Parte 4. Spazi vettoriali

A. Savo – Appunti del Corso di Geometria 2013-14

Indice delle sezioni

- 1 Spazi vettoriali, 1
- 2 Prime proprietà, 3
- 3 Dipendenza e indipendenza lineare, 4
- 4 Generatori, 6
- 5 Basi, 8
- 6 Sottospazi, 11
- 7 Teorema di esistenza di una base, 17
- 8 Dimensione, 17
- 9 Le basi di \mathbb{R}^n , 21
- 10 Spazi vettoriali di matrici, 23
- 11 Spazi vettoriali di polinomi, 24

1 Spazi vettoriali

Definiamo ora una nuova struttura algebrica: quella di spazio vettoriale. Uno spazio vettoriale è un insieme dotato di due operazioni (somma e prodotto per uno scalare) che verificano un certo numero di assiomi. Esempi di spazi vettoriali sono dati da \mathbf{R}^n e dall'insieme delle matrici $\mathbf{Mat}(m \times n)$. Ma ci sono infiniti esempi di spazi vettoriali.

1.1 Definizione

Sia V un insieme non vuoto, i cui elementi saranno chiamati vettori, dotato di due operazioni:

- (a) la somma, che associa a due vettori $u, v \in V$ un terzo vettore $u + v \in V$,
- (b) il prodotto di un vettore per uno scalare, che associa al vettore $v \in V$ e allo scalare $k \in \mathbf{R}$ un altro vettore denotato kv.

V si dice uno *spazio vettoriale reale* se le suddette operazioni verificano le seguenti proprietà:

1) (u+v) + w = u + (v+w) per ogni $u, v, w \in V$.

- 2) u + v = v + u per ogni $u, v \in V$.
- 3) Esiste un vettore $O \in V$, detto vettore nullo, tale che v + O = v per ogni $v \in V$.
- 4) Per ogni vettore $v \in V$ esiste un'unico vettore -v, detto opposto di v, tale che v+(-v)=-v+v=O.
- 5) Si ha 1v = v per ogni $v \in V$.
- 6) h(kv) = (hk)v per ogni $h, k \in \mathbf{R}$ e per ogni $v \in V$.
- 7) (h+k)v = hv + kv per ogni $h, k \in \mathbf{R}$ e per ogni $v \in V$.
- 8) h(u+v) = hu + hv per ogni $h \in \mathbf{R}$ e per ogni $u, v \in V$.
 - Le proprietà 1)-8) sono anche dette assiomi di spazio vettoriale.

1.2 Esempio: lo spazio vettoriale delle matrici

Denotiamo con $\mathbf{Mat}(m \times n)$ l'insieme delle matrici $m \times n$ (a elementi reali). Abbiamo già introdotto nella Parte 1 la somma di due matrici e il prodotto di una matrice per uno scalare (numero). Per concludere che $\mathbf{Mat}(m \times n)$ è uno spazio vettoriale, occorre solamente verificare che tali operazioni verificano gli assiomi 1) - 8). Omettiamo tali verifiche. Gli assiomi risultano, in conclusione, soddisfatti, e dunque

• $\mathbf{Mat}(m \times n)$ è uno spazio vettoriale.

Notiamo che il vettore nullo di $\mathbf{Mat}(m \times n)$ è la matrice nulla O (l'unica con entrate tutte nulle).

1.3 Esempio: lo spazio vettoriale \mathbb{R}^n

Abbiamo definito \mathbb{R}^n come l'insieme dei vettori colonna ad n entrate reali:

$$\mathbf{R}^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : x_1, \dots, x_n \in \mathbf{R} \right\}.$$

Poiché un vettore colonna è anche una matrice $n \times 1$, possiamo identificare \mathbf{R}^n con lo spazio vettoriale $\mathbf{Mat}(n \times 1)$. Somma e prodotto per uno scalare sono definiti nel modo seguente:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}, \quad k \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} kx_1 \\ \vdots \\ kx_n \end{pmatrix}.$$

Notiamo che il vettore nullo di \mathbf{R}^n è $O = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. In conclusione:

• \mathbf{R}^n è uno spazio vettoriale.

A volte sarà utile scrivere gli n numeri reali orizzontalmente, come un vettore riga: (x_1, \ldots, x_n) e identificheremo dunque \mathbf{R}^n con lo spazio vettoriale $\mathbf{Mat}(1 \times n)$. Quando sarà importante distinguere i due modi di scrittura, specificheremo con la dicitura vettore colonna di \mathbf{R}^n , o vettore riga di \mathbf{R}^n .

1.4 Esempio: lo spazio vettoriale dei polinomi

Un polinomio nell'indeterminata x è un'espressione del tipo:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Se $a_n \neq 0$, diremo che n è il grado di p(x). Un polinomio si dice costante se ha grado zero, ad esempio p(x) = -3.

L'insieme di tutti i polinomi (quindi, di grado arbitrario) si denota con $\mathbf{R}[x]$.

I polinomi possono essere sommati fra loro (il risultato è un polinomio) e moltiplicati per un numero, nella maniera usuale. Si verifica anche in questo caso che gli assiomi 1)-8) di spazio vettoriale sono soddisfatti. Dunque:

• $\mathbf{R}[x]$ è uno spazio vettoriale.

Notiamo che il vettore nullo di $\mathbf{R}[x]$ è il polinomio nullo, quello che ha tutti i coefficienti nulli p(x) = 0.

2 Prime proprietà

In ciò che segue, V è uno spazio vettoriale arbitrario, quindi non necessariamente uno degli esempi precedenti. Vogliamo osservare alcune proprietà comuni a tutti gli spazi vettoriali. Per dimostrare queste proprietà, dobbiamo usare solamente gli assiomi 1)-8) che definiscono uno spazio vettoriale.

Iniziamo dalla cosiddetta legge di cancellazione della somma.

Proposizione Siano u, v, w vettori dello spazio vettoriale V. Allora si ha

$$u + v = u + w$$
 se e solo se $v = w$.

In particolare u + v = u se e solo se v = O.

Dimostrazione. Supponiamo che u + v = u + w. Dobbiamo dimostrare che v = w. Sommando ad ambo i membri l'opposto di u otteniamo:

$$-u + (u + v) = -u + (u + w).$$

Dalla proprietà associativa segue (-u+u)+v=(-u+u)+w e quindi O+v=O+w. Dalla proprietà che definisce il vettore nullo concludiamo che

$$v = w$$
.

Il viceversa è immediato. \square

Anche le seguenti proprietà si dimostrano facilmente dagli assiomi.

Proposizione In uno spazio vettoriale V valgono le seguenti proprietà:

- a) Per ogni $v \in V$ si ha 0v = O.
- b) Per ogni $h \in \mathbf{R}$ si ha hO = O.
- c) Per ogni $v \in V$ si ha (-1)v = -v.

Dalle proposizioni precedenti segue che, se u + v = w allora u = w - v. Infine osserviamo la seguente

Proposizione Siano $h \in \mathbb{R}$ e $v \in V$. Se hv = O allora h = 0 oppure v = O.

Dimostrazione. Supponiamo hv = O. Se h = 0 abbiamo finito. Se $h \neq 0$, moltiplicando ambo i membri per h^{-1} otteniamo:

$$h^{-1}(hv) = h^{-1}O = O.$$

Ma, per le proprietà 5) e 6) abbiamo $h^{-1}(hv) = (h^{-1}h)v = 1v = v$ dunque v = 0. \square

3 Dipendenza e indipendenza lineare

3.1 Combinazioni lineari

Avendo a disposizione la somma e il prodotto per uno scalare, possiamo definire combinazioni lineari di vettori, come abbiamo già visto in \mathbf{R}^n o in $\mathbf{Mat}(m \times n)$.

Dati k vettori v_1, \ldots, v_k di uno spazio vettoriale V e k scalari $a_1, \ldots, a_k \in \mathbf{R}$ il vettore:

$$a_1v_1 + a_2v_2 + \cdots + a_kv_k$$

è detto combinazione lineare di v_1, \ldots, v_k a coefficienti a_1, \ldots, a_k .

Esempio Nello spazio vettoriale dei polinomi, $\mathbf{R}[\mathbf{x}]$, siano $p_1(x) = 1 - x + 3x^3$ e $p_2(x) = 4x + x^2$. Allora

$$4p_1(x) - 3p_2(x) = 4 - 16x - 3x^2 + 12x^3.$$

3.2 Dipendenza e indipendenza lineare

La definizione di indipendenza lineare di vettori, già vista in \mathbb{R}^n , si generalizza immediatamente al caso di uno spazio vettoriale qualunque.

Definizione a) I vettori v_1, \ldots, v_k di uno spazio vettoriale V si dicono linearmente dipendenti se esiste una relazione di dipendenza lineare tra di essi; se cioè esiste una combinazione lineare:

$$a_1v_1 + \dots + a_kv_k = O,$$

con almeno un coefficiente non nullo.

b) I vettori v_1, \ldots, v_k si dicono linearmente indipendenti se non c'e' alcuna relazione di dipendenza lineare tra di essi, se cioè l'uguaglianza

$$a_1v_1 + \cdots + a_kv_k = O$$

è verificata solo quando tutti i coefficienti sono nulli.

Osserviamo il seguente fatto.

Proposizione I vettori v_1, \ldots, v_k sono linearmente dipendenti se e solo se almeno uno di essi è combinazione lineare degli altri.

Dimostrazione. Supponiamo in primo luogo che v_1, \ldots, v_k siano linearmente dipendenti: dunque esiste una relazione

$$a_1v_1 + \cdots + a_kv_k = O$$
,

con almeno uno dei coefficienti, diciamo a_i , diverso da zero. Possiamo risolvere rispetto a v_i , dividendo per a_i e portando tutto il resto a secondo membro:

$$v_i = -\frac{a_1}{a_i}v_1 - \dots - \frac{a_{i-1}}{a_1}v_{i-1} - \frac{a_{i+1}}{a_1}v_{i+1} - \dots - \frac{a_k}{a_1}v_k.$$

Dunque v_i risulta combinazione lineare dei rimanenti vettori. Viceversa, supponiamo che uno dei vettori, ad esempio il primo, sia combinazione lineare degli altri:

$$v_1 = b_2 v_2 + \dots + b_k v_k.$$

Ma allora otteniamo la relazione di dipendenza lineare $v_1 - b_2 v_2 - \cdots - b_k v_k = O$ (si noti che il coefficiente di v_1 è 1, dunque non nullo) e quindi i vettori sono linearmente dipendenti. \square

• Osserviamo infine che v_1, \ldots, v_k sono linearmente indipendenti se e solo se nessuno di essi è combinazione lineare degli altri.

3.3 Semplici conseguenze della definizione

Osserviamo che:

- Un singolo vettore v è linearmente indipendente se e solo $v \neq O$.
- Se uno dei vettori v_1, \ldots, v_k è nullo, allora v_1, \ldots, v_k sono linearmente dipendenti. Infatti, se ad esempio $v_k = O$, otteniamo la relazione di dipendenza lineare

$$0v_1 + \dots + 0v_{k-1} + 1v_k = 0.$$

• Due vettori v_1, v_2 sono linearmente dipendenti se e solo se uno di essi è un multiplo dell'altro, se cioè $v_2 = kv_1$ per $k \in \mathbf{R}$ oppure $v_1 = hv_2$ con $h \in \mathbf{R}$. Diremo in tal caso che i due vettori sono proporzionali.

Esempio I vettori $v_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ di \mathbf{R}^2 sono proporzionali, dunque linearmente dipendenti.

Occorre notare che la proprietà di indipendenza lineare si riferisce all'insieme dei vettori considerati. Sarebbe forse più preciso dire (e spesso faremo cosi') che l'insieme di vettori $\{v_1, \ldots, v_k\}$ è linearmente indipendente.

Esempio Siano $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. I tre vettori v_1, v_2, v_3 sono linearmente dipendenti, poiché $v_3 = 2v_1 + 3v_2$ (quindi l'insieme $\{v_1, v_2, v_3\}$ è linearmente dipendente) ma le tre coppie di vettori $\{v_1, v_2\}$, $\{v_1, v_3\}$, $\{v_2, v_3\}$ sono tutte linearmente indipendenti, come si verifica facilmente.

L'esempio mostra anche che, aggiungendo uno o piú vettori a un'insieme linearmente indipendente, potremmo perdere questa proprietà.

Osserviamo però che la proprietà di indipendenza lineare si conserva togliendo un qualunque numero di vettori, nel senso della seguente proposizione.

Proposizione Sia $A = \{v_1, ..., v_k\}$ un insieme linearmente indipendente. Allora ogni sottoinsieme di A è linearmente indipendente.

Dimostrazione. Esercizio. \square

4 Generatori

Definizione Diremo che i vettori v_1, \ldots, v_k di uno spazio vettoriale V generano V se ogni vettore di V si può scrivere come combinazione lineare di v_1, \ldots, v_k . Diremo anche che $\{v_1, \ldots, v_k\}$ è un insieme di generatori di V.

Definizione Lo spazio vettoriale V si dice finitamente generato se ammette un insieme finito di generatori.

Esempio In \mathbb{R}^2 , consideriamo i vettori

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

È immediato vedere che $\{e_1, e_2\}$ è un insieme di generatori di \mathbf{R}^2 : infatti il vettore generico $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{R}^2$ si esprime:

$$\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = xe_1 + ye_2.$$

In particolare, \mathbf{R}^2 è finitamente generato.

• e_1, e_2 sono detti i vettori della base canonica di \mathbf{R}^2 .

Possiamo generalizzare la precedente osservazione.

Esempio Nello spazio vettoriale \mathbb{R}^n consideriamo i vettori:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix},$$

detti i vettori della base canonica di \mathbb{R}^n . È evidente che essi generano \mathbb{R}^n , perché il vettore generico di \mathbb{R}^n si scrive:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

Dunque \mathbb{R}^n è finitamente generato.

Proposizione Aggiungendo vettori ad un insieme di generatori, otteniamo ancora un insieme di generatori.

Dimostrazione. Supponiamo che $\{v_1, \ldots, v_k\}$ sia un insieme di generatori; dunque ogni vettore di V si scrive per ipotesi come combinazione lineare di v_1, \ldots, v_k . Aggiungiamo

ora un vettore v_{k+1} alla lista. È chiaro che i vettori $v_1, \ldots, v_k, v_{k+1}$ generano V perché possiamo scrivere

$$v = a_1 v_1 + \dots + a_k v_k$$

= $a_1 v_1 + \dots + a_k v_k + 0 v_{k+1}$,

che dimostra l'asserto. \square

Esempio I vettori $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ generano \mathbf{R}^2 (i primi due vettori hanno già questa proprietà).

Attenzione perché togliendo vettori ad un insieme di generatori potremmo perdere tale proprietà.

5 Basi

Definizione Un insieme finito di vettori $\{v_1, \ldots, v_k\}$ si dice una base di V se:

- a) è un insieme di generatori,
- b) è un insieme linearmente indipendente.

In altre parole, una base è un insieme di generatori formato da vettori linearmente indipendenti.

Esempio I vettori della base canonica di \mathbb{R}^n formano, appunto, una base di \mathbb{R}^n . Infatti abbiamo visto che essi generano \mathbb{R}^n ; essi sono anche linearmente indipendenti, perché

$$x_1e_1 + \cdots + x_ne_n = O$$

solo quando $x_1 = \cdots = x_n = 0$.

Esempio I vettori $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ generano \mathbf{R}^2 . Essi peró non sono linearmente indipendenti, poichè $v = 2e_1 + 3e_3$. Dunque tali vettori non formano una base di \mathbf{R}^2 .

Esempio I vettori $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ sono linearmente indipendenti, ma non generano

 \mathbf{R}^3 (infatti, ad esempio, $e_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$ non è combinazione lineare di e_1,e_2). Dunque, essi non formano una base di \mathbf{R}^3 .

La proprietà importante di una base è espressa nel seguente

Teorema I vettori v_1, \ldots, v_k formano una base di V se e solo se ogni vettore di V si scrive, in modo unico, come combinazione lineare di v_1, \ldots, v_k .

Dimostrazione. Prima parte. Supponiamo che v_1, \ldots, v_k formino una base di V. Poichè i vettori generano V per ipotesi, potremo scrivere ogni vettore $v \in V$ nella forma:

$$v = a_1 v_1 + \dots + a_k v_k,$$

con $a_1, \ldots, a_k \in \mathbf{R}$. Dimostriamo che i coefficienti a_1, \ldots, a_k di tale combinazione lineare sono unici. Supponiamo infatti che v si possa esprimere in altro modo, diciamo:

$$v = b_1 v_1 + \dots + b_k v_k$$

Uguagliando le due espressioni, otterremo $a_1v_1 + \cdots + a_kv_k = b_1v_1 + \cdots + b_kv_k$ dunque:

$$(a_1 - b_1)v_1 + \cdots + (a_k - b_k)v_k = O.$$

Poiché i vettori v_1, \ldots, v_k sono linearmente indipendenti, dobbiamo avere necessariamente $a_i - b_i = 0$ per ogni i, dunque $a_i = b_i$ per ogni i. Questo dimostra che i coefficienti della combinazione lineare sono univocamente determinati dalla base scelta.

Seconda parte. Supponiamo ora che ogni vettore di V si scriva, in modo unico, come combinazione lineare di v_1, \ldots, v_k . Dimostriamo che tali vettori formano una base. Ora, è immediato che essi generano V; occorre solo dimostrare che essi sono linearmente indipendenti. Supponiamo allora che

$$a_1v_1 + \cdots + a_kv_k = O.$$

Si ha anche, banalmente:

$$0v_1 + \dots + 0v_k = O$$

e quindi, dalla proprietà di unicità, otteniamo $a_1 = \cdots = a_k = 0$. Dunque i vettori v_1, \ldots, v_k sono linearmente indipendenti. \square

Esempio Abbiamo visto che i vettori $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ generano \mathbf{R}^2 , ma non formano una base. Questo si poteva dimostrare anche osservando che, ad esempio, il vettore $w = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ è combinazione lineare di v_1, v_2, v_3 in almeno due modi diversi:

$$\binom{3}{4} = v_1 + v_2 + v_3,$$

$$\begin{pmatrix} 3 \\ 4 \end{pmatrix} = v_1 + v_2 + v_3,$$
$$\begin{pmatrix} 3 \\ 4 \end{pmatrix} = 3v_1 + 4v_2 + 0v_3.$$

Vedremo che uno spazio vettoriale finitamente generato ha diverse (in realtà, infinite!) basi.

5.1 Coordinate di un vettore rispetto a una base

Fissiamo ora una base $\{v_1, \ldots, v_n\}$ di V. Includendo i vettori tra parentesi tonde:

$$(v_1,\ldots,v_n)$$

intenderemo che i vettori sono ordinati nel modo indicato: v_1 , poi v_2 etc. Diremo anche che (v_1, \ldots, v_n) è una base ordinata di V.

Dato un vettore $v \in V$, possiamo scrivere

$$v = a_1 v_1 + \dots + a_n v_n,$$

con coefficienti a_1, \ldots, a_n univocamente determinati. Tali coefficienti sono detti le coordinate di v rispetto alla base (v_1, \ldots, v_n) . Esprimeremo le coordinate del vettore v mediante il vettore colonna di \mathbf{R}^n :

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
.

Esempio Le coordinate di un vettore $v=\begin{pmatrix} x\\y \end{pmatrix}$ rispetto alla base canonica di \mathbf{R}^2 sono $\begin{pmatrix} x\\y \end{pmatrix}$, il vettore stesso.

Esempio Siano $v_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$

- a) Dimostrare che v_1, v_2 formano una base di \mathbf{R}^2 .
- b) Calcolare le coordinate del vettore $w = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ rispetto alla base (v_1, v_2) .

Soluzione. a) Dimostriamo che ogni vettore $v = \begin{pmatrix} a \\ b \end{pmatrix}$ di \mathbf{R}^2 si scrive in modo unico:

$$v = xv_1 + yv_2.$$

L'equazione si traduce nel sistema S: $\begin{cases} x+y=a\\ 3x+4y=b \end{cases}$ con matrice dei coefficienti A=

 $\begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$ avente determinante diverso da zero. Dunque, per il teorema di Cramer, S ammette un'unica soluzione per ogni scelta di $a, b \in (v_1, v_2)$ è quindi una base di \mathbf{R}^2 .

b) Dobbiamo esprimere w come combinazione lineare

$$w = xv_1 + yv_2$$

(questo è possibile perché v_1,v_2 formano una base) e le coordinate di w saranno per definizione $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Tali coordinate si trovano risolvendo il sistema della parte a) con a = 1 e b = 6. Otteniamo x = -2, y = 3 dunque $w = -2v_1 + 3v_3$ e le coordinate sono $X = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$. \square

• Osserviamo che le coordinate di un vettore dipendono dalla base scelta: nell'esempio precedente, le coordinate di $w = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ sono:

$$\begin{pmatrix} -2\\ 3 \end{pmatrix}$$
, rispetto alla base (v_1, v_2) .

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
, rispetto alla base (v_1, v_2) , $\begin{pmatrix} 1 \\ 6 \end{pmatrix}$, rispetto alla base canonica (e_1, e_2) .

Generalizzando l'argomento usato nel precedente esempio vediamo anche che \mathbb{R}^2 ha infinite basi diverse: una qualunque coppia di vettori $v_1 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}, v_2 = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$, tali che la matrice $\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$ abbia determinante diverso da zero, formerà una base di \mathbf{R}^2 .

6 Sottospazi

Definizione Un sottoinsieme E di uno spazio vettoriale V si dice un sottospazio di V se verifica le seguenti proprietà.

- a) Il vettore nullo appartiene a E.
- b) Se $u, v \in E$ allora $u + v \in E$.
- c) Se $u \in E$ e $k \in \mathbf{R}$ allora $ku \in E$.

Le proprietà b) e c) si esprimono dicendo anche che un sottospazio è *chiuso rispetto alla* somma e al prodotto per uno scalare.

Esempi immediati di sottospazi sono dati dal sottospazio nullo $\{O\}$, costituito dal solo vettore nullo, e da tutto lo spazio V: questi sono i cosiddetti sottospazi banali di V.

Proposizione Ogni sottospazio E di uno spazio vettoriale V è esso stesso uno spazio vettoriale (rispetto alle operazioni di somma e prodotto per uno scalare definite in V).

Dimostrazione. Gli assiomi di spazio vettoriale sono verificati per V, e quindi anche per E, perché le operazioni di somma e prodotto per uno scalare sono le stesse. \square

6.1 Esempi di sottospazi di \mathbb{R}^n

In questo moso, abbiamo molti altri esempi di spazi vettoriali.

Proposizione Sia E l'insieme delle soluzioni di un sistema lineare omogeneo di m equazioni in n incognite. Allora E è un sottospazio di \mathbb{R}^n .

Dimostrazione. Un sistema lineare omogeneo si scrive, in forma matriciale, come AX = O, dove A è la matrice dei coefficienti, di tipo $m \times n$, e X è il vettore colonna delle incognite. Quindi

$$E = \operatorname{Sol}(S) = \{ X \in \mathbf{R}^n : AX = O \}.$$

Verifichiamo le proprietà di chiusura. È evidente che il vettore nullo $O \in E$. Se $X_1, X_2 \in E$ allora

$$A(X_1 + X_2) = AX_1 + AX_2 = O + O = O,$$

dunque anche $X_1 + X_2 \in E$, e abbiamo la chiusura rispetto alla somma. La chiusura rispetto al prodotto per uno scalare si verifica in modo simile. \square

Esempio Consideriamo il sistema lineare omogeneo $S: \begin{cases} x+y-z=0\\ 2x-y+4z=0 \end{cases}$. Trovare una base di E, il sottospazio di ${\bf R}^3$ formato dalle soluzioni di S.

Soluzione. Dobbiamo innanzitutto risolvere il sistema. Le soluzioni si esprimono

$$E = \operatorname{Sol}(S) = \left\{ \begin{pmatrix} -t \\ 2t \\ t \end{pmatrix} : t \in \mathbf{R} \right\}$$

e sono ∞^1 . Il vettore generico di E si scrive:

$$\begin{pmatrix} -t \\ 2t \\ t \end{pmatrix} = t \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix},$$

ed è un multiplo del vettore $\begin{pmatrix} -1\\2\\1 \end{pmatrix}$, che è non nullo, dunque linearmente indipendente.

In conclusione una base di E è formata dal vettore

$$\begin{pmatrix} -1\\2\\1 \end{pmatrix}$$
.

Esercizio Si consideri il sistema omogeneo di due equazioni in quattro incognite

$$S: \begin{cases} x_1 - x_2 + x_3 + 2x_4 = 0 \\ 2x_1 - 2x_2 - x_3 - 2x_4 = 0 \end{cases}.$$

Trovare una base di E = Sol(S).

Soluzione. Notiamo che E è un sottospazio di ${\bf R}^4.$ Risolvendo il sistema, otteniamo ∞^2 soluzioni:

$$E = \left\{ \begin{pmatrix} t \\ t \\ -2s \\ s \end{pmatrix} : t, s \in \mathbf{R} \right\}.$$

Il vettore generico di E si scrive:

$$\begin{pmatrix} t \\ t \\ -2s \\ s \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

Dunque i due vettori $w_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, w_2 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}$ generano E. Essi sono anche linearmente

indipendenti (come si vede subito) dunque w_1, w_2 formano una base di E. \square

• È evidente che, se S non è omogeneo, il suo insieme delle soluzioni non è un sottospazio, poiché il vettore nullo non appartiene a E.

6.2 Sottospazio generato da un insieme di vettori

Sia V uno spazio vettoriale e v_1, \ldots, v_k vettori assegnati di V. Consideriamo l'insieme di tutte le combinazioni lineari di v_1, \ldots, v_k :

$$L[v_1, \dots, v_k] \doteq \{a_1v_1 + \dots + a_kv_k : a_1, \dots, a_k \in \mathbf{R}\}.$$

Si verifica facilmente che $L[v_1, \ldots, v_k]$ è un sottospazio di V, detto sottospazio generato da v_1, \ldots, v_k .

Le seguenti affermazioni sono quindi equivalenti:

- 1) I vettori v_1, \ldots, v_k generano V.
- 2) $V = L[v_1, ..., v_k].$

Esempio Siano $w_1=\begin{pmatrix}1\\0\\0\end{pmatrix}, w_2=\begin{pmatrix}0\\0\\1\end{pmatrix}$. Descrivere il sottospazio E di ${\bf R}^3$ generato dai vettori $w_1,w_2,$ cioè $E=L[w_1,w_2].$

Soluzione. Il vettore generico di E è combinazione lineare di w_1, w_2 . Dunque esso si scrive $v = tw_1 + sw_2$ con $t, s \in \mathbf{R}$. Esplicitamente:

$$v = \begin{pmatrix} t \\ 0 \\ s \end{pmatrix},$$

con $t, s \in \mathbf{R}$ arbitrari. A parole, E è formato da tutti i vettori di \mathbf{R}^3 aventi seconda entrata nulla. Notiamo che E è anche l'insieme delle soluzioni dell'equazione $x_2 = 0$ nelle variabili x_1, x_2, x_3 :

$$E = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 : x_2 = 0 \}.$$

Quindi, ad esempio: $\begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} \in E$ ma $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \notin E$. Notiamo infine che i generatori di E, cioè

i vettori w_1, w_2 , sono linearmente indipendenti: dunque w_1, w_2 formano una base di E. \square

• È evidente che, se $E = L[v_1, \ldots, v_k]$, e se i generatori v_1, \ldots, v_k sono anche linearmente indipendenti, allora essi formano una base di E.

Esempio Siano $w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, w_3 = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$. Descrivere il sottospazio di \mathbb{R}^3 generato da w_1, w_2, w_3 , cioè $L[w_1, w_2, w_3]$.

Soluzione. $F = L[w_1, w_2, w_3]$ è formato dai vettori del tipo:

$$v = aw_1 + bw_2 + cw_3,$$

con $a,b,c\in\mathbf{R}$. Ponendo c=0 vediamo che F contiene tutte le combinazioni lineari di $w_1,w_2,$ cioè

$$L[w_1, w_2] \subseteq L[w_1, w_2, w_3].$$

Osserviamo ora che $w_3 = 2w_1 - 3w_2$. Sostituendo nell'espressione di v, otteniamo che il vettore generico di F si scrive anche

$$v = (a+2c)w_1 + (b-3c)w_2,$$

e questo dimostra che

$$L[w_1, w_2, w_3] \subseteq L[w_1, w_2].$$

Per il principio della doppia inclusione, abbiamo allora

$$L[w_1, w_2, w_3] = L[w_1, w_2].$$

Dunque $L[w_1, w_2, w_3]$ coincide con il sottospazio dell'esempio precedente. \square

L'argomento usato nell'esempio precedente motiva la seguente proposizione di carattere generale.

Proposizione Siano v_1, \ldots, v_{k+1} vettori di un qualunque spazio vettoriale V. Allora si ha:

- a) $L[v_1, ..., v_k] \subseteq L[v_1, ..., v_k, v_{k+1}].$
- b) $L[v_1,\ldots,v_k]=L[v_1,\ldots,v_k,v_{k+1}]$ se e solo se v_{k+1} è combinazione lineare di v_1,\ldots,v_k .

Dimostrazione. a) È sufficiente osservare che $a_1v_1 + \cdots + a_kv_k = a_1v_1 + \cdots + a_kv_k + 0v_{k+1}$: quindi ogni combinazione lineare di v_1, \ldots, v_k è anche combinazione lineare di v_1, \ldots, v_{k+1} e la prima parte è dimostrata.

b) Supponiamo che v_{k+1} sia combinazione lineare di v_1, \ldots, v_k . Questo implica che ogni combinazione lineare di $v_1, \ldots, v_k, v_{k+1}$ è anche combinazione lineare dei primi k vettori v_1, \ldots, v_k : dunque

$$L[v_1,\ldots,v_{k+1}]\subseteq L[v_1,\ldots,v_k].$$

Dalla parte a) sappiamo però che $L[v_1, \ldots, v_k] \subseteq L[v_1, \ldots, v_{k+1}]$. Dunque, per il principio della doppia inclusione:

$$L[v_1, \dots, v_{k+1}] = L[v_1, \dots, v_k].$$

Ora dimostriamo il viceversa. Supponiamo che $L[v_1,\ldots,v_{k+1}]=L[v_1,\ldots,v_k]$: allora per ipotesi $v_{k+1}\in L[v_1,\ldots,v_k]$ quindi v_{k+1} è una combinazione lineare di v_1,\ldots,v_k . \square

In conclusione, supponiamo di aggiungere un vettore v_{k+1} a un insieme di generatori v_1, \ldots, v_k . Allora il sottospazio generato

- rimane lo stesso, se e solo se v_{k+1} è combinazione lineare dei generatori precedenti;
- diventa più grande, se e solo se v_{k+1} non è combinazione lineare dei generatori precedenti.

In particolare:

• se un generatore è combinazione lineare degli altri, allora può essere rimosso dalla lista, senza alterare il sottospazio generato.

Esempio Siano
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, v_4 = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$$
. Dimostrare che

- a) $L[v_1, v_2, v_3, v_4] = L[v_1, v_2].$
- b) v_1, v_2 formano una base di $L[v_1, v_2, v_3, v_4]$.

Soluzione. Osserviamo che $v_4=3v_1$; dunque possiamo eliminare v_4 . A questo punto abbiamo:

$$L[v_1, v_2, v_3, v_4] = L[v_1, v_2, v_3].$$

Possiamo eliminare qualche altro generatore? Si ha: $v_3 = 2v_1 - v_2$ dunque possiamo eliminare anche v_3 . A questo punto

$$L[v_1, v_2, v_3, v_4] = L[v_1, v_2, v_3] = L[v_1, v_2].$$

Ora osserviamo che v_1, v_2 sono linearmente indipendenti: nessuno di essi è combinazione lineare (multiplo) dell'altro. Dunque non possiamo più scartare niente.

- b) Poiché i vettori v_1,v_2 sono linearmente indipendenti, e generano il sottospazio, essi formano una base. \square
- L'esempio precedente mostra come una base sia il modo più "economico" per generare un dato sottospazio: i generatori v_3 e v_4 sono inutili, e possono essere eliminati. I generatori rimasti, cioè v_1 e v_2 , sono linearmente indipendenti: nessuno di essi può essere scartato, perché altrimenti il sottospazio generato diventerebbe più piccolo.

7 Teorema di esistenza di una base

Il procedimento di "eliminazione dei generatori inutili" può essere applicato in ogni spazio vettoriale finitamente generato, e ci permetterà di ricavare una base da un qualunque insieme di generatori. Enunciamo quindi il cosiddetto teorema di esistenza di una base.

Teorema Sia $V \neq \{O\}$ uno spazio vettoriale finitamente generato. Allora V ammette almeno una base.

Dimostrazione. Per ipotesi V è generato da un certo numero (finito) di vettori: $V = L[v_1, \ldots, v_k]$. Se i generatori sono linearmente indipendenti, allora essi formano una base e abbiamo finito. Altrimenti, almeno uno di essi è una combinazione lineare degli altri: supponiamo che tale vettore sia v_k (questo non lede la generalità). Possiamo dunque eliminarlo dalla lista, e $V = L[v_1, \ldots, v_{k-1}]$. Se v_1, \ldots, v_{k-1} sono linearmente indipendenti, essi formano una base. Altrimenti, possiamo scartare qualche altro generatore, e così' via. Ora non possiamo scartare tutti i generatori, perché per ipotesi V contiene almeno un vettore non nullo. Dunque prima o poi ci dobbiamo fermare, e ci fermiamo esattamente quando i generatori rimasti sono linearmente indipendenti. Tali generatori formano la base cercata. \square

Il metodo di eliminazione mostra anche che

Corollario Ogni insieme di generatori contiene una base.

8 Dimensione

Uno spazio vettoriale ammette infinite basi diverse. In questa sezione dimostreremo che tutte le basi hanno lo stesso numero di vettori, ciò che ci permetterà di definire la dimensione di V come il numero di vettori di una sua base qualunque. In ciò che segue, V è uno spazio vettoriale finitamente generato.

Lemma Supponiamo che i vettori v_1, \ldots, v_m siano linearmente indipendenti, e che i vettori w_1, \ldots, w_n generino V. Allora si ha necessariamente $m \leq n$.

Dimostrazione. La dimostrazione si fa per assurdo: faremo vedere che l'ipotesi m>n porta a una contraddizione. In ciò che segue supporremo dunque:

m > n.

Poiché w_1,\ldots,w_n generano V, possiamo esprimere i primi n vettori della lista v_1,\ldots,v_m come combinazione lineare di w_1, \dots, w_n : esistono dunque degli scalari a_{ij} tali che

$$\begin{cases} v_1 = a_{11}w_1 + \dots + a_{1n}w_n \\ \dots \\ v_n = a_{n1}w_1 + \dots + a_{nn}w_n \end{cases}$$

Conviene esprimere queste relazioni nella forma matriciale seguente:

$$(v_1, \dots, v_n) = (w_1, \dots, w_n)A, \tag{1}$$

dove $A = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix}$ e l'espressione $(w_1, \dots, w_n)A$ indica il prodotto del vettore riga $(w_1, \dots, w_n)A$

 (w_n) (le cui entrate sono vettori) per la matrice A, che è quadrata $n \times n$. Supponiamo che det A=0. Dal teorema di Rouché-Capelli, sappiamo che il sistema

omogeneo AX = O ammette almeno una soluzione non nulla $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Moltiplichiamo

ambo i membri di (??) per X (a destra) e otteniamo:

$$(v_1, \ldots, v_n)X = (w_1, \ldots, w_n)AX = O$$
 (il vettore nullo)

da cui

$$x_1v_1 + \dots + x_nv_n = O,$$

con x_1,\ldots,x_n non tutti nulli: questo, però, è impossibile, perché per ipotesi i vettori v_1, \ldots, v_n sono linearmente indipendenti.

Dunque det $A \neq 0$ e la matrice A risulta invertibile.

Moltiplichiamo ambo i membri della (??) per A^{-1} , a destra. Otteniamo

$$(v_1, \dots, v_n)A^{-1} = (w_1, \dots, w_n).$$

Se $A^{-1} = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$ tale relazione si scrive esplicitamente

$$\begin{cases} w_1 = b_{11}v_1 + \dots + b_{n1}v_n \\ \dots \\ w_n = b_{1n}v_1 + \dots + b_{nn}v_n \end{cases}$$

e mostra che ogni vettore w_j è combinazione lineare di v_1, \ldots, v_n . Per ipotesi i vettori w_1, \ldots, w_n generano V. In particolare, il vettore v_{n+1} è combinazione lineare di w_1, \ldots, w_n , quindi anche di v_1, \ldots, v_n : ma questo è impossibile, perché i vettori v_1, \ldots, v_{n+1} sono, per ipotesi, linearmente indipendenti.

In conclusione, abbiamo un assurdo in entrambi i casi: $\det A = 0$, $\det A \neq 0$. Tale assurdo è conseguenza dell'ipotesi m > n. Dunque $m \leq n$. \square

Proposizione Tutte le basi di uno spazio vettoriale V hanno lo stesso numero di vettori.

Dimostrazione. Siano $\mathcal{B} = \{v_1, \dots, v_m\}$ e $\mathcal{B}' = \{w_1, \dots, w_n\}$ due basi di V. Vogliamo dimostrare che

$$m=n$$
.

Per ipotesi, i vettori v_1, \ldots, v_m sono linearmente indipendenti e i vettori w_1, \ldots, w_n generano V: dal lemma otteniamo $m \leq n$. D'altra parte è anche vero che i vettori v_1, \ldots, v_m generano V, e i vettori w_1, \ldots, w_n sono linearmente indipendenti, dunque sempre grazie al lemma otteniamo $m \geq n$. La conclusione è che m = n. \square

Definizione Sia V uno spazio vettoriale finitamente generato. Definiamo dimensione di V il numero di vettori di una qualunque base di V (tale numero è sempre lo stesso).

Per calcolare la dimensione di uno spazio vettoriale, basta quindi:

- trovare una base di V,
- contare i vettori che la compongono.

Teorema $Sia\ V\ uno\ spazio\ vettoriale\ di\ dimensione\ n.$ Allora:

- a) Non esistono più di n vettori linearmente indipendenti.
- b) Dati comunque k vettori, con k < n, essi non possono generare V.
- c) n vettori linearmente indipendenti sono anche generatori (quindi formano una base).
- d) n vettori generatori sono anche linearmente indipendenti (quindi formano una base).

Dimostrazione. Per ipotesi, esiste una base (v_1, \ldots, v_n) costituita da n vettori.

- a) Siano w_1, \ldots, w_k vettori linearmente indipendenti; poichè per ipotesi v_1, \ldots, v_n generano V si ha $k \leq n$ per il lemma precedente.
- b) Supponiamo che w_1, \ldots, w_k generino V; poichè per ipotesi v_1, \ldots, v_n sono linearmente indipendenti allora $k \geq n$ per il lemma precedente.
- c) Supponiamo che i vettori w_1, \ldots, w_n siano linearmente indipendenti: dobbiamo dimostrare che, dato un qualunque vettore $u \in V$, esso si esprime come combinazione

lineare di w_1, \ldots, w_n . Ora i vettori u, w_1, \ldots, w_n devono essere linearmente dipendenti per la parte a) del teorema: dunque esiste una combinazione lineare:

$$bu + b_1w_1 + \dots + b_nw_n = O,$$

con coefficienti b, b_1, \ldots, b_n non tutti nulli. Ora, se b = 0, avremmo $b_1 w_1 + \cdots + b_n w_n = O$ quindi $b_1 = \cdots = b_n = 0$: ma questo è impossibile per quanto appena detto. Dunque $b \neq 0$: dividendo per b e isolando u a primo membro possiamo esprimere u come combinazione lineare di w_1, \ldots, w_n .

d) Supponiamo per assurdo che i vettori w_1, \ldots, w_n generino V e non siano linearmente indipendenti. Dunque almeno uno di essi è combinazione lineare degli altri, e lo possiamo eliminare. Otteniamo in questo modo un insieme di n-1 generatori, e questo contraddice la parte b) del teorema. \square

La parte a) dice che la dimensione è il *numero massimo* di vettori linearmente indipendenti. La parte b) dice che la dimensione è il *numero minimo* di generatori.

8.1 Teorema del completamento di una base

Il teorema seguente dice che possiamo sempre estendere un insieme di vettori linearmente indipendenti fino ad ottenere una base.

Teorema Siano v_1, \ldots, v_k vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n. Se k < n allora possiamo trovare n - k vettori w_1, \ldots, w_{n-k} tali che gli n vettori

$$v_1,\ldots,v_k,w_1,\ldots,w_{n-k}$$

formano una base di V.

Il teorema è conseguenza del seguente risultato.

Lemma Supponiamo che i vettori v_1, \ldots, v_k siano linearmente indipendenti, e sia E il sottospazio da essi generato: $E = L[v_1, \ldots, v_k]$. Allora, se $w \notin E$, i k+1 vettori

$$v_1,\ldots,v_k,w$$

risultano linearmente indipendenti.

Dimostrazione. Supponiamo che

$$a_1v_1 + \dots + a_kv_k + bw = O.$$

Se $b \neq 0$, possiamo dividere ambo i membri per b ed esprimere w come combinazione lineare di v_1, \ldots, v_k : questo però è impossibile, poiché altrimenti $w \in E$. Dunque b = 0: ma allora

$$a_1v_1 + \cdots + a_kv_k = O$$

e poiché v_1,\ldots,v_k sono linearmente indipendenti per ipotesi, si avrà $a_1=\cdots=a_k=0$. \square

Dimostriamo ora il teorema.

Sia $E = L[v_1, \ldots, v_k]$. Poiché k < n, i vettori v_1, \ldots, v_k non possono generare tutto lo spazio vettoriale V (altrimenti essi formerebbero una base, e quindi k = n). Dunque possiamo trovare almeno un vettore $w_1 \notin E$. Per il lemma, i k + 1 vettori

$$v_1,\ldots,v_k,w_1$$

risultano linearmente indipendenti. Ora, se k+1=n essi formano una base per il teorema precedente (parte c), e abbiamo finito. Se k+1 < n possiamo ripetere l'argomentazione precedente e trovare almeno un vettore w_2 tale che i k+2 vettori

$$v_1,\ldots,v_k,w_1,w_2$$

risultano linearmente indipendenti. Continuando in questo modo arriviamo a un insieme di n vettori linearmente indipendenti $v_1, \ldots, v_k, w_1, \ldots, w_{n-k}$: per la parte c) del teorema della sezione precedente, tali vettori formano una base. \square

9 Le basi di \mathbb{R}^n

Sia ora $V = \mathbb{R}^n$. Abbiamo già osservato che gli n vettori:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix},$$

formano una base, detta base canonica di \mathbb{R}^n . Dunque:

• \mathbf{R}^n ha dimensione n.

Ci proponiamo ora di caratterizzare le (infinite) basi di \mathbb{R}^n .

Proposizione 1) Tutte le basi di \mathbb{R}^n sono composte da n vettori.

2) I vettori v_1, \ldots, v_n di \mathbf{R}^n formano una base se e solo la matrice di colonne v_1, \ldots, v_n ha determinante non nullo.

Dimostrazione. 1) è una conseguenza immediata del fatto che la dimensione di \mathbb{R}^n è n.

- 2) Se la matrice di colonne v_1, \ldots, v_n ha determinante non nullo allora i vettori v_1, \ldots, v_n sono linearmente indipendenti e quindi, poiché sono esattamente n, formano una base. Il viceversa si dimostra in modo analogo.
- **Esempio** I vettori $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ formano una base di \mathbf{R}^3 , poiché

$$Mat(v_1, v_2, v_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

ha determinante -1, quindi non nullo.

Illustriamo il teorema di estensione di una base sul seguente esempio.

Esempio a) Verificare che i vettori $v_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ sono linearmente indipendenti.

b) Estendere v_1, v_2 ad una base di \mathbf{R}^3 .

Soluzione. a) Basta osservare che il rango della matrice $A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \\ 2 & 1 \end{pmatrix}$ vale 2.

b) Basta aggiungere un solo vettore $w_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ tale che la matrice

$$A' = \begin{pmatrix} 2 & 4 & a \\ 1 & 2 & b \\ 2 & 1 & c \end{pmatrix}$$

abbia rango 3 (cioè, determinante non nullo). Questo si può fare in infiniti modi diversi. Forse il modo più semplice è il seguente. Fissiamo un minore di ordine 2 di A con determinante non nullo, ad esempio $M=\begin{pmatrix}1&2\\2&1\end{pmatrix}$ e scegliamo a=1,b=0,c=0: in questo modo si vede subito che

$$A' = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 2 & 0 \\ 2 & 1 & 0 \end{pmatrix}$$

ha determinante non nullo. Dunque il vettore che possiamo aggiungere per ottenere una

base di
$$\mathbf{R}^3$$
 è $w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. \square

10 Spazi vettoriali di matrici

Consideriamo ora lo spazio vettoriale delle matrici $m \times n$, che abbiamo denotato con il simbolo $\mathbf{Mat}(m \times n)$. Ricordiamo che il vettore nullo di $\mathbf{Mat}(m \times n)$ è la matrice nulla O.

Vogliamo dimostrare che $\mathbf{Mat}(m \times n)$ è finitamente generato, ed ha infatti dimensione pari a mn.

Fissiamo gli indici i, j e consideriamo la matrice elementare E_{ij} , cioè la matrice che ha 1 nell'entrata (i, j) e zero altrove. È evidente che le matrici elementari di tipo $m \times n$ sono, in numero, mn, e generano $\mathbf{Mat}(m \times n)$: infatti, se $A = (a_{ij})$ allora, per definizione

$$A = \sum_{i,j} a_{ij} E_{ij}$$

dove $i=1,\ldots,m$ e $j=1,\ldots,n$. Quindi le matrici elementari formano un insieme di generatori. Tali matrici sono anche linearmente indipendenti perché è evidente che

$$\sum_{i,j} a_{ij} E_{ij} = O \quad \text{(matrice nulla)}$$

se e solo se $a_{ij} = 0$ per ogni i, j. Concludiamo che:

Proposizione Le matrici elementari formano una base di $Mat(m \times n)$, che dunque ha dimensione mn.

Esempio Nello spazio vettoriale $Mat(2 \times 2)$ abbiamo quattro matrici elementari:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ogni matrice 2×2 si scrive:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22}$$

in modo unico: la quaterna $(E_{11}, E_{12}, E_{21}, E_{22})$ è una base di $\mathbf{Mat}(2 \times 2)$, che ha di conseguenza dimensione pari a 4.

• $(E_{11}, E_{12}, E_{21}, E_{22})$ (con l'ordinamento indicato) sarà chiamata la base canonica di $Mat(2 \times 2)$.

Notiamo anche che le coordinate della matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ rispetto alla base canonica sono date da

 $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$

11 Spazi vettoriali di polinomi

11.1 Combinazioni lineari di polinomi

Ricordiamo che $\mathbf{R}[x]$ denota lo spazio vettoriale dei polinomi nella indeterminata x a coefficienti reali, con le operazioni naturali di somma di due polinomi e moltiplicazione di un polinomio per un numero. Il vettore nullo di $\mathbf{R}[x]$ è per definizione il polinomio nullo p(x) = 0.

Possiamo quindi formare, come in ogni spazio vettoriale, combinazioni lineari.

Esempio Se $p_1(x) = 1 - x + 6x^4$ e $p_2(x) = x - x^3 - 4x^4 + x^6$ allora

$$2p_1(x) + 3p_2(x) = 2 + x - 3x^3 + 3x^6.$$

Osserviamo che l'operazione di formare combinazioni lineari di polinomi non può au- $mentare\ il\ grado$ nel senso che:

• Una qualunque combinazione lineare dei polinomi $p_1(x), \ldots, p_k(x)$, di grado, rispettivamente, d_1, \ldots, d_k , ha grado minore o uguale del massimo fra d_1, \ldots, d_k .

11.2 R[x] non è finitamente generato

Denotiamo con $E_i(x)$ il monomio di grado i, cioè il polinomio:

$$E_i(x) = x^i$$
,

dove $i = 0, 1, 2, \ldots$ In particolare, $E_0(x) = 1$, il polinomio costante 1. È evidente che ogni polinomio p(x) è combinazione lineare dei monomi $E_i(x)$:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

= $a_0 E_0(x) + a_1 E_1(x) + \dots + a_n E_n(x)$

Dunque:

• I monomi $E_0(x), E_1(x), \ldots$ formano un insieme di generatori di $\mathbf{R}[x]$.

Tali generatori però, sono in numero infinito. A questo punto ci chiediamo se sia possibile trovare un insieme finito di generatori di $\mathbf{R}[x]$. La risposta è negativa.

Proposizione $\mathbf{R}[x]$ non è finitamente generato.

Dimostrazione. La dimostrazione si fa per assurdo. Supponiamo che ci sia un insieme finito di generatori, diciamo $p_1(x), \ldots, p_k(x)$. Siano d_1, \ldots, d_k i gradi rispettivi dei polinomi generatori e sia D il massimo fra d_1, \ldots, d_k . Da quanto detto in precedenza, una qualunque combinazione lineare di $p_1(x), \ldots, p_k(x)$ avrà grado non superiore a D. Dunque il polinomio x^{D+1} non sarà in alcun modo combinazione lineare dei polinomi dati, e abbiamo così trovato una contraddizione. \square

11.3 Lo spazio vettoriale $\mathbb{R}^n[x]$

Abbiamo visto che $\mathbf{R}[x]$ non è finitamente generato: il motivo è che esso contiene polinomi di grado arbitrariamente grande. Fissiamo ora un intero positivo n, e consideriamo il sottoinsieme $\mathbf{R}^n[x]$ di $\mathbf{R}[x]$ formato dai polinomi di grado minore di n:

$$\mathbf{R}^{n}[x] = \{a_0 + a_1 x + \dots + a_{n-1} x^{n-1} : a_0, \dots, a_{n-1} \in \mathbf{R}\}.$$

È facile verificare che $\mathbf{R}^n[x]$ è chiuso rispetto alla somma e al prodotto per uno scalare, e ovviamente contiene il polinomio nullo. Dunque $\mathbf{R}^n[x]$ è un sottospazio di $\mathbf{R}[x]$, e come tale è esso stesso uno spazio vettoriale. Il polinomio generico di $\mathbf{R}^n[x]$ è combinazione lineare dei monomi $1, x, \ldots, x^{n-1}$, che sono linearmente indipendenti. Dunque tali monomi formano una base (finita) di $\mathbf{R}^n[x]$. In conclusione:

• $\mathbf{R}^n[x]$ è uno spazio vettoriale di dimensione n, con base $\{1, x, \dots, x^{n-1}\}$.