Systems Dynamics

Course ID: 267MI - Fall 2022

Thomas Parisini
Gianfranco Fenu

University of Trieste
Department of Engineering and Architecture

267MI -Fall 2022

Lecture 3

Stability of Discrete-Time Dynamic
Systems

Lecture 3: Table of Contents

3. Stability of Discrete-Time Dynamic Systems
3.1 Stability of State Movements
3.2 Stability of Equilibrium States
3.2.1 Stability of State Movements and of Equilibrium States
3.3 Stability of Linear Discrete-Time Systems
3.3.1 Analysis of the Free State Movement
3.3.2 Stability Criterion Based on Eigenvalues
3.3.3 Analysis of the Characteristic Polynomial
3.3.4 Stability of Equilibrium States Through the Linearised System

Stability of Discrete-Time Dynamic Systems

When dealing with stability in the context of dynamic systems we consider three different cases (listed in order of decreasing generality):

1. Stability of state movements
2. Stability of equilibrium states
3. Stability of linear systems

Remark. Concerning case 1., we provide definitions and concepts in the context of general abstract dynamic systems so, for example, time-instants belong to any legitimate set of times T.

Stability of State Movements

Stability of State Movements

- Consider a general abstract dynamic system characterised by the state-transition function $\varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)$
- Then, consider a generic nominal state movement for a given initial state \bar{x}_{0} and a given input function $u(\cdot)$:

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

- Now, consider the perturbed state movement generated by a perturbation of the initial state and a perturbation of the input function:

$$
\begin{aligned}
& x(0)=\bar{x}_{0}+\delta \bar{x} \\
& u(\cdot)=\bar{u}(\cdot)+\delta u(\cdot)
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)+\delta u(\cdot)\right) \\
& \text { Perturbed State Movement }
\end{aligned}
$$

Stability with Respect to Perturbations of the Initial State

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is stable with respect to perturbations of the initial state \bar{x}_{0} if

$$
\forall \varepsilon>0, \forall t_{0}>0 \exists \delta\left(\varepsilon, t_{0}\right)>0 \text { such that if }\|\delta \bar{x}\|<\delta\left(\varepsilon, t_{0}\right)
$$

then, it follows that

$$
\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|<\varepsilon, \forall t \geq t_{0}
$$

Asymptotic Stability with Respect to Perturbations of the Initial

 StateThe nominal state movement $\quad \bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right) \quad$ is asymptotically stable with respect to perturbations of the initial state \bar{x}_{0} if:

- it is stable, that is, if

$$
\forall \varepsilon>0, \forall t_{0}>0 \exists \delta\left(\varepsilon, t_{0}\right)>0 \text { such that if }\|\delta \bar{x}\|<\delta\left(\varepsilon, t_{0}\right)
$$

then, it follows that

$$
\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|<\varepsilon, \forall t \geq t_{0}
$$

- it is attractive, that is, $\forall t_{0}>0 \exists \eta\left(t_{0}\right)>0$ such that

$$
\lim _{t \rightarrow+\infty}\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|=0, \forall\|\delta \bar{x}\|<\eta\left(t_{0}\right)
$$

Unstability with Respect to Perturbations of the Initial State

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is unstable with respect to perturbations of the initial state \bar{x}_{0} if it is not stable with respect to such a kind of perturbations.

Geometrical Interpretation

- (0): nominal state movement
- (1): perturbed state movement remaining confined in the "tube" of radius ε
- (2): perturbed state movement remaining confined in the "tube" of radius ε and asymptotically converging to the nominal movement

- (3): perturbed state movement crossing the "tube" of radius ε

Stability with Respect to Perturbations of the Input Function

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is stable with respect to perturbations of the input function $\bar{u}(\cdot)$ if

$$
\forall \varepsilon>0, \forall t_{0}>0 \exists \delta\left(\varepsilon, t_{0}\right)>0 \text { such that if } \forall\|\delta \bar{u}(\cdot)\|<\delta\left(\varepsilon, t_{0}\right)
$$

then, it follows that

$$
\left\|\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)+\delta \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|<\varepsilon, \forall t \geq t_{0}
$$

Unstability with Respect to Perturbations of the Input Function

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is unstable with respect to perturbations of the input function $\bar{u}(\cdot)$ if it is not stable with respect to such a kind of perturbations.

Stability of Equilibrium States

Stability of Equilibrium States

- Consider the discrete-time dynamic system

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k)) \\
y(k)=g(x(k), u(k))
\end{array}\right.
$$

and the equilibrium state \bar{x} corresponding to a constant input sequence $u(k)=\bar{u}, \forall k \geq 0$, that is:

$$
\bar{x}=f(\bar{x}, \bar{u})
$$

- Now, consider a perturbation of the initial state with respect to the equilibrium state \bar{x} :

$$
\begin{aligned}
& x(0)=\bar{x}+\delta \bar{x} \\
& u(k)=\bar{u}, k \geq 0
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
x(k) \neq \bar{x}, k \geq 0 \\
\text { perturbed state movement }
\end{gathered}
$$

Stability of Equilibrium States (cont.)

The equilibrium state is asymptotically stable if:

- It is stable, that is:

$$
\begin{aligned}
& \forall \varepsilon>0 \exists \delta(\varepsilon)>0 \text { such that : } \\
& \forall x(0):\|\delta \bar{x}\|<\delta(\varepsilon) \quad \Longrightarrow\|x(k)-\bar{x}\|<\varepsilon, \forall k \geq 0
\end{aligned}
$$

- It is attractive, that is:

$$
\lim _{k \rightarrow \infty}\|x(k)-\bar{x}\|=0
$$

In qualitative terms:
when the initial state is perturbed, the state remains "close" to the nominal equilibrium state and tends to return asymptotically to this equilibrium state.

Stability of Equilibrium States (cont.)

The equilibrium state is unstable if it is not stable.

Stability of Equilibrium States: Geometric Interpretation

Stability
Asymptotic Stability

Stability of Equilibrium States

Stability of State Movements and of Equilibrium States

Stability of State Movements and of Equilibrium States

- Consider the general discrete-time dynamic system

$$
x(k+1)=f(x(k), u(k), k)
$$

and consider a nominal state movement

$$
\bar{x}(k)=\varphi\left(k, k_{0}, \bar{x}_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the initial state $\bar{x}\left(k_{0}\right)=\bar{x}_{0}$.

- We analyse the stability of the nominal movement $\bar{x}(k)$ with respect to perturbations of the initial state \bar{x}_{0}, that is, we consider the perturbed state movement

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the perturbed initial state $x_{0} \neq \bar{x}_{0}$.

- Hence, introducing the difference between the perturbed and the nominal state movement $z(k):=x(k)-\bar{x}(k)$, one gets:

$$
z(k+1)=x(k+1)-\bar{x}(k+1)=f(z(k)+\bar{x}(k), \bar{u}(k), k)-f(\bar{x}(k), \bar{u}(k), k)
$$

Stability of State Movements and of Equilibrium States (cont.)

- Letting:

$$
w_{\bar{x}, \bar{u}}(z(k), k):=f(z(k)+\bar{x}(k), \bar{u}(k), k)-f(\bar{x}(k), \bar{u}(k), k)
$$

it follows that the dynamics of $z(k)$ can be described by the autonomous (in general time-varying) system

$$
z(k+1)=w_{\bar{x}, \bar{u}}(z(k), k) \quad(\star)
$$

where the function $w_{\bar{x}, \bar{u}}$ is parametrised by the nominal state movement $\{\bar{x}(k)\}$ and the nominal input $\{\bar{u}(k)\}$.

- The function $w_{\bar{x}, \bar{u}}$ satisfies:

$$
w_{\bar{x}, \bar{u}}(0, k)=0, \quad \forall k \geq k_{0}
$$

Hence, the constant movement

$$
\tilde{z}(k)=0, \quad \forall k \geq k_{0}
$$

is an equilibrium state of the system (\star).

Stability of State Movements and of Equilibrium States (cont.)

State Movement Stability Analysis

The stability analysis of a generic nominal state movement can always be carried out by analysing the stability of the zero-state as an equilibrium state of a suitable autonomous system.

Therefore:
There is no loss of generality in dealing only with the stability analysis of equilibrium states

Stability of Linear Discrete-Time

Systems

Stability of Linear Discrete-Time Systems

- Consider the general discrete-time linear dynamic system

$$
x(k+1)=A(k) x(k)+B(k) u(k)
$$

and consider a nominal state movement

$$
\bar{x}(k)=\varphi\left(k, k_{0}, \bar{x}_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the initial state $\bar{x}\left(k_{0}\right)=\bar{x}_{0}$.

- We analyse the stability of the nominal movement $\bar{x}(k)$ with respect to perturbations of the initial state \bar{x}_{0}, that is, we consider the perturbed state movement

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the perturbed initial state $x_{0} \neq \bar{x}_{0}$.

Stability of Linear Discrete-Time Systems (cont.)

- Hence, introducing the difference between the perturbed and the nominal state movement $z(k):=x(k)-\bar{x}(k)$, one gets:

$$
\begin{aligned}
& z(k+1)=x(k+1)-\bar{x}(k+1) \\
& =A(k)[z(k)+\bar{x}(k)]+B(k) \bar{u}(k)-A(k) \bar{x}(k)-B(k) \bar{u}(k) \\
& =A(k) z(k)
\end{aligned}
$$

- It follows that the dynamics of $z(k)$ can be described by the autonomous (in general time-varying) system

$$
z(k+1)=A(k) z(k) \quad(\star)
$$

- Hence, the constant movement

$$
\tilde{z}(k)=0, \quad \forall k \geq k_{0}
$$

is an equilibrium state of the system (\star).

Stability of Linear Discrete-Time Systems (cont.)

Summing up:

For linear systems the dynamics of the difference between the perturbed and the nominal state movement $z(k)=x(k)-\bar{x}(k)$ satisfies:

$$
z(k+1)=A(k) z(k)
$$

and:

- The dynamics of $z(k)$ does not depend on the specific initial state \bar{x}_{0} but on the magnitude of the initial state perturbation $z\left(k_{0}\right)=x(k)-\bar{x}_{0}$
- All state movements have the same stability properties or, in other terms, stability is not a property of a specific nominal state movement but, instead, is a global property of the linear dynamic system

Stability of Linear Discrete-Time

Systems

Analysis of the Free State Movement

Stability of Linear Systems via Analysis of the Free State Movement

- Given the linear time-invariant discrete-time dynamic system

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

- In equilibrium conditions:

$$
\begin{aligned}
x(0) & =\bar{x} \\
u(k) & =\bar{u}, k \geq 0 \\
& \Longrightarrow x(k)=A^{k} \bar{x}+\sum_{i=0}^{k-1} A^{k-i-1} B \bar{u}=\bar{x}, \forall k \geq 0
\end{aligned}
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

- Perturbing the equilibrium conditions:

$$
\begin{aligned}
& x(0)=\bar{x}+\delta \bar{x} \\
& u(k)=\bar{u}, k \geq 0 \Longrightarrow \quad x(k) \neq \bar{x}, k \geq 0 \\
& \Longrightarrow x(k)= \\
& A^{k}(\bar{x}+\delta \bar{x})+\sum_{i=0}^{k-1} A^{k-i-1} B \bar{u} \\
&=\bar{x}+A^{k} \delta \bar{x}
\end{aligned}
$$

Hence:

$$
\delta x(k)=A^{k} \delta \bar{x}
$$

- Also, recall that:

$$
x_{l}(k)=A^{k} x(0)
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Stability and A^{k}

- The stability properties do not depend on the specific value taken on by the equilibrium state \bar{x}
- Hence, the stability properties are a structural property of the linear dynamic system as a whole
- The stability properties depend on the time-behaviour of the $n \times n$ elements of the matrix A^{k} :
- Stability \Longleftrightarrow all elements of A^{k} are bounded $\forall k \geq 0$
- Asymptotic stability $\Longleftrightarrow \lim _{k \rightarrow \infty} A^{k}=0$
- Instability \Longleftrightarrow at least one element of A^{k} diverges

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Recall that the matrix A^{k} can be expressed as a sum of the so-called response modes (Part 2):

- Let $\lambda_{1}, \ldots, \lambda_{\sigma}$ the distinct eigenvalues of A and n_{i} the algebraic multiplicity of such eigenvalues (with $\sum_{i=1}^{\sigma} n_{i}=n$).
- If $\lambda_{i} \neq 0, i=1, \ldots \sigma$ then

$$
A^{k}=\sum_{i=1}^{\sigma}\left[A_{i 0} \lambda_{i}^{k} 1(k)+\sum_{l=1}^{n_{i}-1} A_{i l} l!\binom{k}{l} \lambda_{i}^{k-l} 1(k-l)\right]
$$

- if $\lambda_{j}=0, \lambda_{j} \in\left\{\lambda_{1}, \ldots, \lambda_{\sigma}\right\}$ then the corresponding response modes are

$$
A_{j 0} \cdot \delta(k)+\sum_{l=1}^{n_{j}-1} A_{j l} l!\delta(k-l)
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

- The matrices $A_{i l}$ can be determined as

$$
\begin{aligned}
& \qquad A_{i l}=\frac{1}{l!} \frac{1}{\left(n_{i}-1-l\right)!} \lim _{z \rightarrow \lambda_{i}}\left\{\frac{d^{n_{i}-1-l}}{d z^{n_{i}-1-l}}\left[\left(z-\lambda_{i}\right)^{n_{i}}(z I-A)^{-1}\right]\right\} \\
& \text { where } l=0,1,2, \ldots, n_{i}-1
\end{aligned}
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Stability and A^{k}

Using the response modes

$$
A^{k}=\sum_{i=1}^{\sigma} \sum_{l=0}^{n_{i}-1}\left[A_{i l} l!\binom{k}{l} \lambda_{i}^{k-l} 1(k-l)\right]
$$

For the stability analysis, the boundedness of the free-state movement has to be ascertained. Since the matrices $A_{j l}$ does not depend on k, it suffices to analyse the boundedness of the terms

$$
\binom{k}{l} \lambda_{i}^{k-l} 1(k-l) \quad l=0,1,2, \ldots, n_{i}-1
$$

where n_{i} is the algebraic multiplicity of the eigenvalue λ_{i}.

Stability of Linear Discrete-Time

 SystemsStability Criterion Based on Eigenvalues

Stability \& Qualitative Behaviour of Response Modes

- $\binom{k}{l} \lambda_{i}^{k-l}$ with $\lambda_{i} \in \mathbb{R}$, multiplicity $n_{i}=1$ (so $l=0$).

Stability \& Qualitative Behaviour of Response Modes

- $\binom{k}{l} \lambda_{i}^{k-l}$ with $\lambda_{i} \in \mathbb{R}$, mult. $n_{i}>1\left(l=0,1, \ldots n_{i}-1\right)$.

Stability \& Qualitative Behaviour of Response Modes

$\cdot\binom{k}{l} \lambda_{i}^{k-l}$ with $\lambda_{i} \in \mathbb{C}$, multiplicity $n_{i}=1$

Stability \& Qualitative Behaviour of Response Modes

$\cdot\binom{k}{l} \lambda_{i}^{k-l}$ with $\lambda_{i} \in \mathbb{C}$, multiplicity $n_{i}>1$

Stability \& Behaviour of Response Modes: Example 1

Asymptotically Stable

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right] \quad \quad \quad x_{1}(k+1) \cdot z^{-1} \xrightarrow{x_{1}(k)} \quad \text { Response modes for } \\
& x_{1}(k) \text { and } x_{2}(k) \\
& \lambda_{1}=\lambda_{2}=\frac{1}{2} \\
& A^{k}=\left[\begin{array}{c}
(1 / 2)^{k} \\
0
\end{array}\right. \\
& \left.\begin{array}{c}
0 \\
(1 / 2)^{k}
\end{array}\right]
\end{aligned}
$$

Stability \& Behaviour of Response Modes: Example 2

Asymptotically Stable

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 / 2 & 1 \\
0 & 1 / 2
\end{array}\right] \quad \begin{array}{c}
\text { Response mode for } \\
x_{1}(k)
\end{array} \\
& \lambda_{1}=\lambda_{2}=\frac{1}{2} \\
& A^{k}=\left[\begin{array}{cc}
(1 / 2)^{k} & k(1 / 2)^{k-1} \\
0 & (1 / 2)^{k}
\end{array}\right]
\end{aligned}
$$

Stability \& Behaviour of Response Modes: Example 3

Stable (not asymptotically)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \lambda_{1}=\lambda_{2}=1 \\
& A^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left\{\begin{array}{c}
x_{1}(k+1) \square z^{-1} \cdot x_{1}(k) \\
x_{2}(k+1)
\end{array} \begin{array}{l}
\text { Response modes for } \\
x_{1}(k) \text { and } x_{2}(k)
\end{array}\right. \\
& \square z^{z^{-1}} x_{2}(k)
\end{aligned}
$$

Stability \& Behaviour of Response Modes: Example 4

Unstable

Algebraic and Geometrical Multiplicity of an Eigenvalue

Algebraic vs Geometrical Multiplicity of an Eigenvalue

- Let $\bar{\lambda}$ be an eigenvalue of A.
- The eigenvectors of A associated with $\bar{\lambda}$ are the nonzero vectors in the nullspace of $A-\bar{\lambda} I$, called the eigenspace of A for $\bar{\lambda}$ and denoted by

$$
\operatorname{null}(A-\bar{\lambda} I)=\mathcal{E}_{A}(\bar{\lambda})
$$

- The geometric multiplicity of the eigenvalue $\bar{\lambda}$ of A is the dimension of $\mathcal{E}_{A}(\bar{\lambda})$.
- The algebraic multiplicity of the eigenvalue $\bar{\lambda}$ of A is the multiplicity of $\bar{\lambda}$ as a root of the characteristic polynomial of A $p_{A}(z)=\operatorname{det}(z I-A)$.

Algebraic and Geometrical Multiplicity of an Eigenvalue (cont.)

Diagonalisable Matrices - Algebraic vs Geometrical Multiplicity of

 an Eigenvalue- In general, an eigenvalue's algebraic and geometric multiplicity can differ. However, the geometric multiplicity can never exceed the algebraic one.
- Let $\lambda_{1}, \ldots, \lambda_{\sigma}$ the distinct eigenvalues of A and n_{i} the algebraic multiplicity of such eigenvalues. Of course $\sum_{i=1}^{\sigma} n_{i}=n$
- If for every eigenvalue of A , the geometric multiplicity equals the algebraic multiplicity, then A is said to be diagonalisable.

Complete Stability Criterion Based on Eigenvalues of A

Stability Criterion

Given the system $x(k+1)=A x(k)$ and denoting by
$\lambda_{i}, i=1, \ldots n$ the eigenvalues of matrix A.

- $\left|\lambda_{i}\right|<1, \forall i=1, \ldots n \quad \Longleftrightarrow \quad$ The system is as. stable
- $\exists i, 1 \leq i \leq n:\left|\lambda_{i}\right|>1 \Longrightarrow \quad$ The system is unstable
- $\left.\begin{array}{l}\left|\lambda_{i}\right| \leq 1, \forall i=1, \ldots n \\ \exists j, 1 \leq j \leq n:\left|\lambda_{j}\right|=1\end{array}\right\} \Longrightarrow$ The system is not as. stable
- $\lambda_{j}:\left|\lambda_{j}\right|=1$ have algebraic multiplicity $=1$, then the system is stable (not as.)
- $\lambda_{j}:\left|\lambda_{j}\right|=1$ have algebraic multiplicity >1 and the same value as geometrical multiplicity, then the system is stable (not as.)
- $\lambda_{j}:\left|\lambda_{j}\right|=1$ have algebraic multiplicity >1, but the geometrical multiplicity is different, then the system is unstable

Stability of Linear Discrete-Time

 SystemsAnalysis of the Characteristic Polynomial

Stability by Analysing the Characteristic Polynomial

- The previous complete stability criterion requires checking whether the eigenvalues of matrix A belong to the unit circle in the complex plane
- A number of techniques exist to perform the check above without explicitly calculating the eigenvalues of matrix A
- Considering the characteristic polynomial

$$
p_{A}(z)=\operatorname{det}(z I-A)=\varphi_{0} z^{n}+\varphi_{1} z^{n-1}+\cdots+\varphi_{n-1} z+\varphi_{n}
$$

a suitable bi-linear transformation allows to reduce the problem of checking whether the roots of polynomial $p_{A}(z)$ belong to the unit circle in the complex plane to an equivalent problem of checking whether the roots of a suitable polynomial $q_{a}(w)$ belong to the complex left half-plane

- This equivalent problem can then be solved by using the Routh-Hurwitz technique (see the course Fundamentals of Automatic Control)

Use of the Bi-linear Transformation

$$
z=\frac{w+1}{w-1}, z, w \in \mathbb{C} \Longleftrightarrow \begin{aligned}
& |z|<1 \Longleftrightarrow \operatorname{Re}(w)<0 \\
& |z|=1 \Longleftrightarrow \operatorname{Re}(w)=0 \\
& |z|>1 \Longleftrightarrow \operatorname{Re}(w)>0
\end{aligned}
$$

Use of the Bi-linear Transformation (cont.)

Substitute

$$
z=\frac{w+1}{w-1}, z, w \in \mathbb{C}
$$

into

$$
p_{A}(z)=\varphi_{0} z^{n}+\varphi_{1} z^{n-1}+\cdots+\varphi_{n-1} z+\varphi_{n}
$$

thus obtaining

$$
\begin{array}{r}
q_{A}(w)=(w-1)^{n}\left[\varphi_{0} \frac{(w+1)^{n}}{(w-1)^{n}}+\varphi_{1} \frac{(w+1)^{n-1}}{(w-1)^{n-1}+\cdots}\right. \\
\left.\quad+\varphi_{n-1} \frac{(w+1)}{(w-1)}+\varphi_{n}\right]
\end{array}
$$

and hence one gets

$$
q_{A}(w)=q_{0} w^{n}+q_{1} w^{n-1}+\cdots+q_{n-1} w+q_{n}
$$

with suitable coefficients $q_{0}, q_{1}, \ldots, q_{n}$.

Use of the Bi-linear Transformation. Example 1

Given

$$
p_{A}(z)=z^{3}+2 z^{2}+z+1
$$

one gets

$$
q_{A}(w)=(w-1)^{3}\left[\frac{(w+1)^{3}}{(w-1)^{3}}+2 \frac{(w+1)^{2}}{(w-1)^{2}}+\frac{w+1}{w-1}+1\right]
$$

and after some algebra

$$
q_{A}(w)=5 w^{3}+w^{2}+3 w-1
$$

3	5	3
2	1	-1
1	8	
0	-1	

Hence, there is one root of $q_{A}(w)$ on the complex right-half plane which in turn implies that one of the roots of $p_{A}(z)$ lies outside the unit circle.

Use of the Bi-linear Transformation. Example 2

Given

$$
p_{A}(z)=z^{2}+a z+b
$$

with $a, b \in R$. Thus, one gets:

$$
q_{A}(w)=(w-1)^{2}\left[\frac{(w+1)^{2}}{(w-1)^{2}}+a \frac{(w+1)}{(w-1)}+b\right]
$$

and after some easy algebra

$$
q_{A}(w)=(1+b+a) w^{2}+2(1-b) w-a+1+b
$$

$$
\begin{array}{l|c}
2 \\
1 \\
0 & \left(\begin{array}{c}
1+b+a) \\
2(1-b) \\
(1+b-a)
\end{array}\right. \\
(1+b-a) \\
2(1-b)>0 \\
1+b-a>0
\end{array} \quad \Longrightarrow\left\{\begin{array}{l}
1+b+a>0 \\
2<-a-1 \\
b<1 \\
b>a-1
\end{array}\right.
$$

Use of the Bi-linear Transformation. Example 2 (cont.)

The stability condition has a nice geometric interpretation:

$$
\left\{\begin{array}{l}
b>-a-1 \\
b<1 \\
b>a-1
\end{array}\right.
$$

Stability of Linear Discrete-Time

 SystemsStability of Equilibrium States Through the Linearised System

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems

Recall from Part 1

- Consider the nonlinear time-invariant system:

$$
x(k+1)=f(x(k), u(k))
$$

- Moreover, consider an equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$.
- Let us perturb the initial state and the nominal input sequence, thus getting a perturbed state movement:

$$
x\left(k_{0}\right)=\bar{x}_{0}+\delta x_{0} ; u(k)=\bar{u}+\delta u(k) \Longrightarrow x(k)=\bar{x}+\delta x(k)
$$

- Hence:

$$
\begin{aligned}
x(k & +1)=\bar{x}+\delta x(k+1)=f(\bar{x}+\delta x(k), \bar{u}+\delta u(k)) \\
& \simeq f(\bar{x}, \bar{u})+f_{x}(\bar{x}, \bar{u}) \delta x(k)+f_{u}(\bar{x}, \bar{u}) \delta u(k)
\end{aligned}
$$

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems (cont.)

- Since the equilibrium state \bar{x} is the constant solution of the algebraic equation $\bar{x}=f(\bar{x}, \bar{u})$, it follows that

$$
\delta x(k+1) \simeq A \delta x(k)+B \delta u(k)
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$ are constant matrices defined as:

$$
\begin{aligned}
& A=f_{x}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}} \\
& B=f_{u}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}}
\end{aligned}
$$

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems (cont.)

Summing up:

The linear time-invariant system obtained by linearization around a given equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$ is

$$
\delta x(k+1)=A \delta x(k)+B \delta u(k)
$$

The Reduced Lyapunov Method for Discrete-Time Systems

- Consider the nonlinear time-invariant system:

$$
x(k+1)=f(x(k), u(k))
$$

- Moreover, consider an equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$.
- Consider the free linear time-invariant system obtained by linearization around the equilibrium state \bar{x} (the effect of the input is not considered in the stability of the equilibrium) and denote by $\lambda_{i}, i=1, \ldots n$ the eigenvalues of matrix A :

$$
\delta x(k+1)=A \delta x(k)
$$

- $\left|\lambda_{i}\right|<1, \forall i=1, \ldots n \quad \Longrightarrow \quad \bar{x}$ is an asymptotically stable equilibrium state
- $\exists i, 1 \leq i \leq n:\left|\lambda_{i}\right|>1 \quad \Longrightarrow \quad \bar{x}$ is an unstable equilibrium state
- In all other situations, no conclusions on the stability of the equilibrium state can be drawn from the analysis of the linearised system.

267MI -Fall 2022

Lecture 3

Stability of Discrete-Time Dynamic
Systems

END

