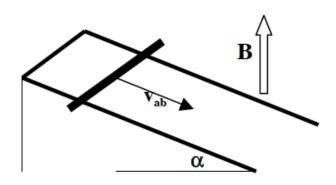
## Universita` di Trieste, A.A. 2021/2022


## Laurea Triennale in Ingegneria Elettronica e Informatica Fisica Generale 2 - Seconda simulazione, 9/12/2021

| Cognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nome    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Cognonic minimum minim | 1401116 |

## Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate.

- 1. Un fascio di particelle di carica positiva composto da protoni ( $m_p = 1.67 \cdot 10^{-27}$  kg) e deutoni (costituiti da un protone e un neutrone, che per noi hanno la stessa massa) è accelerato mediante una differenza di potenziale  $\Delta V = 10^6$  V. Una volta accelerate, le particelle si muovono in direzione dell'asse x del nostro sistema di riferimento,  $\vec{v} \propto \hat{i}$ , ed entrano in una regione, definita da  $x \ge 0$ , in cui è presente un campo magnetico  $\vec{B} = (1.0T)\hat{k}$  diretto lungo l'asse z. All'uscita delle particelle da questa regione determinate:
- a. la distanza D tra i protoni e i deutoni del fascio;
- b. le velocità (vettore!) e di protoni e deutoni, sia all'entrata che all'uscita della regione.
- c. Supponiamo che sia presente anche un campo elettrico  $\vec{E} = (5 \cdot 10^5 V/m)\hat{k}$ , ricalcolate la velocita` finale dei protoni in questo caso.



2. In un piano inclinato di angolo  $\alpha$ =30° sono poste due rotaie parallele di resistenza elettrica trascurabile, connesse elettricamente tra loro alla sommità e distanti L=10 cm. Su di esse può scorrere senza attrito una sbarretta conduttrice  $\mathbf{ab}$ , di massa m=10.0 g e resistenza elettrica R=0.10 $\Omega$  . Il tuttto e` immerso in un campo magnetico uniforme e costante, diretto

| verticalmente, di modulo $B$ =0.5 T. All'istante $t$ =0 la sbarretta ab viene lasciata libera di scivolare lungo il piano inclinato.                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Calcolate la forza elettromotrice indotta nella sbarretta ${\bf ab}$ in funzione della velocità $v_{ab}$ della sbarretta, quantificandola per $v_{ab}$ = 1 m/s. (Prendiamo come senso positivo della corrente quello antiorario quando il circuito e` visto dall'alto). |
| b. Determinate il valore della velocità che realizza l'equilibrio dinamico tra forza magnetica e forza peso.                                                                                                                                                               |
| c. Riportate la corrente (con segno!) che circola nel circuito in equilibrio dinamico.                                                                                                                                                                                     |
| 3. Un circuito RLC serie ha $R=144\Omega$ , $L=124mH$ e $C=28\muF$ , ed e` alimentato da una f.e.m. alternata con $V_{\it eff}=220V$ e $v=50.0Hz$ .                                                                                                                        |
| a. Calcolare la corrente che scorre nel circuito e il suo sfasamento con la tensione.                                                                                                                                                                                      |
| b. Calcolare la potenza dissipata nella resistenza utilizzando il fattore di potenza.                                                                                                                                                                                      |
| c. Vogliamo portare il circuito alla risonanza, a parita` di frequenza della tensione, aggiungendo in serie un altro elemento. Cosa dobbiamo aggiungere?                                                                                                                   |