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Chapter 1

Regular Functions and Regular Maps
on Affine Varieties

1.1 Regular Functions

Definition 1.1. Let X ⊆ An be an affine variety. A function f : X → K is regular it is a polynomial
function, that is there exists a polynomial F ∈ K[x1, . . . , xn] such that

f(a1, . . . , an) = F (a1, . . . , an)

for any (a1, . . . , an) ∈ X .

Remark 1.2. We already noticed that that the set of polynomial functions on an affine variety form a K-
algebra, which is isomorphic to the coordinate ring

A(X) :=
K[x1, . . . , xn]

I(X)
.

Moreover, since X is irreducible, we have that I(X) is prime, so that A(X) is an integral domain. Furthermore,
since K[x1, . . . , xn] is noetherian, so is A(X).

Examples 1.3. Assume K to be an infinite filed.

1. A(An) = K[x1, . . . , xn]; indeed, we have I(An) = (0).

2. Let X = V (y− x2) ⊆ A2
C be the parabola. We have I(V (y− x2)) =

√
⟨y − x2⟩ by the NSS, and since

y−x2 is an irreducible polynomial, the ideal ⟨y−x2⟩ is prime, hence radical and
√

⟨y − x2⟩ = ⟨y−x2⟩.
It can be easily checked that

A(X) =
K[x, y]

⟨y − x2⟩
∼=−→ K[x]

F (x, y) 7−→ F (x, x2).

Finally, we observe that X admits the parametrization

V (y − x2) = {(t, t2) : t ∈ A1},

so that is the image of the map φ : A1 → A2, φ(t) = (t, t2).

3. Let X = V (x2 − y3) ⊆ A2
C be the cuspidal cubic. Such a curve admits the parametrization

V (x2 − y3) = {(t3, t2) : t ∈ A1}.

2



We observe that in this case
A(X) =

K[x, y]

⟨x2 − y3⟩
̸∼= K[t].

Indeed, we have that K[t] is an UFD, while A(X) is not; for instance

x2 = xx = yyy

with x, y irreducible elements. Hence x2 admits two different factorizations in irreducible factors.

Definition 1.4. The element xi ∈ A(X), class of xi modulo I(X), will be called the i-th coordinate func-
tion. Under the identification with a polynomial function it corresponds to

xi : X −→ K; P = (p1, . . . , pn) 7−→ pi.

Remark 1.5. The K-algebra A(X) is finitely generated by 1, x1, . . . , xn.
Conversely, we can see that any finitely generated K-algebra A, which is an integral domain, is isomorphic

to the coordinate ring of an affine variety. Indeed, we have an exact sequence

0 −→ I −→ K[x1, . . . , xn]
φ−→ A −→ 0

where I := kerφ, and A ∼= K[x1,...,xn]
I . Since A is an integral domain, the ideal I is prime. By defining

X := V (I) ⊆ An, we have A ∼= A(X).

1.2 Regular Maps

Definition 1.6. Let X ⊆ An and Y ⊆ Am be affine varieties. A map f : X → Y is a regular map or
morphism if there exist f1, . . . , fm ∈ A(X) such that

f = (f1, . . . , fm),

so that f(P ) = (f1(P ), . . . , fm(P )) ∈ Y , for any P ∈ X .
Moreover, we say that f is an isomorphism if it is bijective regular map and its inverse is a regular map.

Proposition 1.7. Let X ⊆ An and Y ⊆ Am be affine varieties and let f : X → Y be regular. Then f is
continuous in the Zariski topology.

Proof. Let X = V (g1, . . . , gs), fi ∈ K[x1, . . . , xn] and Y = V (h1, . . . , hr), Gi ∈ K[y1, . . . , ym]. A closed
subset of Y is of the form Z = Y ∩ V (m1, . . . ,mk) with mi ∈ K[y1, . . . , ym]. Then we have:

P ∈ f−1(Z) ⇔ f(P ) ∈ Z ⇔ m1(f(P )) = · · · = mk(f(P )) = 0

⇔ m1(f1(P ), . . . , fm(P )) = · · · = mk(f1(P ), . . . , fm(P )) = 0

⇔ m1(f1, . . . , fm)(P ) = · · · = mk(f1, . . . , fm)(P ) = 0.

Since this holds for any P ∈ f−1(Z), it follows that

f−1(Z) = V (m1(f1, . . . , fm), . . . ,mk(f1, . . . , fm)) ∩X,

which is closed in X .

Remark 1.8. We observe that the composition of a regular map with a regular function is again a regular
function. Indeed, if f = (f1, . . . , fm) : X → Y and h : Y → K, we have that

h ◦ f = h(f1, . . . , fm)

is a polynomial function.
This allows to define the pull-back f⋆ of a regular map f : X → Y :

f⋆ : A(Y ) → A(X), f⋆(h) := h ◦ f.

Note that f⋆ is a K-algebra homomorphism.
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The pull-back of a map determines a contravariant functor, with the following property.

Proposition 1.9. The functor associating the coordinate ring A(X) to any affine variety X , and the K-algebra
homomorphism f⋆ : A(Y ) → A(X) to any regular map f : X → Y , determines a category equivalence
between the categories A = {X affine variety, f regular map} and B = {A(X), uK-algebra homomorphism}.

Proof. We need to prove that we have a bijection between Hom(X,Y ) and Hom(A(Y ), A(X)). To
this aim, given u ∈ Hom(A(Y ), A(X)), we define

u# : X → Y

P → (u(y1)(P ), . . . , u(yn)(P ))
,

where y1, . . . , yn are the coordinate functions on Y .
We observe that u# is a regular map, since its components are elements of A(X). We need to

check now that u#(X) ⊆ Y . Let g ∈ I(Y ) and let us evaluate it in a generic point of u#(X):

g(u#(P )) = g(u(y1)(P ), . . . , u(yn)(P )) = g(u(y1), . . . , u(yn))(P ),

since the evaluation in a point is a homomorphism. Next we note that g(u(y1), . . . , u(yn)) is a sum of
products of images of u, and since u is a K-algebra homomorphism, we have

g(u(y1), . . . , u(yn)) = u(g(y1, . . . , yn).

Finally, by the definition of sum and product in a quotient ring, we have

u(g(y1, . . . , yn) = u(g(y1, . . . , yn)).

By recalling that g ∈ I(Y ) we see that g = 0 in A(Y ), hence

g(u#(P )) = g(u(y1)(P ), . . . , u(yn)(P )) = u(0)(P ) = 0.

It follows that u#(X) ⊆ V (I(Y )) = Y .
Finally, it is not difficult to check that (f∗)# = f e (u#)∗ = u. The equivalence of the two

categories follows.

Corollary 1.10. Let X ⊆ An and Y ⊆ Am be affine varieties. Then X is isomorphic to Y ⇐⇒ A(X) ∼=
A(Y ).

Examples 1.11. 1. The map φ : A1 → V (y − x2) is an isomorphism between the affine line and the
parabola, since it induces an isomorphism of coordinate rings.

2. The map f : A1 → V (y2 − x3); t 7→ (t2, t3) is a regular bijective map, but it is not an isomorphism,
since the coordinate rings are not isomorphic.

3. Let ∆ = {(P, P ); P ∈ An} ⊆ An × An be the diagonal. Then the diagonal map

δ : An −→ ∆

P 7−→ (P, P )

(p1, . . . , pn) 7−→ (p1, . . . , pn, p1, . . . , pn).

is a regular bijective map, since its components are coordinate functions. Moreover, the inverse map
δ−1 : ∆ → An is the restriction of the first projection, hence it has regular components too, so δ is an
isomorphism.

We shall make use of the diagonal isomorphism in the following framework: let X,Y ⊆ An be affine
varieties; then

δ|X∩Y : X ∩ Y → (X × Y ) ∩∆

is an isomorphism too.
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1.3 Relative NSS

Remark 1.12. We observe that given an affine variety X = V (g1, . . . , gr) ⊆ An, the induced Zariski topology
is determined by ideals in A(X), and precisely: if α ⊆ A(X) is an ideal, by setting

V (α) := {P ∈ X; h(P ) = 0, ∀h ∈ α},

we obtain all the Zariski closed subsets of X .
Indeed, if α = ⟨h1, . . . , hm⟩, there exist Hi ∈ K[x1, . . . , xn] such that hi = Hi and we have

V (α) = V (h1, . . . , hm) = V (H1, . . . ,Hm) ∩X.

Similarly, we can define the ideal of a subset of X : if S ⊆ X , we set I(S) := {g ∈ A(X); g|S ≡ 0}.

Proposition 1.13 (Relative NSS). If K = K, then in A(X) it holds

I(V (α)) =
√
α ⊆ A(X).

In particluar, there is relative version of the Weak NSS:

V (α) = ∅ ⇔ α = A(X).

Proof. The inclusion I(V (α)) ⊇
√
α is easy. For the converse, let X = V (G1, . . . , Gr) and let α =

⟨h1, . . . , hm⟩ and let h ∈ I(V (α)), with h = H for some H ∈ K[x1, . . . , xn]. By Remark ?? we have
V (α) = V (H1, . . . ,Hm) ∩X = V (H1, . . . ,Hm, G1, . . . , Gr). By the NSS we have

H ∈ I(V (H1, . . . ,Hm, G1, . . . , Gr)) =
√

(H1, . . . ,Hm, G1, . . . , Gr),

so there exists k ∈ N such that Hk ∈ (H1, . . . ,Hm, G1, . . . , Gr). This implies that H
k
= hk ∈ α ⊆

A(X), hence H ∈
√
α and the claim follows.

1.4 Rational Functions on Affine Varieties

Definition 1.14. Let X ⊆ An be an affine variety. The field of rational functions is the quotient field
Q(A(X)) of A(X), and we will denote it by K(X). So we have

K(X) =

{
f

g
; f, g ∈ A(X), g ̸= 0

}
,

where the condition g ̸= 0 in A(X) means that g is not the zero constant function, and we have

f

g
=

f ′

g′
⇐⇒ f · g′ = f ′ · g ∈ A(X).

In contrast with the regular functions, the rational functions do not define functions on the whole
of X .

Definition 1.15. Let X be an affine variety and let h ∈ K(X). We say that h is regular in P ∈ X if h admits
an expression

h =
f

g
, f, g ∈ A(X), g(P ) ̸= 0.

In thsi case we can define the value of h in P ∈ X as h(P ) := f(P )/g(P ) ∈ K.

Observe that such a value is well-defined: if h = f
g = f ′

g′ , with g(p) ̸= 0, g′(p) ̸= 0, then fg′−f ′g =

0 in A(X), that is FG′ −F ′G ∈ I(X), where F̄ = f, Ḡ = g, barF ′ = f ′, Ḡ′ = g′. Hence for any P ∈ X ,
we have F (P )G′(P )− F ′(P )G(P ) = 0. It follows that

h(P ) =
f(P )

g(P )
=

f ′(P )

g′(P )
.
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Remark 1.16. Observe that h ∈ K(X) is regular on an open subset of X . Indeed, we fix an expression
h = f/g with f, g ∈ A(X); by setting U := X \ V (g), we get that h is regular in any P ∈ U , so it defines a
function h : U ⊆ X → K. By choosing spme ather representation of h, the domain of regularity can change,
but it is still open. The union of all the regularity domains of all representations of h is colled the domain of
h.

Example 1.17 (Stereographic projection). Let X = V (x2
1 + x2

2 − 1) ⊆ A2, the unit circle; it is an affine
variety. Let

h :=
x1

1− x2
∈ K(X).

In this case g = 1− x2, and
V (g) = {(0, 1)} ⊆ X.

Then the domain of h contains the open subset X \ (0, 1). Now we try with another representation of h:

h =
(1 + x2)

x1
.

Indeed, we have
x1x1 − (1− x2)(1 + x2) = x2

1 + x2
2 − 1 = 0 ∈ A(X).

In this case
V (x1) = {(0, 1), (0,−1)} ⊂ X,

so with this representation of h we get a smaller domain. We shall see in the sequel that h can not be extended
to the whole of X , and that indeed X \ (0, 1) is its domain.

Next we see that the set of rational functions, which are regular in a certain point P ∈ X , and
those which are regular on a certain open subset, are given some natural algebraic structures.

Definition 1.18. Let X be an affine variety and P ∈ X . The local ring of rational functions, regular in
P is the ring

OX,P :=

{
h ∈ K(X);∃f, g ∈ A(X), h =

f

g
, g(P ) ̸= 0

}
.

Moreover, given an open subset U ⊆ X , the ring of rational functions, regular on U , is the ring

OX(U) :=
⋂
P∈U

OX,P .

Remark 1.19. The ring OX,P is indeed a local ring, as it is the localization OX,P = S−1A(X) where
S = A(X) \ I(P ). The unique maximal ideal is MP = {h ∈ OX,P : h(P ) = 0 = f(P )}.

Theorem 1.20. Let K = K and let X ⊆ An be an affine variety. Then

OX(X) ∼= A(X).

Proof. We observe that there is an ijection A(X) ↪→ OX(X), given by f 7→ f

1
. Therefor we can

consider A(X) ⊆ OX(X) as a subring.
Conversely, let h ∈ OX(X); then for any P ∈ X , there exist fP , gP such that h = fP

gP
with gP (P ) ̸=

0. Hence for any P we can write hgP = fP . Consider now the ideal

J := ⟨{gP }P∈X⟩ ⊆ A(X)

generated by the denominators of h. We have taht V (J) = ∅, since in any point Q ∈ X there is a
nonvanishing denominator gQ(Q) ̸= 0.

Since K = K, by the relative Weak NSS J = A(X). So 1 ∈ J , hence we can write

1 =
∑

finite

hP gP
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for some hP ∈ A(X). Finally, by multiplying the above equality by h, we obtain

h =
∑

hP hgP =
∑

hP fP ∈ A(X),

as hP , fP ∈ A(X).
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