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Signal energy & power



Signal Energy and Power

• The terms signal energy and signal power are used to
characterize a continuous-time or discrete-time signal.

• They are not actually energy and power measurements, even
though the energy and power signal definitions are inspired by
expressions used to evaluate energy or power of electrical
signals.

• Indeed, the definition of signal energy and power refers to any
signal, including signals that take on complex values.
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Energy and power for continuous-time signals

• Consider a generic deterministic continuous-time signal x(t)
• Let’s define

• instantaneous power
P (t) = |x(t)|2

• energy over the time period [t0 , t1]

E (t0 , t1) =

∫ t1

t0

|x(t)|2 d t

• average power over the time period [t0 , t1]

P (t0 , t1) =
1

t1 − t0

∫ t1

t0

|x(t)|2 d t

Analogy
Consider a current signal i(t) flowing through a transmission line
represented by resistance R = 1Ω. Evaluate the energy loss in the
line, the instantaneous and average power loss in the line and
compare the results with the definitions above.
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Energy and power for continuous-time signals (cont.)

• Extending the time period, let’s define
• energy of a deterministic signal x(t)

E∞ =

∫ +∞

−∞
|x(t)|2 d t

• power of a deterministic signal x(t)

P∞ = lim
T→∞

1
2T

∫ +T

−T

|x(t)|2 d t

Energy and power for a continuous-time deterministic signal
• the deterministic continuous-time signal x(t) is called an
energy signal if 0 < E∞ < ∞

• the deterministic continuous-time signal x(t) is called a
power signal if 0 < P∞ < ∞
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Energy and power for discrete-time signals

• Consider a generic discrete-time deterministic signal {x(k)}
• Let’s define

• instantaneous power
P (k) = |x(k)|2

• energy over the time period [k0 , k1]

E (k0 , k1) =

k1∑
k=k0

|x(k)|2

• average power over the time period [k0 , k1]

P (k0 , k1) =
1

k1 − k0 + 1

k1∑
k=k0

|x(k)|2
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Energy and power for discrete-time signals (cont.)

Analogously to the continuous-time case, let’s define

• energy of a discrete-time signal x(k)

E∞ =

+∞∑
−∞

|x(k)|2

• power of a discrete-time signal x(k)

P∞ = lim
N→∞

1
2N + 1

+N∑
−N

|x(k)|2

Energy and power for a discrete-time deterministic signal
• the discrete-time signal x(k) is called an energy signal if
0 < E∞ < ∞

• the discrete-time signal x(k) is called a power signal if
0 < P∞ < ∞
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Energy and power for stationary stochastic processes

• Consider now a discrete-time stationary stochastic process (in
weak sense). Let’s define

• instantaneous power

P (k) = E
[
|x(k)|2

]
• power of a stationary (in weak sense) stochastic process x(k)

P∞ = E

{
lim

N→∞

1
2N + 1

+N∑
−N

|x(k)|2
}

= E
{
|x(k)|2

}

Energy and power for a discrete-time stationary (in weak sense)
stochastic process
• E∞ → ∞
• P∞ = var(x) + (E [x(k)])

2
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Signal Energy and Power

Remarks
• The power for an energy signal is zero

E∞ < ∞ =⇒ P∞ = 0

• The energy for a power signal is infinite

P∞ < ∞ =⇒ E∞ → ∞

• Some signals are neither energy nor power signals.
• A signal can’t be both an energy signal and a power signal.
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Examples

• Pure deterministic signals

x(k) = A , k = 1 , 2 , . . . =⇒ E∞ → ∞ , P∞ = A2

v(k) = Ae−k , k = 1 , 2 , . . . =⇒ E∞ =

+∞∑
k=1

A2 e−2k , P∞ = 0

• Pure stochastic signal

η(k) = WN
(
0 , λ2

)
=⇒ E∞ → ∞ , P∞ = λ2
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Spectral representation of
stationary stochastic processes



Description of stationary stochastic processes

• We described a zero-mean stationary process v(t) by the
correlation function:

γ(τ) = E[v(t)v(t+ τ)]

• However, it is of customary importance to devise a
frequency-based description of stationary stochastic processes

• Consider the ideal conceptual scheme:

var [v(t)] = λ2

Average power of the process
var [ṽ(t)] = λ̃2

Power contribution in the
frequency-interval [ω1 , ω2]
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Spectral power density (spectrum)

• Thus, we introduce the spectral power density (spectrum) as
the Fourier transform of the correlation function:

Γ(ω) = F{γ(τ)} =
+∞∑

τ=−∞
γ(τ)e−jωτ (⋆)

In order the Fourier transform (⋆) to converge, it is necessary
that γ(τ) → 0 as τ → ∞ “quickly enough”, that is:

+∞∑
τ=−∞

|γ(τ)| < ∞
Γ(ω) exists ∀ω

Γ(ω) is continuous
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Spectral power density (spectrum) (cont.)

• Consider the discrete-time periodic sequence:

This sequence is characterized by the maximum possible
frequency of variation (sign-change at every time-instant).
The smallest period is T = 2 and hence the maximum
frequency is 1/2 . Consequently the maximum angular
frequency is 2π

T
= π .

Γ is evaluated between −π and π
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Properties

• Γ(ω) ∈ R
In fact γ(τ) = γ(−τ) (correlation function is even)

e−jω(−τ)γ(−τ) + e−jωτγ(τ) = γ(τ)
[
ejωτ + e−jωτ

]
∈ R

• Γ(ω) is even, that is Γ(ω) = Γ(−ω)

• Γ(ω) ≥ 0
• Γ(ω) is periodic of period 2π

• γ(τ) =
1
2π

∫ π

−π

Γ(ω)ejωτdω
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Properties (cont.)

• Thus:

var[v(t)] = γ(0) = 1
2π

∫ π

−π

Γ(ω)dω

Area “below” Γ(ω) in [−π , π] is proportional to the process
power and hence to its “variability”.

Area below Γ(ω) in [−ω2 , −ω1]

and [ω1 , ω2] represents the
distribution of the “process
variability” in the angular
frequency range [ω1 , ω2] .
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Example

v(·) ∼ WN(0, λ2)

γ(τ) =

{
λ2, τ = 0
0, τ ̸= 0

Γ(ω) =

+∞∑
τ=−∞

γ(τ)e−jωτ = λ2 , ∀ω ∈ [−π, π]

γ(0) = 1
2π

∫ π

−π

Γ(ω)dω =
1
2πλ

2 × 2π = λ2

Then, in a white process, all angular frequencies contribute in the
same way to the overall “process variability”
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Dynamic representations of stationary stochastic processes

• The representations seen up to now are static: the process is
considered in its entirety (sequence of infinite r.v. from −∞ to
+∞ ).

• These representations, though correct, are not useful for the
solution of the prediction problem.

• We need to devise dynamic representations in which it is
possible to relate the future evolution of the process with its
past.

• Special care has to be exercised
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Example 1

Consider a r.v. v and define the process v(t) = v

v(t, s) = v(s) (all realizations have constant behavior)

By observing v(t, s) at some time-instant the uncertainty
disappears in the sense that the value that the process will take on
in the future will not change.

Only a priori uncertainty:
BEFORE the “observation” of the process.
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Example 2

v(·) ∼ WN(0, λ2)

Opposite situation with respect to Example 1: the observation of
past values of the process does not help in predicting future values
(past and future are not correlated).

The best prediction is the expected value (= 0 )
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Dynamic representations of stochastic processes (cont.)

• The two opposite (and kind of “extreme”) examples show that,
in the context of the solution of the prediction problem, a more
peculiar description of the stochastic process is needed.

• Define a vector space G and assume to represent the r.v.
v(t), v(t− 1), v(t− 2), . . . as vectors in G .

• Define
• Ht[v] Subspace of the past with respect to t

hyper-plane generated by vectors
associated with observations
v(t), v(t− 1), v(t− 2), . . .

• H̃t[v] =
∩
t

Ht[v] Subspace of the “remote” past
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Dynamic representations of stochastic processes (cont.)

•Ĥt[v] = Ht[v] \ H̃t[v] such that Ĥt[v] ⊥ H̃t[v] Orthogonal
complement

Hence, the vectors in Ĥt[v] are orthogonal to all vectors in
H̃t[v]

• ṽ(t) projection of v(t) on H̃t[v] Purely deterministic
component

• v̂(t) projection of v(t) on Ĥt[v] Purely non-deterministic
component

Wold decomposition

ṽ(t) ⊥ v̂(t)

Once v is decomposed on the two components ṽ , v̂ , only the
purely non-deterministic component is useful for solving the
prediction problem as the purely deterministic component is
perfectly predictable from the past.
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Dynamic representations of stochastic processes (cont.)

• Then, from now on, let us refer to dynamic representation of
purely non-deterministic processes

• Consider the hyper-plane Ĥt[v] and consider a basis of
orthogonal vectors having the same norm

η(t), η(t− 1), η(t− 2), . . .

• Such basis is chosen in such a way that:
• η(t− 1), η(t− 2), η(t− 3), . . . basis for Ĥt−1[v]

• η(t− 2), η(t− 3), η(t− 4), . . . basis for Ĥt−2[v]

• . . .

vectors η(t), η(t− 1), η(t− 2), . . . correspond to r.v. mutually
uncorrelated with the same norm

η(·) is a white process
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Dynamic representations of stochastic processes (cont.)

• Project v(t) on η(t), η(t− 1), η(t− 2), . . .
• w(0), w(1), w(2), . . . projections components
• Write the projection v̂(t) as

v̂(t) = w(0)η(t) + w(1)η(t− 1) + · · ·

=
t∑

i=−∞

w(t− i)η(i) convolution of w(·) , η(·)

time-invariance
Hence:

where
W (z) = Z[w(t)] =

∞∑
i=0

w(i)z−i

w(t) is the impulse response of the system
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Dynamic representations of stochastic processes (cont.)

Therefore
The purely non deterministic component of a stationary
stochastic process can be seen as the output of a discrete-time
dynamic systems driven by a white input process.

Remark
W (z) is not necessarily a rational function of polynomials in z .

DIA@UniTS – 267MI –Fall 2022 TP GF – L7–p23



Dynamic representations of stochastic processes (cont.)

Important
Purely non deterministic and purely deterministic processes are
very different from a spectral point of view.

Example
Consider the process:

v(t) = a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n)

Clearly v(t) is a a known linear combination of past values
v(t− 1) , v(t− 2) , . . . , v(t− n) hence, a purely deterministic
process.
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Dynamic representations of stochastic processes (cont.)

Example (cont.)
Now

P (z) v(t) = 0 P (z) = 1− a1z
−1 − a2z

−2 − · · · − anz
−n

This is possible only if v(t) = α1λ
t
1 + · · ·αnλ

t
n where λ1 , . . . , λn are

the zeros of

P (z) = 1− a1z
−1 − a2z

−2 − · · · − anz
−n =

zn − a1zn−1 − · · · − an
zn

Remark
In general: the spectral content of purely deterministic processes
is “concentrated” in a finite number of discrete frequency points.

Instead, the spectral content of purely non-deterministic
processes is spread over the entire frequency spectrum.
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Analysis of dynamic systems
driven by input stationary
stochastic processes



Properties of LTI discrete-time systems

• Consider a linear time-invariant dynamic system with W (z) as
transfer function:

where
W (z) =

γ0zn + γ1zn−1 + · · · γn
α0zn + α1zn−1 + · · ·αn

• Hence

α0y(t) + α1y(t− 1) + · · ·+ αny(t− n) =

= γ0u(t) + γ1u(t− 1) + · · ·+ γnu(t− n)
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Properties of LTI discrete-time systems (cont.)

• Recall that, if all poles of W (z) are located strictly inside the
unit circle and if

u(t) = A sin

(2π
T̄

t+ β

)
, t = 0, 1, . . .

then a sinusoidal regime takes place after transient

y(t) ≃ A
∣∣∣ W (ejω̄)

∣∣∣ sin(2π
T̄

t+ β + arg
[
W (ejω̄)

])
Evaluation of W (z)

on the unit circle
where

ω̄ =
2π
T̄
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Properties of LTI discrete-time systems (cont.)

• Due to linearity, it follows that

y(t) = yF (t) + yL(t)

Forced response
(zero initial conditions)

Free response
(zero input)

• Then

yF (t) =

t∑
j=−t0

w(t− j)u(j)

where w(t) is the impulse response of the system
• Due to the assumed asymptotic stability, we have

lim
t0→−∞

yL(t) = 0

hence

lim
t0→−∞

y(t) =

t∑
j=−∞

w(t− j)u(j)
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Properties of LTI discrete-time systems (cont.)

Then
If all poles of W (z) are located strictly inside the unit circle,
irrespective of the initial conditions, for t0 → −∞ we have

y(t) =

t∑
j=−∞

w(t− j)u(j) =

+∞∑
i=0

w(i)u(t− i)

Convolution formula
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A stochastic process as input of an LTI system

• Now, assume that u(·) is a stochastic process with zero
expected value (that is E(u) = 0 )

• Thus

E[y(t)] = E

[ ∞∑
i=0

w(i)u(t− i)

]

=

∞∑
i=0

w(i) E [u(t− i)]

=

∞∑
i=0

w(i) E [u(t)]

= 0

stationary
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A stochastic process as input of an LTI system (cont.)

• As we established that y (·) has zero expected value the
covariance functions coincide with the correlation functions.

• Consider input and output values at different time instant t1
and t2:

y(t2) =
∞∑
i=0

w(i)u(t2 − i)

u(t1)y(t2) =
∞∑
i=0

w(i)u(t1)u(t2 − i)

y(t1)y(t2) =
∞∑
i=0

w(i)y(t1)u(t2 − i)
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A stochastic process as input of an LTI system (cont.)

• Hence, evaluating the expected values

E [u(t1)y(t2)] =
∞∑
i=0

w(i) E [u(t1)u(t2 − i)]

γuy(t1, t2) =
∞∑
i=0

w(i)γuu(t1, t2 − i)

E [y(t1)y(t2)] =
∞∑
i=0

w(i) E [y(t1)u(t2 − i)]

γyy(t1, t2) =
∞∑
i=0

w(i)γyu(t1, t2 − i)
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A stochastic process as input of an LTI system (cont.)

• As we assumed that the process u(·) is stationary, we obtain:

γuy(τ) =

∞∑
i=0

w(i)γuu(τ − i)

γyy(τ) =

∞∑
i=0

w(i)γyu(τ − i)

• Then, the correlation function between the input and output
processes is the convolution of the impulse response with the
auto-correlation function of the input.

• Analogously, the auto-correlation function of the output process
is given by the convolution of the impulse response with the
input-output correlation function.
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Correlation functions and complex spectra

• Now, introduce the two-sided Z transform of all the possible
correlation functions:

Φuu(z) =
+∞∑

τ=−∞
γuu(τ)z

−τ

Φyy(z) =

+∞∑
τ=−∞

γyy(τ)z
−τ

Φuy(z) =

+∞∑
τ=−∞

γuy(τ)z
−τ

Φyu(z) =

+∞∑
τ=−∞

γyu(τ)z
−τ
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Correlation functions and complex spectra (cont.)

• Recalling the definitions of spectral power density, we have:

Γuu(ω) = Φuu(z)|z=ejω = Φuu

(
ejω
)

Γyy(ω) = Φyy(z)|z=ejω = Φyy

(
ejω
)

where Φuu(z) and Φyy(z) take on the name of complex spectra
of the input and the output.
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Properties

• Γuu(ω), Γyy(ω) ∈ R
• though in general Γuy(ω), Γyu(ω) ∈ C

• γuy(τ) = γyu(−τ)

Φyu(z) = Φuy(z
−1)

Γyu(ω) = Γ∗
uy(ω)
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Properties (cont.)

• Moreover

γuy(τ) =

∞∑
i=0

w(i)γuu(τ − i)

γyy(τ) =
∞∑
i=0

w(i)γyu(τ − i)

Φuy(z) = W (z)Φuu(z)

Φyy(z) = W (z)Φyu(z)

But
Φyu(z) = Φuy(z

−1) = W (z−1)Φuu(z
−1)

Φyy(z) = W (z)W (z−1)Φuu(z
−1)

Φyy(z) = W (z)W (z−1)Φuu(z)

This is a very important result: we are able to compute the
complex spectrum of the output process of a LTI asymptotically
stable system driven by a stationary input process.
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Properties (cont.)

• Going back to the frequency domain:

Γyy(ω) = Φyy(e
jω) = W (ejω)W (e−jω)Φuu(e

jω)

= W (ejω)W (e−jω)Γuu(ω)

Γyy(ω) =
∣∣W (ejω)

∣∣2 Γuu(ω)

This is a very important result as well: we relate spectral power
densities with the frequency response.
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Stationary processes with rational spectra

More common stationary processes with rational spectra
• White noise
• Moving average process (MA)
• Auto-regressive process (AR)
• Auto-regressive and Moving average process (ARMA)

Common characteristic: as we will see, these processes are
generated from a filtered white process.
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Analysis of dynamic systems
driven by input stationary
stochastic processes

White noise



White noise

v(·) ∼ WN(0, λ2)

γ(τ) =

{
λ2, τ = 0
0, τ ̸= 0

Γ(ω) =

+∞∑
τ=−∞

γ(τ)e−jωτ

= γ(0) = λ2

As can be seen from the correlation function, in a white process the
values of the process in different time-instants do not have any
mutual relation, that is, the knowledge of v(t) is of no help to
estimate v(t̄) , t̄ ̸= t .
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Moving average process (MA)



MA process

• Given a white process η(·) ∼ WN(0, λ2)
• A MA process of order n (denoted as MA(n) ) is the process

v(t) = c0η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

• Hence v(t) is a linear combination (average) of the values taken
on by the white process in the time-window from t− n to t .
When t increases, this time-window shifts (moving).
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Example 1

• Consider the process MA(1) :

v(t) = c0η(t) + c1η(t− 1)

• Expected value:

E[v(t)] = E[c0η(t) + c1η(t− 1)]
= c0 E[η(t)] + c1 E[η(t− 1)] = 0
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Example 1 (cont.)

• Correlation function (= covariance due to the zero expected
value):

γ(t1, t2) = E[v(t1)v(t2)]

A priori could be
non-stationary

• t1 = t2 = t

γ(t, t) = E
{
v(t)2

}
= E

{
[c0η(t) + c1η(t− 1)]2

}
= c20 E

{
η(t)2

}
+ c21 E

{
η(t− 1)2

}
+ 2c0c1 E {η(t)η(t− 1)}

=
(
c20 + c21

)
λ2

λ2 0
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Example 1 (cont.)

• Correlation function (cont.)
• t2 = t1 ± 1

γ(t, t± 1) = E {v(t)v(t± 1)}

= E {[c0η(t) + c1η(t− 1)] [c0η(t± 1) + c1η(t− 1± 1)]}

0

= c20 E {η(t)η(t± 1)} + c21 E {η(t− 1)η(t− 1± 1)}

0 λ2

+ c0c1 E {η(t)η(t− 1± 1)} + c0c1 E {η(t− 1)η(t± 1)}

λ2 0

= c0c1λ
2 = γ(t, t± 1)

t2 = t1 − 1 t2 = t1 − 1

t2 = t1 + 1
t2 = t1 + 1
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Example 1 (cont.)

• Correlation function (cont.)
• t2 = t1 ± 2

γ(t, t± 2) = E {v(t)v(t± 2)} = 0
• In general:

γ(t, t± k) = E {v(t)v(t± k)} = 0 , k ≥ 2

• Note that γ (t1 , t2) actually is always only a function of t2 − t1
and hence the process MA(1) is stationary.
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Example 1 (cont.)

• Thus:

MA(1) :



γ(0) =
(
c20 + c21

)
λ2

γ(1) = c0c1λ
2

γ(k) = 0, ∀ k > 1

Two possible cases:

tendency not to change sign
in consecutive time-instants

tendency to change sign
in consecutive time-instants
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Example 2

• Consider the process MA(2) :

v(t) = c0η(t)+c1η(t−1)+c2η(t−2)

• Expected value:

E[v(t)] = E[c0η(t) + c1η(t− 1) + c2η(t− 2)]

= c0 E[η(t)] + c1 E[η(t− 1)] + c2 E[η(t− 2)] = 0
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Example 2 (cont.)

• Correlation function (= covariance due to the zero expected
value):
By a simple algebra analogous to the previous case, we have:

γ(t, t) =
(
c20 + c21 + c22

)
λ2

γ(t, t± 1) = (c0c1 + c1c2)λ
2

γ(t, t± 2) = (c0c2)λ
2

γ(t, t± k) = 0 , ∀k > 2

• Here again we notice that γ(t1 , t2) is always only a function of
t2 − t1 and hence the process MA(2) is stationary.
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MA(n) process

• In general, for a process MA(n) we can prove that:

MA(n) : γ(τ) =


0 if |τ | > n

(
c0c|τ | + c1c|τ |+1 + · · ·+ cn−|τ |cn

)
λ2 if n ≥ |τ | ≥ 0

• The stationarity should not be surprising: the process is just a
linear combination of values taken on by a stationary process.

• Clearly:

var [v(t)] = γ(0) =
(
c20 + c21 + · · ·+ c2n

)
λ2
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MA(n) process (cont.)

• Let us consider the general expression of a process MA(n):

v(t) = c0η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

• By using the unity delay operator z−1 we have:

v(t) = c0η(t) + c1z
−1η(t) + c2z

−2η(t) + · · ·+ cnz
−nη(t)

=
(
c0 + c1z

−1 + c2z
−2 + · · ·+ cnz

−n
)
η(t)

= C(z)η(t)

where we set

C(z) = c0 + c1z
−1 + c2z

−2 + · · ·+ cnz
−n

• Then, the transfer function turns out to be

W (z) =
c0zn + c1zn−1 + c2zn−2 + · · ·+ cn

zn

which is asymptotically stable (n poles in the origin).
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Important remark

• In general, stationary processes are characterized via the
expected value and the covariance function

• In the case of the process MA(n) the expected value is zero and
the covariance function is given by

MA(n) : γ(τ) =


0 if |τ | > n

(
c0c|τ | + c1c|τ |+1 + · · ·+ cn−|τ |cn

)
λ2 if n ≥ |τ | ≥ 0

The process is fully characterized
by the parameters
c0, c1, . . . , cn, λ

2

DIA@UniTS – 267MI –Fall 2022 TP GF – L7–p51



Important remark (cont.)

• However: the characterization by the parameters
c0, c1, . . . , cn, λ

2 is redundant.
In fact: let

c̃0 = αc0, c̃1 = αc1, . . . , c̃n = αcn

and consider the process

ṽ(t) = c̃0η̃(t) + c̃1η̃(t− 1) + · · ·+ c̃nη̃(t− n)

where η̃(·) ∼ WN(0, λ̃2).
If

λ̃2 =
λ2

α2
=⇒ γ̃(τ) = γ(τ)

and hence the two processes v(t) ṽ(t) are not distinguishable.
• The redundancy is eliminated assigning one of the parameters.
The typical choice is c0 = 1 and then the process MA(n) is
written as

v(t) = η(t) + c1η(t− 1) + · · ·+ cnη(t− n)
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Example 1 (continued)

MA(1) : v(t) = η(t) + c η(t− 1)

MA(1) :



γ(0) =
(
1+ c2

)
λ2

γ(1) = c λ2

γ(k) = 0, ∀ k > 1
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Example 1 (cont.)

• Let us determine the spectrum:
a)

Γ(ω) =

+∞∑
τ=−∞

γ(τ)e−jωτ = γ(0) + γ(1)e−jω + γ(−1)ejω

= γ(0) + γ(1)
(
e−jω + ejω

)
= γ(0) + 2γ(1) cosω

=
(
1+ c2

)
λ2 + 2cλ2 cosω

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• b)

v(t) = η(t) + c η(t− 1) =⇒ W (z) = (1+ cz−1)

Φ(z) = W (z)W (z−1)λ2 = (1+ cz−1)(1+ cz)λ2

=
[
1+ c2 + c

(
z−1 + z

)]
λ2

But Γ(ω) = Φ
(
ejω
)

Γ(ω) =
[
1+ c2 + c

(
ejω + e−jω

)]
λ2

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• c)

v(t) = η(t) + c η(t− 1) =⇒
W (z) = (1+ cz−1)

=
z + c

z

But Γvv(ω) =
∣∣W (ejω)

∣∣2 Γηη(ω)

Γ(ω) =

∣∣ejω + c
∣∣2

|ejω|2
λ2 =

|cosω + j sinω + c|2

1 λ2

=
[
(cosω + c)

2
+ (sinω)2

]
λ2

=
[
(cosω)2 + c2 + 2c cosω + (sinω)2

]
λ2

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• If c = 1
2

Γ(0) =
(
1+ 1

2
)2

1 λ2 =
9
4 λ

2

Γ
(π
2
)
=
1+

( 1
2
)2

1 λ2 =
5
4 λ

2

Γ(π) =

( 1
2
)2
1 λ2 =

1
4 λ

2
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Example 1 (cont.)

• c =
1
2 The “variability” of the process is concentrated at lower

frequencies
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Example 1 (cont.)

• If c = −12

Γ(0) =
( 1
2
)2
1 λ2 =

1
4 λ

2

Γ
(π
2
)
=
1+

( 1
2
)2

1 λ2 =
5
4 λ

2

Γ(π) =

(
1+ 1

2
)2

1 λ2 =
9
4 λ

2
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Example 1 (cont.)

• c = −12 The “variability” of the process is concentrated at
higher frequencies
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Process MA(∞)

• It is a mathematical abstraction of great conceptual
importance that will be used in the sequel

• Consider η(·) ∼ WN(0, λ2)

v(t) =

∞∑
i=0

ci η(t− i) where c0 = 1 (⋆)

• In order (⋆) to represent a well-defined stationary process it is
necessary that

var [v(t)] =

( ∞∑
i=0

c2i

)
λ2 < ∞

• It is possible to prove that
∞∑
i=0

c2i < ∞ =⇒ γ(τ) < ∞ , ∀ τ
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Auto-regressive process (AR)



AR process

• Given the white process η(·) ∼ WN(0, λ2)
• The AR process of order n (denoted with AR(n) ) is defined as

v(t) = a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n) + η(t)

• Hence v(t) is a linear combination of the values taken on by
v(t) itself in the time-window from t− n to t− 1 plus a white
process.
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Example: process AR(1)

• Consider the process AR(1) :
v(t) = a v(t− 1) + η(t)

v(t) = a v(t− 1) + η(t)

= a [a v(t− 2) + η(t− 1)] + η(t)

= a2 v(t− 2) + a η(t− 1) + η(t)

= a3 v(t− 3) + a2η(t− 2)
+a η(t− 1) + η(t)

= · · ·
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Process AR(1) (cont.)

• Then, in general, for a process AR(1) we can write:
v(t) = a v(t− 1) + η(t)

v(t) =

t−1∑
i=t0

at−1−i η(i+ 1) + at−t0 v(t0) (⋆)

• (⋆) is consistent with standard linear systems theory according
to which the output response can be decomposed in free
response (depending only on initial conditions) and forced
response (depending only on the input)

• Define
v̂(t) = lim

t0→−∞
v(t)

• if |a| < 1 v̂(t) =

t−1∑
i=−∞

at−1−i η(i+ 1)

=

∞∑
j=0

aj η(t− j)
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Process AR(1) (cont.)

• But:

|a| < 1
∞∑
j=0

(
aj
)2

< ∞

v̂(t) =

∞∑
j=0

aj η(t− j)

Stationary process MA(∞)

The process v̂(t) (stationary of type MA(∞) ) is
the steady-state solution of the equation of the AR(1)
process. Such solution is unique in the context of
stationary processes.
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Analysis of the process v̂(t)

• Expected value
v(t) = a v(t− 1) + η(t)

E[v(t)] = a E[v(t− 1)] + E[η(t)]

The process
is stationary v̄ = av̄ v̄ = 0

• Variance
E
{
[v(t)]2

}
= E

{
a2 [v(t− 1)]2 + [η(t)]2 + 2a v(t− 1)η(t)

}
= E

{
a2 [v(t− 1)]2

}
+ E

{
[η(t)]2

}
+ 2a E [v(t− 1)η(t)]

= a2E
{
[v(t)]2

}
+ E

{
[η(t)]2

}
= 0

(1− a2) E
{
[v(t)]2

}
= λ2

E
{
[v(t)]2

}
=

λ2

(1− a2)
(|a| < 1)
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Analysis of the process v̂(t) (cont.)

• Correlation function
• Consider τ ≥ 0 ( γ(τ) is even).
• At steady-state the process is MA(∞) and hence we can use the
general formula

γ(τ) = λ2
∞∑
i=0

cici+τ = λ2
∞∑
i=0

ai ai+τ = λ2 aτ
∞∑
i=0

a2i

= λ2 aτ 1
(1− a2)

(|a| < 1)
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Analysis of the process v̂(t) (cont.)

• An alternative algebraic technique to determine the correlation
function is:
v(t) = a v(t− 1) + η(t)

v(t)v(t− τ) = a v(t− 1)v(t− τ) + η(t)v(t− τ)

E [v(t)v(t− τ)] = a E [v(t− 1)v(t− τ)] + E [η(t)v(t− τ)]

{
λ2 τ = 0
0 τ > 0

Hence:
• τ > 0 =⇒ γ(τ) = a γ(τ − 1) =⇒ γ(τ) = aτ γ(0)

γ(0) = 1
a
γ(1)

• γ(0) = a γ(−1) + λ2 = a γ(1) + λ2

γ(1)
a

= a γ(1) + λ2 =⇒ γ(1) = a

1− a2
λ2

γ(τ) = λ2 aτ 1
(1− a2)

τ ≥ 0
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Process AR(1) (cont.)

• AR(1) : v(t) = a v(t− 1) + η(t)

γ(τ) = λ2 aτ
1

(1− a2)
τ ≥ 0

• Compared to the case of MA processes, the correlation function
vanishes asymptotically (and hence a AR process is “slower”
than a MA process).
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Process AR(1) (cont.)

• Let us determine the spectrum:

v(t) = a v(t− 1) + η(t) =⇒ W (z) =
1

1− az−1
=

z

z − a

But Γvv(ω) =
∣∣W (ejω)

∣∣2 Γηη(ω)

Γ(ω) =

∣∣ejω∣∣2
|ejω − a|2

λ2 =
1

|cosω + j sinω − a|2
λ2

=
λ2[

(cosω − a)
2
+ (sinω)2

]
=

λ2

[(cosω)2 + a2 − 2a cosω + (sinω)2]

=
λ2

(1+ a2 − 2a cosω)
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Process AR(1) (cont.)

• If a =
1
2

Γ(0) = 1( 1
2
)2 λ2 = 4λ2

Γ
(π
2
)
=

1
1+

( 1
2
)2 λ2 = 4

5 λ
2

Γ(π) =
1(

1+ 1
2
)2 λ2 = 4

9 λ
2
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Process AR(1) (cont.)

• a =
1
2 The “variability” of the process is more concentrated

at low-frequencies and the process is “slower” than the
“analogous” MA
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Process AR(1) (cont.)

• If a = −12

Γ(0) = 1(
1+ 1

2
)2 λ2 = 4

9 λ
2

Γ
(π
2
)
=

1
1+

( 1
2
)2 λ2 = 4

5 λ
2

Γ(π) =
1( 1
2
)2 λ2 = 4λ2
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Process AR(1) (cont.)

• a = −12 The “variability” of the process is more
concentrated at high frequency and the frequency distribution
is very different from the “analogous” MA
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Example: process AR(2)

• Consider the process AR(2)
v(t) = a1 v(t− 1) + a2 v(t− 2) + η(t)

v(t)v(t− τ) =a1 v(t− 1)v(t− τ)

+a2 v(t− 2)v(t− τ) + η(t)v(t− τ)

Hence:
γ(τ) = E [v(t)v(t− τ)]

= a1 E [v(t− 1)v(t− τ)]

+ a2 E [v(t− 2)v(t− τ)] + E [η(t)v(t− τ)]{
λ2 τ = 0
0 τ > 0

• Then
• τ > 0 =⇒ γ(τ) = a1 γ(τ − 1) + a2 γ(τ − 2)
• γ(0) = a1 γ(−1) + a2 γ(−2) + λ2 = a1 γ(1) + a2 γ(2) + λ2
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Yule-Walker equations

• The useful equations are:

γ(2) = a1 γ(1) + a2 γ(0)
γ(1) = a1 γ(0) + a2 γ(1)
γ(0) = a1 γ(1) + a2 γ(2) + λ2

• These equations can be organized in matrix form: a2 a1 −1
a1 a2 − 1 0
1 −a1 −a2


 γ(0)

γ(1)
γ(2)

 =

 0
0
λ2

 (⋆)

• Then, for given a1 , a2 , λ
2 it is possible to compute

γ(0) γ(1) , γ(2) and afterwards proceed in a recursive way.
• Equations (⋆) are the well-known Yule-Walker equations and
can be written for any generic AR process.
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Analysis in case of non-zero mean white noise

• Consider the process
v(t) = a v(t− 1) + η(t) with η(·) ∼ WN(η̄, λ2)

E[v(t)] = a E[v(t− 1)] + E[η(t)]

= a E[v(t− 1)] + η̄

• Recalling that |a| < 1 and setting E [v(t)] = v̄

v̄ = a v̄ + η̄ =⇒ v̄ =
η̄

1− a

• Notice that
W (z) =

z

z − a

v̄ = W (1) η̄

Static gain
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Analysis in case of non-zero mean white noise (cont.)

• Let us determine the covariance function:

γ(τ) = E {[v(t)− v̄][v(t− τ)− v̄]}

• Introduce the process

ṽ(t) = v(t)− v̄ =⇒ v(t) = ṽ(t) + v̄

and hence

γ(τ) = E {[v(t)− v̄][v(t− τ)− v̄]}

= E
{
[ṽ(t) + v̄ − v̄ ][ṽ(t− τ) + v̄ − v̄ ]

}

The correlation function of the zero-mean process ṽ(t)
coincides with the covariance of the original process.
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In general:

• Consider the process
AR(n) : v(t) = a1 v(t− 1) + · · ·+ anv(t− n) + η(t)

A(z)v(t) = η(t) with A(z) = 1− a1z
−1 − · · · − anz

−n

W (z) =
1

A(z)
=

1
1− a1z−1 − · · · − anz−n

=
zn

zn − a1zn−1 − · · · − an
• If the roots of A(z) (i.e., the poles of W (z) ) are all strictly
located inside the unit-circle, then in steady-state we obtain a
stationary process equivalent to a process MA(∞) .
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Auto-regressive and Moving average
process (ARMA)



ARMA processes

• Given a white process η(·) ∼ WN(0, λ2)
• An ARMA
process of order na , nc (and denoted ARMA(na , nc) ) is given by
v(t) =a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n)

+ η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

A(z)v(t) = C(z)η(t) with
A(z) =1− a1z

−1 − · · · − anaz
−na

C(z) =1+ c1z
−1 + · · ·+ cnc

z−nc

W (z) =
C(z)

A(z)
=
1+ c1z−1 + · · ·+ cnc

z−nc

1− a1z−1 − · · · − ana
z−na

If n = max(na, nc) maximum input/output delay

W (z) =
zn + c1zn−1 + · · ·+ cnc

zn−nc

zn − a1zn−1 − · · · − anaz
n−na
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ARMA processes (cont.)

• If the stability condition is satisfied (all roots of A(z) are
strictly inside the unity circle) then in steady-state we obtain a
stationary process equivalent to a process MA(∞)

W (z) =
C(z)

A(z)
= w0 + w1z

−1 + · · ·+ wiz
−i + · · ·

where h(t) = wt , t = 0, 1, . . . is the impulse response of the
dynamic system

• If the stability condition is satisfied
∞∑
j=0

(wj)
2
< ∞

process variance of MA(∞) is finite
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Remarks

• With reference to a generic stationary stochastic process:

Difference-equation ⇐⇒ Process model
Stationary solution of difference-equation ⇐⇒ Process

• In general:

Stochastic 
Processes

Stationary Stochastic 
Processes

ARMA Processes

DIA@UniTS – 267MI –Fall 2022 TP GF – L7–p82



Example

• Consider the process ARMA(1, 1)

v(t) =
1
2 v(t− 1) + η(t) +

1
3η(t− 1) , η(·) ∼ WN(0, 1)(

1− 1
2z

−1
)
v(t) =

(
1+ 1

3z
−1
)
η(t)

v(t) =
1+ 1

3z
−1

1− 1
2z

−1 η(t) =
z + 1

3
z − 1

2
η(t)

• Let us determine the spectrum:

Γ(ω) =
∣∣W (ejω)

∣∣2 λ2 = ∣∣ejω + 1
3
∣∣2∣∣ejω − 1
2
∣∣2 =

∣∣cosω + j sinω + 1
3
∣∣2∣∣cosω + j sinω − 1
2
∣∣2

=
(cosω)2 + 1

9 +
2
3 cosω + (sinω)2

(cosω)2 + 1
4 − cosω + (sinω)2

=
10
9 + 2

3 cosω
5
4 − cosω
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Example (cont.)

Γ(0) =
(
1+ 1

3
)2( 1

2
)2 =

64
9

Γ
(π
2
)
=
1+

( 1
3
)2

1+
( 1
2
)2 =

8
9

Γ(π) =

( 2
3
)2(

1+ 1
2
)2 =

16
81
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Example (cont.)
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Spectral factorization



Spectral factorization

• A few families of stationary stochastic process with rational
spectra have been described. The prediction problem will be
addressed in the context of these families.

• However: some further discussions are necessary on the
representation of st. processes with rational spectra.

• Consider

with η(·) ∼ WN(0, λ2) and W (z) =
N(z)

D(z)
rational
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Spectral factorization (cont.)

Fundamental question:
Does W̃ (z) exist such that, for a suitable input process,
η̃(·) ∼ WN(0, λ̃2) we have

γvv(τ) = γṽṽ(τ) , ∀ τ that is Γ(ω) = Γ̃(ω) , ∀ω

In qualitative terms, does another transfer function exist yielding
the same correlation function/spectrum?

• The question is important: in case of existence of such other
transfer function W̃ (z) , this would imply the existence of more
than one rational representation of the same stochastic process

• Trying to estimate a transfer function (for example, a predictor)
on the basis of experimental data would be a ill-posed problem

DIA@UniTS – 267MI –Fall 2022 TP GF – L7–p87



Spectral factorization (cont.)

• Then, let us try to understand the mutual relation between
transfer functions of equivalent representations of the same
process.

• More details are needed on the representation of processes
with rational spectra.

• Recall that Φ(z) = W (z)W
(
z−1
)
λ2 where Φ(z) is the complex

spectrum

Spectral factorization problem
Given a complex spectrum Φ(z) , determine all pairs

[
W (z), λ2

]
such that W (z)W

(
z−1
)
λ2 = Φ(z)
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Spectral factorization (cont.)

• Let us now analyze the ways to modify W (z) without modifying
Φ(z)

(a) α ·W (z) with α ̸= 0 =⇒ Φ(z) = αW (z)αW (z−1)λ̃2

Choosing λ̃2 =
λ2

α2
we have that the pairs

[
W (z), λ2

]
and

[
αW (z),

λ2

α2

]
with α ̸= 0

have the same Φ(z)

This result is not surprising: the variance of a stationary
process can be changed either by acting on the static gain of
the transfer function and on the variance of the input process.
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Spectral factorization (cont.)

(b) z−k W (z) with k ̸= 0
Φ(z) = z−kW (z)zkW (z−1)λ2 = W (z)W (z−1)λ2

The pairs
[
W (z), λ2

]
and

[
z−k W (z), λ2

]
have the same Φ(z)

Also this result is not surprising: multiplying by z−k means
considering realizations delayed by time-steps and this clearly does
not alter the probabilistic features of the stochastic process.
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Spectral factorization (cont.)

(c) trivial case

(z + a)n

(z + a)n
W (z) with a ∈ C, n ≥ 1

The pairs
[
W (z), λ2

]
and

[
(z + a)n

(z + a)n
W (z), λ2

]

have the same Φ(z)
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Spectral factorization (cont.)

(c) non-trivial case 1
a

z + a

z +
1
a

W (z) with a ∈ C

T (z)T (z−1) = ϱ
z + a

z +
1
a

ϱ
z−1 + a

z−1 +
1
a

= ϱ2
(z + a)(z−1 + a)

(z +
1
a
)(z−1 +

1
a
)

= ϱ2
1+ a2 + a(z + z−1)

1+ 1
a2

+
1
a
(z + z−1)

= ϱ2 a2
1+ a2 + a(z + z−1)

1+ a2 + a(z + z−1)
= ϱ2 a2

Choosing ϱ =
1
a

the pairs
[
W (z), λ2

]
and

1
a

z + a

z +
1
a

W (z), λ2

 have the same Φ(z)
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An “all-pass” filter

• Then, if T (z) = 1
a

z + a

z +
1
a

in the sense that the spectra of v(t) and of ṽ(t) coincide.

Therefore, canceling a pole (zero) with a reciprocal
zero (pole) leaves the spectrum unchanged (except
for a possible multiplicative constant)
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Spectral factorization (cont.)

• The problem we are addressing is the one of guaranteeing the
uniqueness of the representation of the stationary stochastic
process that is, that there exists a unique transfer function
W (z) for which the process can be represented as the output of
a linear system with transfer functionW (z) and a white process
as input.

• Clearly, there are many ways to constrain the representation to
be unique. The ways we are considering are the ones that will
be useful in the context of the solution of the prediction
problem.
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Spectral factorization (cont.)

• With reference to cases (a), (b), (c) previously addressed:
• given W (z) =

N(z)

D(z)

• (a): it is sufficient to set some parameter. We impose that N(z)

and D(z) are monic polynomials

• (b): we impose that N(z) and D(z) have the degree a-priori set
(for example, the same degree)

• (c): we impose that N(z) and D(z) are co-prime and that all
zeros and poles are inside the unit circle
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Spectral factorization theorem

Spectral factorization theorem
Given a process with rational spectrum Φ(z) , there exists one and
only one representation of the process as the output of a linear
system driven by a white process and with transfer function
W (z) =

N(z)

D(z)
if the following conditions are imposed on W (z) :

• N(z) and D(z) monic, co-prime and of the same degree
• all roots of N(z) (zeros of W (z) ) have | · | ≤ 1
• all roots of D(z) (poles of W (z) ) have | · | < 1
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