AG 3 - third assignment

Valentina Beorchia

November 6, 2022

- 1. Let $X \subseteq \mathbb{P}^n$ be a qp variety, let $U \subseteq X$ be open and let $\{U_i\}_{i \in J}$ be an open cover of U. Prove that a function $h : U \to \mathbb{K}$ is regular on U if and only if the restriction $h_{|U_i|}$ is regular for any $i \in J$.
- 2. Let $X \subseteq \mathbb{P}^n$ and $Y \subseteq \mathbb{P}^m$ be qp varieties, and let $\{U_i\}_{i \in J}$ be an open cover of X. Prove that a map $\varphi : X \to Y$ is a morphism if and only if the restriction $\varphi_{|U_i|}$ is a morphism for any $i \in J$.
- 3. Show that every isomorphism $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ is of the form

$$\varphi(x_0:x_1) = (ax_0 + bx_1: cx_0 + dx_1),$$

with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{K}).$

- 4. Let $\varphi : X \to Y$ be a morphism between affine varieties $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$, and consider the pull-back $\varphi^* : \mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$. Prove that ker $\varphi^* = I(\varphi(X)) \subseteq \mathcal{O}_Y(Y)$, where $I(\varphi(X))$ denotes the ideal of the image of φ in the ring $\mathcal{O}_Y(Y)$.
- 5. Prove that the projection

$$\pi: \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n, \quad \pi(a_0, \dots, a_n) = (a_0: \dots: a_n)$$

is a morphism of qp varieties.