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Stability of Discrete-Time Dynamic Systems

When dealing with stability in the context of dynamic systems we
consider three different cases (listed in order of decreasing
generality):

1. Stability of state movements
2. Stability of equilibrium states
3. Stability of linear systems

Remark. Concerning case 1., we provide definitions and concepts in
the context of general abstract dynamic systems so, for example,
time-instants belong to any legitimate set of times T .
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Stability of State Movements



Stability of State Movements

• Consider a general abstract dynamic system characterised by
the state-transition function φ(t, t0, x0, u(·))

• Then, consider a generic nominal state movement for a given
initial state x̄0 and a given input function u(·) :

x̄(·) = φ(t, t0, x̄0, ū(·))

• Now, consider the perturbed state movement generated by a
perturbation of the initial state and a perturbation of the input
function:

x(0) = x̄0 + δx̄

u(·) = ū(·) + δu(·)
=⇒ φ(t, t0, x̄0 + δx̄, ū(·) + δu(·))

Perturbed State Movement
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Stability with Respect to Perturbations of the Initial State

The nominal state movement

x̄(·) = φ(t, t0, x̄0, ū(·))

is stable with respect to perturbations of the initial state x̄0 if

∀ ε > 0 , ∀t0 > 0 ∃ δ(ε, t0) > 0 such that if ∥δx̄∥ < δ(ε, t0)

then, it follows that

∥φ(t, t0, x̄0 + δx̄, ū(·))− φ(t, t0, x̄0, ū(·))∥ < ε , ∀ t ≥ t0
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Asymptotic Stability with Respect to Perturbations of the Initial
State

The nominal state movement x̄(·) = φ(t, t0, x̄0, ū(·)) is
asymptotically stable with respect to perturbations of the initial
state x̄0 if:

• it is stable, that is, if

∀ ε > 0 , ∀t0 > 0 ∃ δ(ε, t0) > 0 such that if ∥δx̄∥ < δ(ε, t0)

then, it follows that

∥φ(t, t0, x̄0 + δx̄, ū(·))− φ(t, t0, x̄0, ū(·))∥ < ε , ∀ t ≥ t0

• it is attractive, that is, ∀t0 > 0 ∃ η(t0) > 0 such that

lim
t→+∞

∥φ(t, t0, x̄0 + δx̄, ū(·))− φ(t, t0, x̄0, ū(·))∥ = 0 , ∀ ∥δx̄∥ < η(t0)
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Unstability with Respect to Perturbations of the Initial State

The nominal state movement

x̄(·) = φ(t, t0, x̄0, ū(·))

is unstable with respect to perturbations of the initial state x̄0 if it
is not stable with respect to such a kind of perturbations.
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Geometrical Interpretation

• (0): nominal state
movement

• (1): perturbed state
movement remaining
confined in the ”tube” of
radius ε

• (2): perturbed state
movement remaining
confined in the ”tube” of
radius ε and
asymptotically converging
to the nominal movement

• (3): perturbed state
movement crossing the
”tube” of radius ε
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Stability with Respect to Perturbations of the Input Function

The nominal state movement

x̄(·) = φ(t, t0, x̄0, ū(·))

is stable with respect to perturbations of the input function ū(·) if

∀ ε > 0 , ∀t0 > 0 ∃ δ(ε, t0) > 0 such that if ∀∥δū(·)∥ < δ(ε, t0)

then, it follows that

∥φ(t, t0, x̄0, ū(·) + δū(·))− φ(t, t0, x̄0, ū(·))∥ < ε , ∀ t ≥ t0
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Unstability with Respect to Perturbations of the Input Function

The nominal state movement

x̄(·) = φ(t, t0, x̄0, ū(·))

is unstable with respect to perturbations of the input function ū(·)
if it is not stable with respect to such a kind of perturbations.
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Stability of Equilibrium States



Stability of Equilibrium States

• Consider the discrete-time dynamic system x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

and the equilibrium state x̄ corresponding to a constant input
sequence u(k) = ū, ∀ k ≥ 0 , that is:

x̄ = f(x̄, ū)

• Now, consider a perturbation of the initial state with respect to
the equilibrium state x̄ :

x(0) = x̄+ δx̄

u(k) = ū, k ≥ 0 =⇒ x(k) ̸= x̄, k ≥ 0
perturbed state movement
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Stability of Equilibrium States (cont.)

The equilibrium state is asymptotically stable if:

• It is stable, that is:

∀ ε > 0 ∃ δ(ε) > 0 such that :
∀x(0) : ∥δx̄∥ < δ(ε) =⇒ ∥x(k)− x̄∥ < ε, ∀ k ≥ 0

• It is attractive, that is:

lim
k→∞

∥x(k)− x̄∥ = 0

In qualitative terms:

when the initial state is perturbed, the state remains ”close” to the
nominal equilibrium state and tends to return asymptotically to this
equilibrium state.
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Stability of Equilibrium States (cont.)

The equilibrium state is unstable if it is not stable.
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Stability of Equilibrium States: Geometric Interpretation

Stability Asymptotic Stability
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Stability of Equilibrium States

Stability of State Movements and of
Equilibrium States



Stability of State Movements and of Equilibrium States

• Consider the general discrete-time dynamic system

x(k + 1) = f(x(k), u(k), k)

and consider a nominal state movement

x̄(k) = φ(k, k0, x̄0, {u(k0, . . . , u(k − 1)})

starting from the initial state x̄(k0) = x̄0 .
• We analyse the stability of the nominal movement x̄(k) with
respect to perturbations of the initial state x̄0 , that is, we
consider the perturbed state movement

x(k) = φ(k, k0, x0, {u(k0, . . . , u(k − 1)})

starting from the perturbed initial state x0 ̸= x̄0 .
• Hence, introducing the difference between the perturbed and
the nominal state movement z(k) := x(k)− x̄(k) , one gets:

z(k+1) = x(k+1)−x̄(k+1) = f(z(k)+x̄(k), ū(k), k)−f(x̄(k), ū(k), k)
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Stability of State Movements and of Equilibrium States (cont.)

• Letting:

wx̄,ū(z(k), k) := f(z(k) + x̄(k), ū(k), k)− f(x̄(k), ū(k), k)

it follows that the dynamics of z(k) can be described by the
autonomous (in general time-varying) system

z(k + 1) = wx̄,ū(z(k), k) (⋆)

where the function wx̄,ū is parametrised by the nominal state
movement {x̄(k)} and the nominal input {ū(k)} .

• The function wx̄,ū satisfies:

wx̄,ū(0, k) = 0 , ∀k ≥ k0

Hence, the constant movement

z̃(k) = 0, ∀ k ≥ k0

is an equilibrium state of the system (⋆) .
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Stability of State Movements and of Equilibrium States (cont.)

State Movement Stability Analysis
The stability analysis of a generic nominal state movement can
always be carried out by analysing the stability of the zero-state
as an equilibrium state of a suitable autonomous system.

Therefore:

There is no loss of generality in dealing only with the stability
analysis of equilibrium states
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Stability of Linear Discrete-Time
Systems



Stability of Linear Discrete-Time Systems

• Consider the general discrete-time linear dynamic system

x(k + 1) = A(k)x(k) +B(k)u(k)

and consider a nominal state movement

x̄(k) = φ(k, k0, x̄0, {u(k0, . . . , u(k − 1)})

starting from the initial state x̄(k0) = x̄0 .
• We analyse the stability of the nominal movement x̄(k) with
respect to perturbations of the initial state x̄0 , that is, we
consider the perturbed state movement

x(k) = φ(k, k0, x0, {u(k0, . . . , u(k − 1)})

starting from the perturbed initial state x0 ̸= x̄0 .
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Stability of Linear Discrete-Time Systems (cont.)

• Hence, introducing the difference between the perturbed and
the nominal state movement z(k) := x(k)− x̄(k) , one gets:

z(k + 1) = x(k + 1)− x̄(k + 1)
= A(k)[z(k) + x̄(k)] +B(k)ū(k)−A(k)x̄(k)−B(k)ū(k)

= A(k)z(k)

• It follows that the dynamics of z(k) can be described by the
autonomous (in general time-varying) system

z(k + 1) = A(k)z(k) (⋆)

• Hence, the constant movement

z̃(k) = 0, ∀ k ≥ k0

is an equilibrium state of the system (⋆) .
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Stability of Linear Discrete-Time Systems (cont.)

Summing up:
For linear systems the dynamics of the difference between the
perturbed and the nominal state movement z(k) = x(k)− x̄(k)

satisfies:
z(k + 1) = A(k)z(k)

and:

• The dynamics of z(k) does not depend on the specific initial
state x̄0 but on the magnitude of the initial state perturbation
z(k0) = x(k)− x̄0

• All state movements have the same stability properties or, in
other terms, stability is not a property of a specific nominal
state movement but, instead, is a global property of the linear
dynamic system
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Stability of Linear Discrete-Time
Systems

Analysis of the Free State Movement



Stability of Linear Systems via Analysis of the Free State Move-
ment

• Given the linear time-invariant discrete-time dynamic system{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

• In equilibrium conditions:

x(0) = x̄

u(k) = ū, k ≥ 0

=⇒ x(k) = Ak x̄+

k−1∑
i=0

Ak−i−1Bū = x̄, ∀k ≥ 0
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Stability of Linear Systems via Analysis of the Free State Move-
ment (cont.)

• Perturbing the equilibrium conditions:

x(0) = x̄+ δx̄

u(k) = ū, k ≥ 0 =⇒ x(k) ̸= x̄, k ≥ 0
perturbed state movement

=⇒ x(k) = Ak (x̄+ δx̄) +

k−1∑
i= 0

Ak−i−1Bū

= x̄+Ak δx̄

Hence:
δx(k) = Akδx̄

• Also, recall that:
xl(k) = Ak x(0)
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Stability of Linear Systems via Analysis of the Free State Move-
ment (cont.)

Stability and Ak

• The stability properties do not depend on the specific value
taken on by the equilibrium state x̄

• Hence, the stability properties are a structural property of the
linear dynamic system as a whole

• The stability properties depend on the time-behaviour of the
n× n elements of the matrix Ak :

• Stability ⇐⇒ all elements of Ak are bounded ∀ k ≥ 0
• Asymptotic stability ⇐⇒ lim

k→∞
Ak = 0

• Instability ⇐⇒ at least one element of Ak diverges
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Stability of Linear Systems via Analysis of the Free State Move-
ment (cont.)

Recall that the matrix Ak can be expressed as a sum of the
so-called response modes (Part 2):

• Let λ1, . . . , λσ the distinct eigenvalues of A and ni the

algebraic multiplicity of such eigenvalues (with
σ∑

i=1
ni = n ).

• If λi ̸= 0 , i = 1 , . . . σ then

Ak =

σ∑
i=1

[
Ai0λ

k
i 1(k) +

ni−1∑
l=1

Aill!

(
k

l

)
λk−l
i 1(k − l)

]

• if λj = 0 , λj ∈ {λ1, . . . , λσ} then the corresponding response
modes are

Aj0 · δ(k) +
nj−1∑
l=1

Ajl l! δ(k − l)
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Stability of Linear Systems via Analysis of the Free State Move-
ment (cont.)

• The matrices Ail can be determined as

Ail =
1
l!

1
(ni − 1− l)!

lim
z→λi

{
dni−1−l

dzni−1−l

[
(z − λi)

ni(zI −A)−1
]}

where l = 0, 1, 2, . . . , ni − 1 .
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Stability of Linear Systems via Analysis of the Free State Move-
ment (cont.)

Stability and Ak

Using the response modes

Ak =

σ∑
i=1

ni−1∑
l=0

[
Aill!

(
k

l

)
λk−l
i 1(k − l)

]

For the stability analysis, the boundedness of the free-state
movement has to be ascertained. Since the matrices Ajl does not
depend on k , it suffices to analyse the boundedness of the terms(

k

l

)
λk−l
i 1(k − l) l = 0, 1, 2, . . . , ni − 1

where ni is the algebraic multiplicity of the eigenvalue λi .
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Stability of Linear Discrete-Time
Systems

Stability Criterion Based on Eigenvalues



Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ R , multiplicity ni = 1 (so l = 0 ).
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ R , mult. ni > 1 ( l = 0, 1, . . . ni − 1 ).
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ C , multiplicity ni = 1
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ C , multiplicity ni > 1
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Stability & Behaviour of Response Modes: Example 1

Asymptotically Stable

A =

[
1/2 0
0 1/2

]

λ1 = λ2 =
1
2

Ak =

[
(1/2)k 0
0 (1/2)k

]

Response modes for
x1(k) and x2(k)
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Stability & Behaviour of Response Modes: Example 2

Asymptotically Stable

A =

[
1/2 1
0 1/2

]

λ1 = λ2 =
1
2

Ak =

[
(1/2)k k(1/2)k−1
0 (1/2)k

]

Response mode for
x1(k)

Response mode for
x2(k)
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Stability & Behaviour of Response Modes: Example 3

Stable (not asymptotically)

A =

[
1 0
0 1

]

λ1 = λ2 = 1

Ak =

[
1 0
0 1

]

Response modes for
x1(k) and x2(k)
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Stability & Behaviour of Response Modes: Example 4

Unstable

A =

[
1 1
0 1

]

λ1 = λ2 = 1

Ak =

[
1 k

0 1

]

Response mode for
x1(k)

Response mode for
x2(k)
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Algebraic and Geometrical Multiplicity of an Eigenvalue

Algebraic vs Geometrical Multiplicity of an Eigenvalue
• Let λ̄ be an eigenvalue of A .
• The eigenvectors of A associated with λ̄ are the nonzero
vectors in the nullspace of A− λ̄ I , called the eigenspace of A

for λ̄ and denoted by

null
(
A− λ̄ I

)
= EA

(
λ̄
)

• The geometric multiplicity of the eigenvalue λ̄ of A is the
dimension of EA

(
λ̄
)
.

• The algebraic multiplicity of the eigenvalue λ̄ of A is the
multiplicity of λ̄ as a root of the characteristic polynomial of A

pA(z) = det (zI −A) .
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Algebraic and Geometrical Multiplicity of an Eigenvalue (cont.)

Diagonalisable Matrices – Algebraic vs Geometrical Multiplicity of
an Eigenvalue

• In general, an eigenvalue’s algebraic and geometric multiplicity
can differ. However, the geometric multiplicity can never
exceed the algebraic one.

• Let λ1, . . . , λσ the distinct eigenvalues of A and ni the

algebraic multiplicity of such eigenvalues. Of course
σ∑

i=1
ni = n

• If for every eigenvalue of A, the geometric multiplicity equals
the algebraic multiplicity, then A is said to be diagonalisable.
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Complete Stability Criterion Based on Eigenvalues of A

Stability Criterion
Given the system x(k + 1) = Ax(k) and denoting by
λi, i = 1, . . . n the eigenvalues of matrix A .

• |λi| < 1, ∀ i = 1, . . . n ⇐⇒ The system is as. stable
• ∃ i, 1 ≤ i ≤ n : |λi| > 1 =⇒ The system is unstable

• |λi| ≤ 1, ∀ i = 1, . . . n
∃ j, 1 ≤ j ≤ n : |λj | = 1

}
=⇒ The system is not as. stable

• λj : |λj | = 1 have algebraic multiplicity = 1, then the system is
stable (not as.)

• λj : |λj | = 1 have algebraic multiplicity > 1 and the same value
as geometrical multiplicity, then the system is stable (not as.)

• λj : |λj | = 1 have algebraic multiplicity > 1, but the geometrical
multiplicity is different, then the system is unstable

DIA@UniTS – 267MI –Fall 2022 TP GF – L3–p36



Stability of Linear Discrete-Time
Systems

Analysis of the Characteristic
Polynomial



Stability by Analysing the Characteristic Polynomial

• The previous complete stability criterion requires checking
whether the eigenvalues of matrix A belong to the unit circle
in the complex plane

• A number of techniques exist to perform the check above
without explicitly calculating the eigenvalues of matrix A

• Considering the characteristic polynomial

pA(z) = det(zI −A) = φ0z
n + φ1z

n−1 + · · ·+ φn−1z + φn

a suitable bi-linear transformation allows to reduce the
problem of checking whether the roots of polynomial pA(z)
belong to the unit circle in the complex plane to an equivalent
problem of checking whether the roots of a suitable
polynomial qa(w) belong to the complex left half-plane

• This equivalent problem can then be solved by using the
Routh-Hurwitz technique (see the course Fundamentals of
Automatic Control)
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Use of the Bi-linear Transformation

z =
w + 1
w − 1 , z, w ∈ C

|z| < 1 ⇐⇒ Re(w) < 0
|z| = 1 ⇐⇒ Re(w) = 0
|z| > 1 ⇐⇒ Re(w) > 0
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Use of the Bi-linear Transformation (cont.)

Substitute
z =

w + 1
w − 1 , z, w ∈ C

into
pA(z) = φ0z

n + φ1z
n−1 + · · ·+ φn−1z + φn

thus obtaining

qA(w) = (w − 1)n
[
φ0

(w + 1)n

(w − 1)n + φ1
(w + 1)n−1

(w − 1)n−1
+ · · ·

+φn−1
(w + 1)
(w − 1) + φn

]
and hence one gets

qA(w) = q0 w
n + q1 w

n−1 + · · ·+ qn−1 w + qn

with suitable coefficients q0, q1, . . . , qn .
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Use of the Bi-linear Transformation. Example 1

Given
pA(z) = z3 + 2 z2 + z + 1

one gets

qA(w) = (w − 1)3
[
(w + 1)3
(w − 1)3 + 2

(w + 1)2
(w − 1)2 +

w + 1
w − 1 + 1

]
and after some algebra

qA(w) = 5w3 + w2 + 3w − 1

Hence, there is one root of qA(w) on the complex right-half plane
which in turn implies that one of the roots of pA(z) lies outside the
unit circle.
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Use of the Bi-linear Transformation. Example 2

Given
pA(z) = z2 + az + b

with a, b∈R . Thus, one gets:

qA(w) = (w − 1)2
[
(w + 1)2
(w − 1)2 + a

(w + 1)
(w − 1) + b

]
and after some easy algebra

qA(w) = (1+ b+ a)w2 + 2(1− b)w − a+ 1+ b


1+ b+ a > 0
2(1− b) > 0
1+ b− a > 0

=⇒


b > −a− 1
b < 1
b > a− 1
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Use of the Bi-linear Transformation. Example 2 (cont.)

The stability condition has a nice geometric interpretation:


b > −a− 1
b < 1
b > a− 1
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Stability of Linear Discrete-Time
Systems

Stability of Equilibrium States Through
the Linearised System



Stability of Equilibrium States Through the Linearised System -
Time-Invariant Systems

Recall from Part 1

• Consider the nonlinear time-invariant system:

x(k + 1) = f(x(k), u(k))

• Moreover, consider an equilibrium state x̄ obtained by the
constant input sequence u(k) = ū, k ≥ k0.

• Let us perturb the initial state and the nominal input sequence,
thus getting a perturbed state movement:

x(k0) = x̄0 + δx0 ; u(k) = ū+ δu(k) =⇒ x(k) = x̄+ δx(k)

• Hence:

x(k + 1) = x̄+ δx(k + 1) = f(x̄+ δx(k), ū+ δu(k))

≃ f(x̄, ū) + fx(x̄, ū)δx(k) + fu(x̄, ū)δu(k)
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Stability of Equilibrium States Through the Linearised System -
Time-Invariant Systems (cont.)

• Since the equilibrium state x̄ is the constant solution of the
algebraic equation x̄ = f(x̄, ū) , it follows that

δx(k + 1) ≃ Aδx(k) +Bδu(k)

where A ∈ Rn×n, B ∈ Rn×m are constant matrices defined as:

A = fx(x̄, ū) =


∂f1
∂x1

· · · ∂f1
∂xn...
...

∂fn
∂x1

· · · ∂fn
∂xn


x(k)=x̄,u(k)=ū

B = fu(x̄, ū) =


∂f1
∂u1

· · · ∂f1
∂um...
...

∂fn
∂u1

· · · ∂fn
∂um


x(k)=x̄,u(k)=ū
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Stability of Equilibrium States Through the Linearised System -
Time-Invariant Systems (cont.)

Summing up:

The linear time-invariant system obtained by linearization around a
given equilibrium state x̄ obtained by the constant input sequence
u(k) = ū, k ≥ k0 is

δx(k + 1) = Aδx(k) +Bδu(k)
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The Reduced Lyapunov Method for Discrete-Time Systems

• Consider the nonlinear time-invariant system:
x(k + 1) = f(x(k), u(k))

• Moreover, consider an equilibrium state x̄ obtained by the
constant input sequence u(k) = ū, k ≥ k0.

• Consider the free linear time-invariant system obtained by
linearization around the equilibrium state x̄ (the effect of the
input is not considered in the stability of the equilibrium) and
denote by λi, i = 1, . . . n the eigenvalues of matrix A :

δx(k + 1) = Aδx(k)

• |λi| < 1, ∀ i = 1, . . . n =⇒ x̄ is an asymptotically stable
equilibrium state

• ∃ i, 1 ≤ i ≤ n : |λi| > 1 =⇒ x̄ is an unstable equilibrium
state

• In all other situations, no conclusions on the stability of the
equilibrium state can be drawn from the analysis of the
linearised system.
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