
Chapter 11

The language of categories

11.1 Categories

Category theory was introduced by Samuel Eilenberg and Saunders Mac Lane in 1942-45

in their study of algebraic topology. They introduced the concepts of categories, func-

tors, and natural transformations, with the goal of understanding the processes that pre-

serve mathematical structures. In Algebraic Geometry it was much developed by Alexander

Grothendieck, in his language of schemes.

Category theory has proven to be a powerful language for expressing some general facts

and constructions that are encountered mainly in branches of algebra and geometry. Here we

give an elementary introduction limiting ourselves to the simplest definitions and examples.

Definition 11.1.1. A category C consists of the following data:

(1) A class ob(C) whose elements are called objects of the category;

(2) For each pair A,B 2 ob(C) of objects, a set indicated with HomC(A,B), or C(A,B),

called set of morphisms or arrows from A to B. Instead of writing f 2 HomC(A,B) it is

common to use f : A ! B.

(3) For each triple of objects A,B,C a map of sets called composition:

HomC(A,B)⇥HomC(B,C) ! HomC(A,C),

such that

(f, g) ! g � f.

(4) For each object A a special element 1A 2 HomC(A,A) called identity of A.

It is also assumed that the following axioms hold:

a) Composition is associative;
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b) Identity acts as a neutral element for the composition (when it is defined).

The categories that are best known (but we will also meet others) are those in which we

can interpret morphisms as particular functions between sets, their composition is the usual

composition of functions, and the identity is the usual identity.

In particular we have:

(1) The category of sets, indicated with the symbol Set, in whichHom(A,B) = Set(A,B)

is the set of arbitrary maps from A to B.

(2) The category Grp of groups and homomorphisms between groups, Ab of abelian

groups and group homomorphisms, Rng of rings and homomorphisms of rings, or ModR of

modules on a ring R with homomorphisms of R-modules, etc.

(4) Top with objects the topological spaces and morphisms the continuous functions.

(5) The coverings of a given topological space and the covering maps.

(6) The notion of subcategory is rather natural: C 0 is a subcategory of C if the class ob(C 0)

is contained in ob(C) and, for any pair of objects A,B in C
0, HomC0(A,B) ⇢ HomC(A,B).

The subcategory is called full if equality holds: HomC0(A,B) = HomC(A,B).

(7) A first example of a category where morphisms cannot be thought of as simple

functions is that of a poset. i.e. a partially ordered set P . The objects are the elements of

P and

HomP (a, b) =

8
<

:
{⇤} if a  b;

; otherwise.

Here {⇤} denotes a set with only one element denoted by ⇤, also called the singleton. A

particular case of a poset category is Op(X), the category of the open subsets of a topological

space X.

11.2 Functors

The second notion we are going to introduce formalizes the idea of transformation of cate-

gories.

Definition 11.2.1. A (covariant) functor F : A ! B from the category A to the category B

is a law that associates to every object X of A an object F (X) of B and to every morphism

f : X ! Y in A a morphism F (f) : F (X) ! F (Y ) in B, in such a way that

a) F (f � g) = F (f) � F (g) (when the composition is defined),

b) F (1X) = 1F (X).
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The composition of functors can be done as in the case of functions.

Contravariant functors are defined by imposing that to every morphism f : X ! Y is

associated a morphism F (f) : F (Y ) ! F (X) so that we have F (f � g) = F (g) � F (f). In

other words, contravariant functors invert the arrows.

Given a category C, we can define the opposite category C
0, or Cop, whose objects are the

same as those of C while HomC0(A,B) = HomC(B,A). It is easily seen that a contravariant

functor from A to B is also a covariant functor from A to B
0 (or from A

0 to B).

Example 11.2.2. Examples of functors.

1. Forgetful functors. The law U : Grp ! Set which maps a group to its underlying

set and a group homomorphism to its underlying function of sets is a functor. Functors like

this, which “ forget” some structure, are termed forgetful functors. Another example is the

functor Rng ! Ab which maps a ring to its underlying additive abelian group. Morphisms

in Rng (ring homomorphisms) become morphisms in Ab (abelian group homomorphisms).

2. Free functors. Going in the opposite direction of forgetful functors are free functors.

The free functor F : Set ! Ab sends every set X to the free abelian group generated by X.

Functions are mapped to group homomorphisms between free abelian groups.

3. Representable functors. Let C be a category. Each object A 2 ob(C) allows to define

the following functor hA : C ! Set. For each object X 2 ob(C), hA(X) := HomC(A,X) 2

ob(Set). For each morphism f : X ! Y in C, we define hA(f) : HomC(A,X) ! HomC(A, Y )

through the composition: hA(g) := f � g. The functor hA is usually denoted by hA :=

HomC(A,�) and is a covariant functor which is said to be represented by the object A of C.

In a completely analogous way we can define the contravariant functor hA := HomC(�, A).

Among the categorical ideas there is that of isomorphism, which generalizes that of

bijection between sets, of isomorphism of groups, of homeomorphism between topological

spaces etc.

An isomorphism f between two objects A,B of a category C is a morphism f : A ! B

such that there exists a morphism g : B ! A such that g � f = 1A and f � g = 1B.

The following property follows easily from the axioms of category.

Proposition 11.2.3. (1) If f : A ! B is an isomorphism, the morphism g : B ! A such

that g � f = 1A, f � g = 1B is unique (and denoted f�1).

(2) If f : A ! B is an isomorphism in C and F : C ! D is a functor, then also

F (f) : F (A) ! F (B) is an isomorphism (in D).
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11.3 Natural transformations

To complete the categorical approach it is convenient to introduce the last formal definition,

the one that allows to treat the functors between two given categories A ! B like the objects

of a new category. To do this, we must define the morphisms between two such functors,

which we will call natural transformations. We give the definition for covariant functors, the

contravariant case is similar.

Definition 11.3.1. Given two functors F,G : A ! B between two categories, a natural

transformation ' : F ! G between the two functors consists in giving, for each object

A 2 ob(A) a morphism 'A : F (A) ! G(A) (in B) such that, for each pair of objects

A,B 2 ob(C) and for each morphism f : A ! B the following diagram is commutative:

F (A)
'A
�! G(A)

F(f) # # G(f)

F (B)
'B
�! G(B)

The class of natural transformations between two functors F,G : A ! B is denoted by

Nat(F,G). Often it is a set, which can therefore be taken as the set of morphisms to define

the category of functors from category A to category B. We will indicate with F (A,B) this

category of functors. The properties of identity and composition are easy to verify.

From the general ideas, it follows the definition of natural isomorphism between two

functors: it is a natural transformation that admits an inverse, and also that of equivalence

of categories. An equivalence between the categories A,B is a functor F : A ! B satisying

the following two conditions:

1. for any Y 2 ob(B) there exists X 2 ob(A) such that Y ' F (X);

2. for any pair of objectsA,B inA, F gives a bijectionHom(A,B)
F

�! Hom(F (A), F (B)).

We introduce a category C whose objects are the a�ne algebraic sets over a fixed alge-

braically closed field K and the morphisms are the regular maps. We consider also a second

category C
0 with objects the K-algebras and morphisms the K-homomorphisms. Then there

is a contravariant functor that operates on the objects mapping X to O(X) = K[X], and

on the morphisms mapping ' to the associated comorphism '⇤. Note that this functor can

be interpreted as the representable functor hA1 , when A1 is identified with K.

If we restrict the class of objects of C 0 taking only the finitely generated reduced K-

algebras (a full subcategory of the previous one), then this functor becomes an equiv-

alence of categories. Indeed the construction of the comorphism establishes a bijection

between the Hom sets HomC(X, Y ) and HomC0(O(Y ),O(X)). Moreover, for any finitely
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generated and reduced K-algebra A, there exists an a�ne algebraic set X such that A is

K-isomorphic to O(X). To see this, we choose a finite set of generators of A, such that

A = K[⇠1, . . . , ⇠n]. Then we can consider the surjective K-homomorphism  from the poly-

nomial ring K[x1, . . . , xn] to A sending xi to ⇠i for any i. In view of the fundamental theorem

of homomorphism, it follows that A ' K[x1, . . . , xn]/ ker . The assumption that A is re-

duced then implies that X := V (ker ) ⇢ An is an a�ne algebraic set with I(X) = ker 

and A ' O(X).

We note that changing system of generators for A changes the homomorphism  , and

by consequence also the algebraic set X, up to isomorphism. For instance let A = K[t] be a

polynomial ring in one variable t: if we choose only t as system of generators, we get X = A1,

but we can choose t, t2, t3, because A = K[t, t2, t3]; in this case we get the a�ne skew cubic

in A3.

As a consequence of the previous discussion we have the following:

Corollary 11.3.2. Let X, Y be a�ne varieties. Then X ' Y if and only if O(X) ' O(Y ).

We conclude this chapter defining an important functor. Let X be a quasi-projective

algebraic variety over a field K. We consider the category Op(X) of the open subsets

of X, interpreted as topological space with the Zariski topology. The second category is

K � alg, the category of K-algebras and K-homomorphisms. We define a contravariant

functor OX : Op(X) ! K � alg such that, for any open subset U ⇢ X, OX(U) = O(U), the

ring of regular functions on U interpreted as quasi-projective variety. Given a morphism in

Op(X), this is an inclusion U ,! V ; this is sent by the functor OX to the natural restriction

map O(V ) ! O(U).

OX is called the sheaf of regular functions on the variety X.
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