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Chapter 1

Regular Functions and Regular Maps
on Affine Varieties

1.1 Regular Functions

Definition 1.1. Let X C A" be an affine variety. A function f: X — K is regular it is a polynomial
function, that is there exists a polynomial F' € K[z1, ..., x,] such that

flay,...;a,) = F(a1,...,an)

forany (aq,...,a,) € X.

Remark 1.2. We already noticed that that the set of polynomial functions on an affine variety form a K-
algebra, which is isomorphic to the coordinate ring

Klz1,...,zy]

A(X) = 1X)

Moreover, since X is irreducible, we have that 1(X) is prime, so that A(X) is an integral domain. Furthermore,
since K[xy, . .., x,] is noetherian, so is A(X).
Examples 1.3. Assume K to be an infinite filed.

1. A(A™) =K[zy,...,x,]; indeed, we have I(A™) = (0).

2. Let X =V (y — x?) C AZ be the parabola. We have I(V (y — x?)) = \/{y — x2) by the NSS, and since
y—x2 is an irreducible polynomial, the ideal (y — x?) is prime, hence radical and \/{y — z2) = (y—2?).
It can be easily checked that

=5 K[z

F(x,y) — F(z,2%).
Finally, we observe that X admits the parametrization
V(y—a?) ={(t,t*): te A'},
so that is the image of the map ¢ : A' — A%, o(t) = (¢,t2).
3. Let X = V(2 — y3) C AZ be the cuspidal cubic. Such a curve admits the parametrization

V(z? —y®) = {(t?,t*) : t € A'}.



We observe that in this case Klz.y]
_ Y
AX) = @y 2 KJt].
Indeed, we have that K[t] is an UFD, while A(X) is not; for instance

T’ =TT =YYy
with 7,7 irreducible elements. Hence T2 admits two different factorizations in irreducible factors.

Definition 1.4. The element T; € A(X), class of x; modulo I(X), will be called the i-th coordinate func-
tion. Under the identification with a polynomial function it corresponds to

fﬁX—)K; P:(plavpn)'—>pl

Remark 1.5. The K-algebra A(X) is finitely generated by 1,77, ..., Ty,
Conversely, we can see that any finitely generated K-algebra A, which is an integral domain, is isomorphic
to the coordinate ring of an affine variety. Indeed, we have an exact sequence

0— I —Klzg,..., 20 A —0

where I = kery, and A = M Since A is an integral domain, the ideal I is prime. By defining
X :=V(I) C A", we have A = A(X).

1.2 Regular Maps

Definition 1.6. Let X C A" and Y C A™ be affine varieties. A map f: X — Y is a regular map or
morphism if there exist f1,. .., fm € A(X) such that
f = (flv"'vfm)a

so that f(P) = (fi(P),..., fm(P)) €Y, forany P € X.
Moreover, we say that f is an isomorphism if it is bijective regular map and its inverse is a regular map.

Proposition 1.7. Let X C A" and' Y C A™ be affine varieties and let f : X — Y be reqular. Then f is
continuous in the Zariski topology.

Proof. Let X =V (q1,...,9s), fi € K[z1,...,z,]and Y =V (hq,..., h,),G; € Kly1, ..., ym]. A closed
subset of Y is of the form Z =Y NV (my,...,my) with m; € K[y, ..., ym]. Then we have:

Pef U Z) & f(P)eZ s m(f(P)=-=m(f(P)=0
& mi(fi(P),..., fm(P)) = =mi(fi(P),..., fm(P)) =0
<:>m1(f1,,fm)(P) = .- :mk(fl,,fm)(P) =0.

Since this holds for any P € f~1(2), it follows that
Y2 =Vima(fi, oy fm) s me(frs s fn)) N X,
which is closed in X. O

Remark 1.8. We observe that the composition of a regular map with a reqular function is again a reqular
function. Indeed, if f = (f1,...,fm): X =Y and h : Y — K, we have that

hof=nh(fi, ..., fm)

is a polynomial function.
This allows to define the pull-back f* of a regular map f : X — Y:

fAY) 5 AX), ff(h)=hof.
Note that f* is a K-algebra homomorphism.



The pull-back of a map determines a contravariant functor, with the following property.

Proposition 1.9. The functor associating the coordinate ring A(X) to any affine variety X, and the K-algebra
homomorphism f* : A(Y) — A(X) to any regular map f : X — Y, determines a category equivalence
between the categories A = {X affine variety, f regular map} and B = { A(X), uK-algebra homomorphism}.

Proof. We need to prove that we have a bijection between Hom(X,Y) and Hom(A(Y), A(X)). To
this aim, given u € Hom(A(Y'), A(X)), we define
i X - Y
P = (u(@)(P),...,u(@,)(P))

where 77, ..., ¥, are the coordinate functions on Y.
We observe that u is a regular map, since its components are elements of A(X). We need to
check now that u#(X) C Y. Let g € I(Y) and let us evaluate it in a generic point of u# (X):

9(u* (P)) = g(u(@m)(P), ..., u(@)(P)) = g(u(@1), ..., u(@))(P),
since the evaluation in a point is a homomorphism. Next we note that g(u(7,), . . ., u(7,,)) is a sum of
products of images of u, and since u is a K-algebra homomorphism, we have
g(u(@r), ..., u(@n)) = u(g(@, ..., Un)-

Finally, by the definition of sum and product in a quotient ring, we have

w9 Un) = ulg(yr, -, yn))-
By recalling that g € I(Y') we see that g = 0 in A(Y"), hence

g(u*(P)) = g(u@)(P), ..., u(Fa)(P)) = u(0)(P) = 0.

It follows that u# (X) C V(I(Y)) =Y.
Finally, it is not difficult to check that (f*)# = f e (u”)* = u. The equivalence of the two
categories follows. O

Corollary 1.10. Let X C A" and Y C A™ be affine varieties. Then X is isomorphic to Y <= A(X) =

A(Y).

Examples 1.11. 1. The map ¢ : A' — V(y — 2?) is an isomorphism between the affine line and the
parabola, since it induces an isomorphism of coordinate rings.

2. The map f: A' — V(y* — 23); t — (t2,t3) is a reqular bijective map, but it is not an isomorphism,
since the coordinate rings are not isomorphic.

3. Let A={(P,P); P e A"} C A™ x A" be the diagonal. Then the diagonal map
0: A" — A
P+—— (P, P)
<p17 e apn) — (pla ey PnyP1ye - ,pn)
is a reqular bijective map, since its components are coordinate functions. Moreover, the inverse map

5§71 A — A" is the restriction of the first projection, hence it has regular components too, so § is an
isomorphism.

We shall make use of the diagonal isomorphism in the following framework: let XY C A" be affine
varieties; then
Sxny: XNY = (X xY)NA

is an isomorphism too.



1.3 Relative NSS

Remark 1.12. We observe that given an affine variety X =V (g1,...,9,) C A", the induced Zariski topology
is determined by ideals in A(X), and precisely: if « C A(X) is an ideal, by setting

V(a) :={P € X; h(P)=0, VYh € a},

we obtain all the Zariski closed subsets of X. o
Indeed, if o = (hq,. .., hy,), there exist H; € K[y, ..., x,] such that h; = H; and we have

V() =V(hi,...,hy) =V (Hy,...,Hp) N X.
Similarly, we can define the ideal of a subset of X: if S C X, we set I(S) := {g € A(X); g;s = 0}.
Proposition 1.13 (Relative NSS). IfK = K, then in A(X) it holds
1(V(a)) = va € A(X).
In particluar, there is relative version of the Weak NSS:
V(o) =0& a=AX).

Proof. The inclusion I(V(a)) 2 y/a is easy. For the converse, let X = V(Gy,...,G;) and let a =
(hi,...,hm) and let h € I(V(a)), with h = H for some H € K[zy,...,z,]. By Remark ?? we have
V(e)=V(Hy,...,Hn)NX =V (Hy,...,Hy,G1,...,G,). By the NSS we have

H e I(V(Hla-~-aHm7G13-~-aG’r)) = \/(Hla-- -7HmaG1a'- -7G7')a

so there exists k € N such that H* € (Hi,...,Hy,,G1,...,G,). This implies that H =1 ca
A(X), hence H € \/a and the claim follows.

N

1.4 Rational Functions on Affine Varieties

Definition 1.14. Let X C A" be an affine variety. The field of rational functions is the quotient field
Q(A(X)) of A(X), and we will denote it by K(X). So we have

I
g’

K(X) = { fo9€ AX), g # 0},

where the condition g # 0 in A(X) means that g is not the zero constant function, and we have

f‘ /
;Z*, — f-gd=f gecAX).
In contrast with the regular functions, the rational functions do not define functions on the whole
of X.

Definition 1.15. Let X be an affine variety and let h € K(X). We say that h is regular in P € X if h admits
an expression

S
g’
In thsi case we can define the value of h in P € X as h(P)

h==, f.g€eAX), g(P)#0.

f(P)/g(P) € K.

Observe that such a value is well-defined: if h = % = g—:, with g(p) # 0,¢'(p) # 0, then f¢' — f'g =
0in A(X), thatis FG' — F'G € I(X), where F = f,G = g,barF' = f',G’ = ¢'. Hence forany P € X,
we have F(P)G'(P) — F'(P)G(P) = 0. It follows that

fp) _ f'(P)

") Ty




Remark 1.16. Observe that h € K(X) is reqular on an open subset of X. Indeed, we fix an expression
h = f/gwith f,g € A(X); by setting U := X \ V(g), we get that h is regular in any P € U, so it defines a
function h: U C X — K. By choosing spme ather representation of h, the domain of reqularity can change,
but it is still open. The union of all the reqularity domains of all representations of h is colled the domain of
h.

Example 1.17 (Stereographic projection). Let X = V(21 + 23 — 1) C A2, the unit circle; it is an affine
variety. Let
1

€ K(X).

1 — X9
In this case g = 1 — T, and
Vig)={(0,1} c X

Then the domain of h contains the open subset X \ (0,1). Now we try with another representation of h:

b — (1 —l—fz) .
T
Indeed, we have
7171 — (1= T)(1 +T2) =71 + 75 — 1 =0 € A(X).
In this case
V(z1) ={(0,1),(0,—-1)} C X,

so with this representation of h we get a smaller domain. We shall see in the sequel that h can not be extended
to the whole of X, and that indeed X \ (0, 1) is its domain.

Next we see that the set of rational functions, which are regular in a certain point P € X, and
those which are regular on a certain open subset, are given some natural algebraic structures.

Definition 1.18. Let X be an affine variety and P € X. The local ring of rational functions, regular in
P is the ring

Ox.p:= {h e K(X);3f,9g € A(X), h= g, g(P) #O}

Moreover, given an open subset U C X, the ring of rational functions, regular on U, is the ring

Ox(U) = m OXJ:-.

pPeU

Remark 1.19. The ring Ox p is indeed a local ring, as it is the localization Ox p = STLA(X) where
S = A(X)\ I(P). The unique maximal ideal is Mp ={h € Ox p: h(P)=0= f(P)}.

Theorem 1.20. Let K = Kand let X C A™ be an affine variety. Then
Ox(X) =2 A(X).

Proof. We observe that there is an ijection A(X) — Ox(X), given by f — % Therefor we can
consider A(X) C Ox(X) as a subring.

Conversely, let h € Ox (X); then for any P € X, there exist fp, gp such that h = i;% with gp(P) #
0. Hence for any P we can write hgp = fp. Consider now the ideal

J = ({grptrex) C A(X)

generated by the denominators of h. We have taht V' (J) = 0, since in any point ) € X there is a
nonvanishing denominator g (Q) # 0.
Since K = K, by the relative Weak NSS J = A(X). So 1 € J, hence we can write



for some hp € A(X). Finally, by multiplying the above equality by h, we obtain

h=> hphgp = hp fr € AX),

as hp, fp S A(X)



