With slides from Silvia Onesti

X-ray biopolymer
crystallography:
an overview



Metodi sperimentali per determinare la struttura
delle macromolecole

Alta risoluzione cristallografia a raggiX | NMR | cristallografia elettronica

Media risoluzione microscopia elettronica | diffrazione di fibre | Spettro-
metria di massa | SAXS | Microscopia a Forza Atomica

Metodi Spettroscopici NMR | dicroismo circolare | Assorbanza | Fluorescenza |
Fluorescenza anisotropa | diffusione della luce

Metodi Chimici scambio H-D | mutagenesi sito specifica | modificazioni
chimiche | proteomica

Metodi termodinamici Equilibrio di (un)folding

Metodi computazionali predizione della struttura delle Proteine | Docking molecolare



Structure determination
methods

® X-ray crystallography (protein crystallography)
® X-ray fiber diffraction
" Small angle X-ray scattering (SAXS)

" Scanning electron microscopy (SEM)

" Transmission electron microscopy (TEM):
- 2D crystals (electron diffraction)
- Fibers/helices/tubular crystals
- Single particle electron microscopy

® Atomic Force Microscopy (AFM)

" Nuclear magnetic resonance (NMR)



Microscopy vs diffraction
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Why can’t we use a microscope?

Normally, to look at small objects we use
microscopes...

...but they can only provide images of
things larger than the wavelength of light

In theory, we could use
| X-rays (light of A=0.1 nm,
Protein (10 nm) the right size for looking

o Atom (0.1 nm=1A) at atoms)...




X-rays

X-rays:
E=1-100 keV E=hv
A =10 nM-0.01 nm 1=clv

Soft X-rays (lower E)
are used in medical
Imaging.

Hard X-rays (higher E)
are used in
crystallography.

...but we can’t make
X-ray microscopes as
hard X-rays do not
reflect or refract easily.
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X-rays
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X-rays change their speed only little when moving from one medium to another



Interaction of radiation with matter

A(t)=Aycos(wt)
B(t)=Bycos(wt+@g)

According to ¢ = wt+@, the two waves can

be in phase or not.

Coherence: phase difference maintained,

either vs. t or space

Huygens’ principle:

When a plane wave hits a slit, each point of
the slit is a source of a spherical wave
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Interference between coherent waves

A X
Interference between waves generated by
two slits:
It can occur if the distance between the slits l
is comparable with A: two spherical waves

coherent generated from b and ¢

Constructive Interference Destructive Interference
D =Propagation
D Direction D D=Propagation
Py [ Y Direction
—_—l
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Interference between coherent waves

Single Slit Diffraction

Five Slit

1 slit

2 slits

3 slits

4 slits

5 slits

7 slits

w=50; d=150; 3slits 4slits 5 slits 7 slits

More intensity,

diffraction spots




Interaction of x-rays with matter

Photoelectric effect

Compton Scattering

~—_. fotone entrante

fotone uscente

Inelastic: radiation partially absorbed by
a valence electron and re-emitted at
lower E

Soft X-rays, E comparable
with the energies of deep
electrons in the atoms
(tens-hundreds eVs)

Elastic Scattering (diffusion)

Elastic (Rayleigh): radiation re-emitted with
the same E ----DIFFRACTION IN CRYSTALS



Interaction of x-rays with matter

Onda elettromagnetica

The solution of Maxwell equation campo sletrico /
(propagation of EM field) are the
electromagnetic waves. For the E field:

> direzione
dell'onda

E(t,x)=Eqcos[2mv(t—x/c)]

Introducing complex numbers (and Eulero formula):

E(t,x) = Eg exp[2mvi (t — %)]

7= ‘Z‘exp(igzﬁ) = ‘Z‘(cos¢+isin¢) =A+iB



X-ray scattering by a single electron (Thompson)

F=eEi
force exerted by the electric field E on the charge e, which cause an oscillatory
motion with frequency equal to the incident wave, and acceleration:

S|

E;

m

>
a = =e

Oscillating electron emits X-rays over a wide angle

3 T
E; = Egoexp[2mvi (t — E) — ia]
Q = phase change

Incident X-ray (oscillating E-field) Electron

A

NN NN VDA A A
(VARVARVARV

Electron responds by oscillating




X-ray scattering by a single electron (Thompson)

3 r
E; = Egoexp[2mvi (t — E) = ia]

According to Thompson:
eZ

1
Egz0 = —E; sin
a0 = Eio(_—3)sing

e is the el. charge; m the mass; c speed of light;
@ the angle between the el acceleration and
the direction of observation r.

Incident X-ray (oscillating E-field) EIectron\
A
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Electron responds by oscillating




X-ray scattering by a single electron (Thompson)

I=IEI?

Incident X-ray (oscillating E-field) EIectron\
A

AWAWAWA AN N\
VAVAVAY Vo

Electron responds by oscillating




X-ray scattering by two electrons

Incident X-rays

2 electrons

Each electron in the “structure” becomes a source of X-rays, coherent.

Diffused, coherent waves from different electrons interfere.

The diffraction pattern (which would be observed on a detector) depends on how
these sacattering centres are arrayed, |.e. on the structure.

Detector



X-ray scattering by two electrons

Conditions for interference depend on the difference between the optical path of
the two waves:

0OA+ OB = dif ferenza di cammino ottico

OA=-7-5,
(proiezione di ¥ lungo s,; segno

\ . . S
— perche opposto alla direzione di s)

[ il

OB =7 -5 (proiezione di 7 lungo )

Esprimendo la differenza di cammino ottico come differenza di fase:

OA + OB 7:(5=50) | . & parial numero di ‘periodi’
A A




X-ray scattering by two electrons

7+ (3=59)
21
A
. _G-5)
A

r* is perpendicular to the s and sy bisector,
forming an angle 0. Its module:

— 2sinéb
Ir I= A 0

r and A should have the same order of magnitude



X-ray scattering by two electrons

" ¥y

E; = Egoexp[2mvi (t — E) — ia]

N r

E: = E pexp[2mvi (t e —) i o]
C

C

- 5 “
E3 =|Ejoexp lZm/i (t — —) — ia] exp(id)

E% = Elexp(id)

l:fd =E;+ EE = _3[1 + exp(id)

]
S o 4 / An additive term which determines if the
Eq(r) = Eg[1 K exp(2mi? - 17)] waves are summed up or sottracted

*
_-———




X-ray scattering by N electrons

Se abbiamo N elettroni, tutti uguali nelle posizioniry,r,, ..., ry dal primo elettrone (r, sara O, origine del
sistema di riferimento), e applicando lo stesso procedimento utilizzato per 2 elettroni, otteniamo:

N

E;(r*) = E;Z exp(27ri?j’-7"’)
=1

Dove r* denota la ‘direzione di osservazione’, mentre r; denota la posizione del diffusore j-simo

Piu in generale, ammettendo che i diffusori abbiamo una carica generica (non necessariamente
quella di 1 elettrone), allora ogni diffusore generera onde di ampiezza E,non necessariamente
uguali tra loro (maggiore & la carica maggiore maggiore & 'ampiezza dell’onda diffusa,vedi formula
di Thomson) e che indicheremo cone A;
Potremo cosi scrivere:

N
Eilr') = Z Ajexp(Zm'Fj’ : r*) X . \L,;\;;\Qfé’,/i\
j=a | 7710

Figure 3.12. The scattering of Xerays from a rcal atom extended in space.



X-ray scattering by N electrons

N
E;(r") = Z Ajexp(zm?j' ~ F))
j=1

If instead of amplitude A we define the ratio between the intensity of the
diffused wave and the one diffused by a single electron (Thomson):

N
FGr*) = Z fjexp(Zniﬁ : F))
=1

J

I 3
;.
f J Ith

f;is the Structure Factor of the diffusor |



Diffusion from a charge density distribution

p(r) charge density distribution

p(r)dr infinitesimal charge element with:

2mir;r* phase difference:
p() exp(2mit; - 17)
Integrating over the space of the charge density with volume V:

ﬁ(F) = f p(F) exp(ZniFj’ . F) dr Structure Factor
%4

Which is the Fourier transform of p(r) integrated over V : F(r*)=FT[p(r)]



X-ray scattering by N electrons

FT put two spaces in relation:

the direct space ( ) and the reciprocal space (rx*).

La p(r) is defined in the direct space, F(r*) in the reciprocal space
The scattered wave result of the interference of x-rays with a charge
distribution, along a direction defined by r*, is the FT of the charge

distribution itself.

FT [FT[p(7)]] gives p(r) : from the phase and module of diffused
waves we can determine the charge distribution in the real space



Summary
e Electrons diffuse x-Rays

e diffuse waves interfere

e the sum of diffuse waves depends on the difference of optical
path which is function of charge distribution in the real space

e for a charge density distribution, we introduce infinitesimal
volumes, each acting as a unit charge

e the total diffuse wave is the Fourier Transform of the charge
distribution



Atomic form factor

Poi(T) function of 1,12

E(T—’) = f Pe1(7) exp(Zm'?j’ . 7) dr
%

is the electronic scattering function. For one atom with N electrons we

define the atomic scattering function:

N
farr) = ) £
=1

and the intensity diffused by an atom is:

2
I, :fat

Which depends on |r*|=2sin0/A

The more efficiently one electron scatters, the higher the 6 at oo
which diffraction is measured!

Atomic scattering factor 7° (e”)
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Atomic form factor

Scattering factor of the
carbon atom

N
fat (T*) = Z fiel
=1

0.2

0.4 0.6 0.8

sin 0 /A

N
Fu0)= ) 12
F=1

At r* =0, or 9=0, the atomic form (or scattering)
factor is Z, the atomic number!



Atomic form factor

2s orbital Nucleus

1s orbital \

3s orbital
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The higher Z, the higher the diffusion of X-
rays from that atom!
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Molecular scattering factor

N
By e Z olr— rj) p(r-r;) r;is the distance from the origin
j=1
N N
Pmot (1) = Z e(r — 7‘]) A—— FM(F) = Z fV pel(F - 7:}) exp(Zm’? : T*) dr
j=1 j=1

N
r-rj=R; E(F) = Z_[ pe1(R;) exp[2mi(7; + ﬁj) 2 dﬁf)
=17

Z {f pel® exp(Zmﬁj - F) dﬁ;} exp(Zm'F . P)
14

Jj=1 f]_at

N
Fu(r?) = Z @) exp(2mit - r7)
j=1



Diffraction from a crystal

Unit lattice

Perys () = Pmot (r) = L(r)

L(r) is a mathematical function which describes the crystal lattice



Diffraction from a crystal

pcrys (T‘) = Pmol (T’) . L(?‘D

Forys(r?) = TF[perys(r)]
i 8 [pcrys (7‘)] = TF[pmot(r) * L(7)]

TF[pm.ol(r) . L(T)] =TF [pm.ol.(r)] ¥ ¥ 2 [L(r)]

TF[p,,,1(r)] is the structure factor of the unit cell



Diffraction from a crystal

La convoluzione di una funzione f(x) con una

funzione che e diversa da zero per valori §x) gx) f(x)= glx)
predefiniti, ha come effetto la ripetizione della T @ '
funzione f(x) in tutti i punti diversi da zero M ‘

_— . 1 Z \
La TF[L(r)] e diversa da zero solo in A L i
corrispondenza dei nodi del reticolo reciproco, ®
identificati da 3 indici h k | (numeri interi),
Di conseguenza avremo che la funzione F(r*) ik R
assume valori diversi da zero solo quando r* ®© . e . O 0O 0O O
identifica un nodo del reticolo reciproco, e o O 0O 0O

definito come r*(hkl)




Diffraction from a crystal

L'esistenza del reticolo e la ripetizione ordinata della densita
elettronica secondo la geometria del reticolo ha una
conseguenza importante, le onde diffuse non sono piu
diffuse in tutte le direzioni, ma solo lungo le direzioni
definite dai nodi del reticolo reciproco identificati con la
terna di numeriinteri (h k).

121 221

211

120 [201 —

Quindi osservero ampiezze diffratte diverse da zero,
esclusivamente lungo direzioni che obbediscono alla
seguente relazione:

-4 210

200

Origin ¢ ¢ _____"1.00)
¥ a" axis

| d.flll“ 1-"di|)|:. a. :

-
=

' d .}‘.'HJ 1/d 0

r =Thr

ot O i

ovvero quando il vettore nello spazio reciproco coincide con un vettore che identifica un nodo del reticolo
reciproco, 'onda diffusa dal cristallo sara dato dalla somma dei termini per i quali vale la relazione:




Crystals: unit cells

>

_’
T=uwua+vb+wc

—_—

[ is a vector of the Bravais Lattice

u, v, w interi



The 14 Bravais Lattices

A o

Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic

Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic



The space groups

Table 1.2 Svmmetry elements

Symmetry element  Hermann-Mauguin Schonflies symbols
symbols (crystallography)  (spectroscopy)

Point ( Mirror plane m Oy, O
symmetry Rotation axis =234 6 G, Cs, £16.)
q Inversion axis n(=1,2, etc.) —
Alternating axis ) e S, (81, 5>, etc.),
 Centre of symmetry |1 I
Space Glide plane @ by e: d; m —
symmetry Screw axis Zix 3is ele: —

The alternating axis is a combination of rotation (n-fold) and reflection perpendicular to the
rotation axis. It 1s little used in crystallography.
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A practical approach: Bragg diffraction

Conditions for a sharp peak:

1) X-rays specularly reflected
by atoms/ions/molecules in
one crystal plane

2) reflected waves from
oo o o o o o o successive planes interfere
constructively

2d, SIN(B) = n A Bragg's law

1/d = (2/N) sin@  When d is large, diffraction pattern is
1/d « sinB compressed



von Laue condition for diffraction

No ad hoc consideration on specularity
No crystal plane

Scattering from points of a Bravais

& X Lattice (each reradiate in all
dcosf@=d-n - ) )
directions).
-
dcosO@ + dcos’ = d- (i — ). (6.3)

The condition for constructive interference 1s thus )
d-(fi — Q") = mi, (6.4)

for integral m. Multiplying both sides of (6.4) by 2n/2 yields a condition on the incident
and scattered wave vectors:

d-(k — k') = 2nm, (6.5)

for inteoral m.

Ashcroft and Mermin



von Laue condition for diffraction

No ad hoc consideration on specularity
No crystal plane
Scattering from points of a Bravais

X Lattice (each reradiate in all directions;
elastic scattering).

|
|
I
s

deosf =-d.n’
Next, we consider not just two scatterers, but an array of scatterers, at the sites of
a Bravais lattice. Since the lattice sites are displaced from one another by the Bravais
lattice vectors R, the condition that all scattered rays interfere constructively is that
condition (6.5) hold simultaneously for all values of d that are Bravais lattice vectors:

for integral m and
R-(k — k') = 2am, all Bravais lattice (6.6)
vectors R.

This can be written in the equivalent form
™ ¥R _ 1 for all Bravais lattice vectors R. (6.7)

Ashcroft and Mermin



The reciprocal space

R = Points of a Bravais Lattice

ik-r

e Plane wave. For a set of K, it has the periodicity of
the BL. These K vectors define the Reciprocal
Lattice

K (r+R) _ KT o chr

6z‘K-R —1 The RL is a BL in the space of wave vectors.
o The RL of the RL is the original BL

K =m;b; + moby + m3b3 by =27

. . y .
RL vectors have dimension of | a; - (az x ag)



Examples of direct and , .
reciprocal lattices et

(Figures from Jensen and Stout “X-Ray structure

]
|
determination. A pratical guide” e 3 rd
R b P
: |,// /’/
2 1 * b’/| ",/
\e
gsit o a
7y
%

Monoclinic direct and reciprocal ce

Orthorhombic direct
and reciprocal cells.,
/’/// l= ”,,” :=
L A |
i s 329 |
| 1 |
[ P! :
: || :
C:/r li :l * l'
| _,L-__..__ -1

b’,!.’ "I

| - z
Triclinic direct and reciprocal cells s

p il 0 "a* -



von Laue condition for diffraction

Y=

-
k'

dcosf' =-d-nA

The Laue condition then states that to have constructive interference,
the change in the wave vector K = k’-k is a vector of the RL.
Therefore k’-k=k-k’ and |k’|=|k| or |k|=|K-k]|

Figure 6.5
The Laue condition. If the sum of k and — K’ /

-~
is a vector K, and if k and k' have the same | k g K — % K .
length, then the tip of the vector k is equi- © — 1k

distant from the origin O and the tip of the =l

vector K, and therefore it lies in the plane Y 11K

bisecting the line joining the origin to the tip k

s-as 4 |
of K. =
7 Ashcroft and Mermin



Bragg-von Laue equivalence

For K = k’-k vector of the RL, given |k|=|k’|, they form the same
angle with the plane perpendicular to K.

This can be seen as a Bragg diffraction from the family of planes
perp. to K

Figure 6.6

The plane of the paper contains the incident wave
vector k, the reflected wave vector k', and their differ-
ence K satisfying the Laue condition. Since the scat-
tering is elastic (k" = k), the direction of K bisects the
angle between k and k. The dashed line is the inter-
section of the plane perpendicular to K with the plane
of thc paper.

A Laue diffraction peak corresponding to a wave vector change K
(RL vector) corresponds to a Bragg diffraction from the family of BL
planes perpendicular to K.

The order n of the Bragg reflection is |K| divided by the shortest |k]|
vector parallel to K



Bragg-von Laue equivalence

For K = k’-k vector of the RL, given |k|=|k’|, they form the same
angle with the plane perpendicular to K.

This can be seen as a Bragg diffraction from the family of planes
perp. to K

Figure 6.6

The plane of thc paper contains the incident wave
vector k, the reflected wave vector k', and their differ-
ence K satisfying the Laue condition. Since the scat-
tering is elastic (k' = k), the direction of K bisects the
angle between k and k’. The dashed line is the inter-
section of the plane perpendicular to K with the plane
of the paper.

To design all the possible plane families is in fact too complex.
Instead, a family of planes is represented by the d*;,, vector,
i.e. a unique point in the reciprocal space!

dih™ = K/ dpg



The reciprocal space

(a/h) cos a = d;

cos a = (h/a) dy
cos 3 = (k/b) dhkl
cos y = (l/c) dyy

For orthorombic lattice:

(cos a)?+(cos B )2+(cos y)? =1
(h/a)? d?,g + (k/b)? d?g + (l/c)? d?y =1

For a cubic crystal:

1/d2hkl =1/a2* (h2+k2+|2)




Is Bragg’ s law still valid for two or more atoms in

a unit cell?
Iy % O
& & & ]
O O e O
» »
& & & & % & ficd &
Y * P - Y # ® # © @ o < o o e O
& 5 * 8 - % ™ %
“ - © - o - 'S 'S O o) O o) e O o O

Two atoms in a unit cell (reflect) waves from their respective planes.

The waves combine and form a resultant wave, that looks like it has
been reflected from the original unit cell lattice plane.

The 2 lattice are the same, but shifted one with respect to the other

Diffraction is spot is in the same place, but has different intensity
(intensity of resultant wave).

We assumed the electron density is in planes. In reality it is spread throughout the unit cell.
Nevertheless, the derivation is still valid, since it can be shown that waves scattered from

electron density not lying in a plane P, can be added to give a resultant as if reflected from the
plane.




Scattering from many electrons
(i.e. a molecule):

Incident

PN
\\\
Sc\

at

v

! It is like adding many waves/vectors with
magnitude A; and phase (rj.s) - | can calculate
this from the wavelength, angle and the
positions of the scatterers.

In practise | can consider all the electrons in

N one atom as a “block” — | sum together the

contributions of the atoms.

v




Scattering from a 3D crystal

Fp(s)=[F ()]

{sin(2N+1)7z(a -s)}{sin(2N+l)7r(b'S)}{sin(2N+1)7z(c-s)}

sinzz(a-s) sin 7z (b-s) sinzz(c-s)
scattering
from one 3D fringe function that depends
molecule on the lattice spacing a, b, ¢

The fringe function has two effects:
- makes the pattern “discrete”
- amplifies the signal

The diffraction pattern from

a crystal is the diffraction from
the molecule sampled and
amplified according to the fringe TT
function




The electron density equation:
problem # 1:resolution limits

Theoretical limit

high ©
There are theoretical limits that depends on crystal
the wavelength of the X-ray radiation. small 6
Typically one uses a wavelength of roughly 1
A, which would allow for resolution of 0.5 A.
detector

Practical limit

In practice for macromolecules the resolution limit is usually set by

the intrinsic degree of order of the crystal typically one sees diffraction to
2.0-3.5 A —this is even more true of membrane protein crystals which tend to be
more disordered due to the less directional nature of hydrophobic interactions.



Why is resolution important?

“Resolution” is related to the level of details that can be visualised: a high
resolution map gives a far more detailed picture of the atomic structure:

low resolution — high resolution

low s, small O, large d high s, large 6, small d

Hereis a 4 A map Hereis a 2.9 A map Here is a 2 A map

things which are less than almost atomic detail
AA apart tend to be blurred



The electron density equation:
problem # 2:the phase problem

@ F(s) is a complex number with A\
I\
modulus |F(s)| and phase o \{
\ o(s)

In a diffraction experiment we measure the
intensity of each spot I(s)

()= [F(s)[?

We can derive the amplitude F(s) but we have
lost the information about the relative phase

nmmp the phase problem!!

Universal problem in crystallography — also for small molecules.



Small molecule crystal

small unit cell ‘ ‘ .

large “reciprocal lattice”

. . a few, very strong reflections;
(coarse fringe function) Y &

diffract to high resolution
Protein crystal

|II

small “reciprocal lattice”
(fine fringe function)

many, very weak reflections;
large unit cell diffract to low resolution



» An atom, and its Fourier Transform:

* Note the both functions have circular symmetry. The atom is a sharp
feature, whereas 1ts transform 1s a broad smooth function. This
illustrates the reciprocal relationship between a function and its Fourier

transform.

» A crystal, and its Fourier Transform:

o

- A.A A'A )

» Finally, we build up a crystal by convoluting the molecule
with the grid. The result 1s a crystal structure. The Fourier
transform of the crystal 1s thus the product of the
molecular transform and the reciprocal lattice. This 1s the
diffraction pattern.



f 6.0 7

5.0 1

* A duck and its Fourier Transform

diffusione totale Carhonio

200 we

Crystallographic Interpretation:

There 1s considerable loss of detail. At low resolution, your atomic
model may reflect more what you expect to see than what 1s actually
there.



 Here 1s our old friend:; the Fourier Duck, and his Fourier transform:

 And here 1s a new friend; the Fourier Cat and /is Fourier transform:

& ~




Now we will mix them up. Let us combine the the magnitudes from the
Duck transform with the phases from the Cat transform. (You can see the
brightness from the duck and the colours from the cat). If we then transform

the mixture, we get the following:

We can do the same thing the other way round. Using the
magnitudes from the Cat transform and the phases from the Duck

transform, we get:




How to solve
macromolecular structures:

MIR (multiple isomorphous replacement)

Older method (Cambridge, 60’) — relies on binding “heavy” atoms to the crystal
and compare he diffraction pattern to the native. Trial and error search for good
heavy atoms, it may take longer to get it right

MR (molecular replacement)

Older method (Cambridge, 70’-80") — relies on the expected similarity between
the protein and another whose structure is known. Cannot solve de novo
structures. Requires high homology (30% sequence identity?)

MAD (multiwavelength anomalous dispersion)

Relies on the absorption of specific wavelengths due to electronic transitions
within the atom core. Similar to MIR but generally far quicker and more accurate.
Requires high specification synchrotron radiation.



Some of the
players...

Max Perutz
(1914-2002),
the inventor
of MIR

In 1953, Perutz showed that the diffracted X-rays from protein crystals could be
phased by comparing the patterns from crystals of the protein with and without
heavy atoms attached.

In 1959, he employed this method to determine the molecular structure of
hemoglobin. This work resulted in his sharing with John Kendrew the 1962
Nobel Prize for Chemistry.



Error treatment in MIR

The real breakthrough in using MIR for the determination of protein
structures came when people learned how to deal with errors.

Blow D.M. & Crick F.H.C. ( 1959) “The treatment of errors in the
isomorphous replacement method”. Acta Crystallogr. 12, 794-802

Francis Crick
(1916-2004)

David Blow
(1931-2004)

Error treatment is very complex — but it was an essential step in solving
protein structures.



Molecular Replacement

The Molecular replacement method was mostly developed by Michael
Rossmann. He used the structure of Tomato Bushy Stunt Virus, a plant virus, to
determine the crystal structure of the Human Rhinovirus 14 (the common cold
virus) in the early 80’ s.

Tomato Bushy Human Rhinovirus 14
Stunt Virus

However the theoretical basis were developed much earlier:
Rossman, M. G. and Blow, D. M. (1962). ActaCryst. 15:24-31.



Phase problem solved?
Calculating an electron density map

Once we have decent experimental estimates of the phases (from MIR,
MR or MAD) we can obtain an electron density map by calculating a
weighted Fourier transform with coefficients F_ . (i.e. the amplitudes of

the diffracted rays and phases o r/0tpr/ Opap-

o(xyz) = Z*“FP (hkl) exxp[—27z i(hx + ky +12)]

hki

At the end of the day, the only criterion for determining how good
is your MIR/MR/MAD solution is whether the map is interpretable.

Can you build a polypeptide chain?



Electron density maps

After all this effort, we have a 3D map showing the shape of the protein:

Electron density map
displayed at two
contour levels:

blue=1rm.s (1o);
magenta =3 r.m.s (30)




Electron density maps

The task now is to try to fit an atomic model of the protein to the map...

Electron density map
displayed at two
contour levels:

blue=1rm.s (1c);
magenta =3 r.m.s (30)

Atomic model fitted
to the map (in )




Displaying the electron density map

Visualising a 3D electron density map over the entire unit cell can be daunting.

To visualise electron density maps we use high resolution interactive graphics,
which display the map as a chicken wire. A map is a 4-dimensional object (each
point X,y,z has an associated value) and to display it in 3D we have to choose a
contour level that allows us to see about 70 % of the van der Waals radius of the
atoms (typically one contours at the 1o level)

Here is a rather good

bit of density (much
better than the density
you are likely to obtain
from the initial phases)
and still it is not easy for
the “untrained eye” to
see what is going on...




Maps and resolution

The task of model building is to interpret the electron density maps in light
of chemical knowledge, basic stereochemistry, chemical sequence, etc...
The level of interpretation depends on the resolution of the map:

Hereisa 1A map

At very high resolution, individual
atoms can be seen and fitted in the
electron density blobs: the problem
therefore is reduced to ‘join-the-dots

4

Here is a 6 A map

At very low resolution only large
features can be seen - for example
helices look like rods and B-sheets
can barely be detected.



Refinement

Manual model building is not sufficient to build a completely accurate model but

is required to get to the starting point for refinement.
Refinement is a process of optimisation of the atomic model to match the

observed data and to conform to ideal stereochemistry

Successful structure determination usually requires several alternated rounds of
model-building and refinement.

During refinement one calculate the expected diffraction pattern from the
current model, compare it to the experimental diffraction data, and minimise the

square of the differences.

Two problems:
@ non linearity and presence of multiple minima
@ low ratio observation parameters (especially at low res.); compensate

by using stereochemical constraints.



The crystallographic R-factor

During the cycles of refinement, we calculate “R factors” to assess the
progress. These are similar to the Q values used in minimisation.

Q = E [F obs — Fcalc ]2 R factor = Z HFObS

R = “residual” = fractional difference between observed and calculated
diffraction - a sort of “fractional error”

- ‘F;alc
F bs

()

To monitor the refinement, we calculate R after each cycle (the summation is over
all reflections). If things are going well, R reduces.

However, with complicated refinements like these, it is possible to “over-fit” the
data — for cross-validation we take away 5% of the data (which we do not use in
the refinement, to monitor the agreement. This is known as R¢,..



Practical considerations

‘ Protein production for crystallography
- Natural sources

- Recombinant technology

Crystallisation

- The theory

- Techniques

- Crystallisation robots

X-rays generation and data collection

How to read a PX paper

How to use a PDB



Natural vs recombinant sources

Recombinant DNA technology makes it easier to produce large quantities
of purified protein.

However “natural” sources still useful especially for big complexes, since
these cannot be easily re-constituted by recombinant expression.

Examples:

F.F1 ATP synthase - purified from
bovine heart muscle/yeast cells

ribosomes - purified from archaea

RNAPII - purified from yeast cells




Expression in Escherichia coli

First choice organism:

= cloning and handling is easy

= grows rapidly in liquid cultures (doubling time < 30 min)
= 1-6 L of culture can yield 5-50 mg of purified protein

= well characterised organism

Not foolproof...

= Difficult to make proteins with disulphide bridges

= Protein may over-express well but be unfolded

= Control folding with temperature and/or chaperones

= May be able to “refold” proteins by controlled denaturation/renaturation
during purification - but tricky!

= Proteins may be toxic for bacteria - try to get around this by tight control
of expression



Easy/difficult to crystallise?

A lot of interesting proteins are difficult to crystallise.

Best cases:

= single proteins

= rigid domain structure

= one dominant conformation

Worst cases:

= multi-domain proteins with flexible unstructured linkers
= proteins with flexible N- and/or C-termini

= proteins that are part of large macromolecular complexes
= presence of posttranslational modifications

Bg “H g“



“Optimise” proteins for crystallisation

Use bioinformatics (database searches, sequence alighments) to identify “core
domains” that can be expressed in a soluble form.

Use limited proteolysis to identify compact domains.

beware:
you can
cut flexible
loops).

Co-express proteins that are part of the same complex.

Add ligands/inhibitors/cofactors/metals
to stabilise one conformation.

Avoid/encourage post-translational modifications (mutagenesis of target residues,
mimic modifications by mutagenesis, change expression system/cell lines, so that
the process does/does not occur).



Crystallisation

Protein crystallisation is the transfer of protein molecules from an aqueous

solution to an ordered solid phase.
large solvent channels

protein molecule

ordered water molecule

Protein crystallisation is controlled by:
- thermodynamic factors governing the solubility
- kinetic factors governing nucleation and growth



Solubility and crystals

To coax a protein into forming crystals, one has to decrease its solubility
to the point where the solution becomes saturated. This is done by
changing pH, ionic strength or temperature, or by adding organic solvents.

In a saturated solution the protein in solution is in thermodynamic
equilibrium with one or more solid states:

[amorphous precipitate

crystalline state - micro-crystals
needles

plates

. large single crystals




Phase diagram

The process of crystal formation can be understood by using a phase diagram.
Because several factors influence protein solubility, the phase diagram has many
dimensions. A very important factor is the precipitant concentration, and a two-
dimensional diagram is shown here:

amorphous precipitate

protein

. : solubility curve
in solution

protein concentration

precipitant concentration



Supersaturation

Above the solubility curve the solid phase is thermodynamically
favoured; yet, because of kinetic barriers to the formation of aggregates,
the protein may remain in solution, forming a supersaturated solution.

A supersaturated solution is thermodynamically metastable: its conversion
to a stable solid state is kinetically controlled and can be triggered by the
presence of nucleation centres.

supersaturated solution

amorphous Above a certain level a supersaturated
precipitate solution will spontaneously give rise to
the formation of nuclei, without any
need of ‘external’ nucleation centres.

protein supersolubility curve

in solution

protein concentration

solubility curve

precipitant concentration



Nucleation and growth

The formation of crystals requires aggregates of a critical size (nuclei).
Aggregates smaller than the critical size are unstable and will dissolve, while
aggregates larger than the critical size will grow.

The process of crystallisation can be divided into two distinct stages:

Nucleation: the formation of the
first few ordered aggregates

Growth: the “most fit” aggregates
grow in size by addition of protein
molecules from the solution

\uf supersolubility curve

protein concentration

solubility curve

precipitant concentration



Crystallising proteins

Why proteins are difficult to crystallise:

- most proteins are labile and easily denatured

- large proteins often exist in multiple conformations

- complex behaviour -> polymorphism

- many proteins are difficult to obtain in large amounts
- proteins needs to be highly purified for crystallisation

Why protein crystals are difficult to handle:
- high solvent content (30-80%)

- mechanically fragile

- not well ordered -> resolution limits

- sensitive to radiation damage

Crystallisation of membrane proteins may presents additional problems such
as homogeneity of the purified samples, choice of detergents, presence of
micelles, tendency to form hydrophobic interactions which are less
directional and ordered, etc..



Crystallising proteins

Purity is not an absolute requirement for crystallisation, but often crystals
obtained from impure solutions are small or of poor quality.

The protein solution has to be
homogeneous not only in terms
of composition, but also in terms
of structure and conformation.

There are many factors to consider. Some of the more important ones are:
- presence of ligands (substrates, cofactors, metal ions etc)

- flexible domains and loops

- post-translational modifications (glycosylation, phosphorylation etc)

- aggregation

Highly homologous proteins will typically crystallise in very different conditions.

to several mg/ml without aggregation.

|| l One needs large amounts of very pure protein that can be concentrated
Robotic screening allows testing of ~1000 conditions/mg of protein.



Vapour diffusion

A droplet containing the protein and the precipitating agent is equilibrated
against a reservoir containing the precipitant at higher concentration.
Equilibrium is reached through the vapour phase, usually by loss of water
from the droplet.

<
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reservoir ‘ ’ ]

o

hanging sitting QO

<

drop drop 'S

S

Typically the drop is made by S

mixing equal volumes of protein

and reservoir solution precipitant concentration

Vapour diffusion is best suited for robotic nanolitre crystallisation.



Precipitants

SALTS

Solubility changes with the ionic strength of the
solution, causing salting in/salting out effects
Common ionic precipitants include (NH4),SO,,
various phosphates, NaCl, LiCl, and many others.

ORGANIC SOLVENTS ~ ionic strength
Reduce the dielectric constant of the medium, thereby enhancing the
electrostatic interactions between the protein molecules and lowering the

solubility. May denature proteins.
Commonly used organic solvents include ethanol and isopropanol.

POLYETHYLENE GLYCOLS (PEGs)

Believed to act by a combination of effects: volume exclusion, modification
of the dielectric properties of the solution, electrostatic interaction with
proteins, depletion of the hydration sphere of the protein. Very effective

Salts and PEGs are the most common precipitants




High throughput crystallisation

Automated methods for crystallisation (and crystal visualization) are now
routinely used by most labs. These development are driven by the needs
of pharmaceutical companies and structural genomics projects.

Robotic crystallization systems relies on the same principles described so
far, but carry out each step of the procedure quickly, accurately, in smaller
volumes.

Manual crystallisation:

- slow and time consuming

- error prone and not always reproducible

- expensive in terms of amount of purified protein (drops: 1-2 ul)

Robotic crystallisation:

- faster and more efficient

- more accurate and reproducible

- smaller sample sizes (down to 100 nl drops) cut down on expenditure of
purified protein



96-wells plates

The standard format for automated crystallisation are plates with 96
reservoir wells. These plates are designed for the sitting drop vapor
diffusion method, and are sealed with clear tape.

Drop support

Reservoir

Individual side well view

8 x 12 matrix

Reservoir

Individual top well view
P Drop support



Mosquito crystallisation robot

To set up the crystallisation drops containing nanolitre volumes of protein
and well solution.

Employs disposable
tips and pipettes 100-
200 nl drops.

Takes only 2 min to
set up 96 drops.

Use of specialised
96-well plates




