spreading of the probability density (2.54) is
illustrated in Fig. 2.6, where P(x,t) is shown for times ¢t = 0,¢ = t; and t = 2¢,.

To take a particular case, consider a Gaussian wave packet associated with an
electron which at time ¢ = 0 is localised to within a distance 10~!° m characteristic
of atomic dimensions, so that Ap, = //Ax ~ 1072* kg m s~!. According to (2.55)
the wave packet will have spread to twice its size at time t = +/31; ~ 107! s (see
Problem 2.7). On the other hand, for a macroscopic object having a mass of 1 g,
whose position is initially defined within an accuracy Ax >~ 10~ m, we find that the
width of the packet doubles after a time ¢ > 10'? s, which is larger than the estimated
age of the universe.
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A word of caution should be said about the interpretation of these results. Let us
suppose that we have a wave packet representing an electron, which is spread so that
the width of the packet is, for example, Ax = 1 km at a given time. If an electron
detector is placed at a particular position at that time, it will record the presence or
absence of the ‘complete’ electron, since when the electron manifests itself in the
detection process it is indivisible. Before the electron is detected the wave function
determines the probability that the electron will be found at a certain place, at a given
time. As soon as the electron has been detected, its location is of course known to
within a precision Ax" < Ax, so that a new wave function must describe the situation.
This change of the wave function upon measurement is called the ‘collapse of the
wave packet’. A more careful analysis of this measurement problem can be based on
the study of the combined wave function of the measured system and the measuring
apparatus. Using this approach, it will be shown in Chapter 17 that the idea of an
instantaneous ‘collapse’ of ‘reduction’ of the wave function on measurement can be
avoided.

Wave packets in three dimensions

Our discussions of one-dimensional free-particle wave packets can easily be extended
to three dimensions. By superposing plane waves of the form (2.16) we obtain the
wave packet

+00 +00 +00 )
W(r, 1) = Quh)™? / dpx f dpy / dp.ePr=EPMg (p)
—00 —00 —00

= @2 [ et O pyap @57
where dp = dp,dp,dp, is the volume element in momentum space.
Writing ¥ (r) = W(r, ¢ = 0) we see from Appendix A that

v = @ [y @58)
and
o(0) = @iy [ Py @ar 259

are three-dimensional Fourier transforms of each other. Paralleling our discussion of
the one-dimensional case, a momentum space wave function ® (p, t) can be introduced
as the Fourier transform of the wave function W(r, t), so that

W(r, 1) = 2rh)™Y? / e (p, r)dp (2.60)
and

®(p, 1) = Qrh)™3? / e Py (r, £)dr (2.61)
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and we note that ¢(p) = ®(p, ¢ = 0). As in the one-dimensional case (see (2.43))
this definition of the momentum space wave function is completely general, and holds
for all types of wave functions W (r, ¢). If ¢(p) is normalised to unity, then W (r, ¢) is
also normalised to unity at all times, i.e. satisfies (2.7). The momentum space wave
function ®(p, ¢) will then also be normalised to unity, satisfying

/ |®(p, 1)*dp = 1. 2.62)
As a result, the quantity
M(p, t)dp = |®(p, 1)’dp = ®*(p, )P (p, 1)dp (2.63)

is the probability at time ¢ that the momentum of the particle lies within the momentum
space volume element dp = dp,dp,dp. about the point p = (p., py, p.).

A three-dimensional wave packet associated with a free particle having fairly well
determined values of both position coordinates (x, y, z) and momentum coordinates
(px» Py, p:) can be constructed analogously to the one-dimensional case. Assuming
that the function ¢ (p) in (2.57) is peaked about p = pg, and setting

B(p) = p.r — E(p)t (2.64)
one finds (Problem 2.8) that the centre of the wave packet, defined by the condition'
[Vpﬂ(p)]p=p0 =0 (2'65)

travels with a uniform motion according to the law

I =Vt (2.66)
where
Vg = [VpE(p)]p=pn (2.67)

is the group velocity of the wave packet. Equations (2.66) and (2.67) are the general-
isations of equations (2.27) and (2.28), respectively. In the classical limit the group
velocity v, must be equal to the velocity v = po/m of the particle, from which we
find that the functional relation between E and p is given by

_r
E(p) = . (2.68)
m

apart from an additive constant which can be chosen to be zero.

" In equation (2.65), VoB(p) is a vector having Cartesian components 38(py, py. p:)/dp«,
"ﬂ(l’x Py I’:)/al’,r and 3ﬂ([’t» Py, P:)/dP:
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Wave packets in a slowly varying potential

The general idea we have developed for the motion of a free-particle wave packet in
the classical limit can be extended to describe the motion of a particle in a potential
V (r) provided that the potential does not vary appreciably over a distance comparable
to the de Broglie wavelength of the particle. In this case the centre of the wave packet
travels along the trajectory followed by a classical particle moving in the potential
V(r). As the centre of the wave packet moves along this trajectory, the de Broglie
wavelength changes slowly, being determined by the relation

_h_ h
T p T 2m(E - V(D))

(2.69)

where p = [2m(E — V(r))]'/? is the classical local momentum of the particle.

The Heisenberg uncertainty principle

We have shown in the case of a one-dimensional Gaussian wave packet that the ‘width’
Ax of the distribution in the position variable x is linked with the ‘width’ Ap, of the
distribution in the momentum p, by the relation AxAp, > k. In fact, it is a general
property of Fourier transforms that ‘widths’ in position and momentum satisfy the
relation

AxAp, > h (2.70)

where the sign 2> means ‘greater than or of the order of’. In the context of quantum
mechanics this is called the Heisenberg uncertainty relation for position and momen-
tum, according to which a state cannot be prepared in which both the position and
momentum of a particle can be defined simultaneously to arbitrary accuracy. In fact,
the product of the uncertainty Ax in the precision with which the position can be
defined with the uncertainty Ap, in the precision with which the momentum can be
defined, cannot be made smaller than a quantity of order /. At this point we have not
given a precise definition of the uncertainties Ax and Ap,, but this will be done later,
in Chapter 5.

The relation (2.70) is easily generalised to three dimensions by using the prop-
erties of three-dimensional Fourier transforms. The three-dimensional form of the
Heisenberg uncertainty relations for position and momentum is

AxAp, 2k, AyAp, 2 h, AzAp- Z h. .71

~

It should be noted that there is no relation between the uncertainty in one Cartesian
component of the position vector of a particle, for example Ax, and the uncertainty
in a different Cartesian component of the momentum, for example Ap,. The only
restrictions are on the ‘complementary’ pairs: Ax, Ap,; Ay, Ap,;and Az, Ap..

It is worth stressing that the Heisenberg uncertainty relations do not place any
restriction on the precision with which a position measurement of a particle can be



