
 Intro to Fluid Dynamics

& Gravity waves 

Corso di Laurea in Fisica - UNITS

ISTITUZIONI DI FISICA 

PER IL SISTEMA TERRA


FABIO ROMANELLI

Department of Mathematics & Geosciences 


University of Trieste


romanel@units.it

 

mailto:romanel@dst.units.it


Fabio Romanelli Fluids

Fluids...

The space occupied by the material will be called 
the domain.  

Solids are materials that have a more or less 
intrinsic configuration or shape and do not conform 
to their domain under nominal conditions.  

Fluids do not have an intrinsic shape; gases are 
fluids that will completely fill their domain (or 
container) and liquids are fluids that form a free 
surface in the presence of gravity.  
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What is a fluid?

A liquid takes the shape of the 
container it is in and forms a 
free surface in the presence 
of gravity 
A gas expands until it 
encounters the walls of the 
container and fills the entire 
available space.  Gases cannot 
form a free surface    
Gas and vapor are often used 
as synonymous words



Fabio Romanelli Fluids

What is a fluid?

The word “fluid” traditionally refers to one of the 
states of matter, either liquid or gaseous, in contrast to 
the “solid” state.  

A material that exhibits flow if shear forces are 
applied 

Basically any material that appears as elastic or non-
deformable, with a crystalline structure (i.e., belonging 
to the solid state) or with a disordered structure (e.g., a 
glass, which from a thermodynamic point of view belongs 
to the liquid state) can be irreversibly deformed (flow) 
when subjected to stresses for a long enough time. 

https://www.youtube.com/watch?v=sMKJvYSYiOs

https://www.youtube.com/watch?v=sMKJvYSYiOs
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Fluid mechanics assumptions

Classical fluid mechanics, like classical thermodynamics, is 
concerned with macroscopic phenomena (bulk properties) rather 
than microscopic (molecular-scale) phenomena.  

The molecular makeup of a fluid will be ignored in all that follows, 
and the crucially important physical properties of a fluid, e.g., its 
mass density,  ρ, and specific heat, Cp, among others, must be 
provided from outside of this theory. It is assumed that these 
physical properties, along with flow properties, e.g., the pressure, 
P, velocity, v, temperature, T, etc., are in principle definable at 
every point in space, as if the fluid was a smoothly varying 
continuum, rather than a swarm of very fine, discrete particles 
(molecules).
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Continuum
Matter is made up of atoms that are spaced, but it is very convenient 

to disregard the atomic nature of a substance and view it as a 
continuous, homogeneous matter with no holes, that is, a continuum.  
The continuum idealization allows us to treat properties as point 

functions and to assume the properties vary continually in space with no 
jump discontinuities. 
This idealization is valid as long as the size of the system we deal with 

is large relative to the space between the molecules in the fluid.  
For density,  the mass (m) per unit volume (V) in a substance, measured 

at a given point, will tend toward a constant value in the limit as the 
measuring volume shrinks down to zero.
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Strain as a measure of Deformation

 To understand deformation due to shear, picture two flat plates with a 
fixed spacing, h, between them:

Fluids are qualitatively different from solids in their response to a shear stress. 
Ordinary fluids such as air and water have no intrinsic configuration, and hence fluids 
do not develop a restoring force that can provide a static balance to a shear stress.

When the shear stress is held steady, and assuming that the geometry does not 
interfere, the shear deformation rate, may also be steady or have a meaningful 
time-average.

x

y



Fabio Romanelli Fluids

Strain as a measure of Deformation

• A strain measure for simple shear can be obtained by dividing the 
displacement of the moving plate, ΔX, by the distance between 
the plates:

Shear strain

• The shear rate, or rate of shearing strain, is the rate of change of 
shear strain with time:

Shear strain rate

γ = Δx
h
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Simple Shear Flow

The velocity profile is a straight line: 


the velocity varies uniformly from 0 to Vo

Vo

x

y
       


!γ = dv
dy

=
V

0

h
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Newton’s Law of Viscosity

The viscosity of a fluid measures its resistance to flow under an 
applied shear stress.

 Newton’s law of viscosity

Newtonian fluids Fluids which obey Newton’s law: 

Shearing stress is linearly related to the rate of shearing strain.

τ

η

This is called a “flow curve” 

The proportionality constant 

is the viscosity

∴The deformation of a 

material is due to stresses 

imposed to it. 

τ = ηdv
dy

= ηdγ
dt
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Continuity equation - Mass 

Conservation of matter
The total mass of fluid flowing, in unit of time, through a surface S, has to be equal 
to the decrease, in unit time, in the mass of fluid in the volume V:

that can be compared with what we obtained considering 1D sound waves:

The gas moves and causes density variations

  
Δρ = −ρ0

∂s
∂x

∂ρ
∂t

dV +∫ ρ(v!∫ ⋅n)dS = 0

∂ρ
∂t

+ div(ρv) = ∂ρ
∂t

+ ρdiv(v) + v ⋅ grad(ρ) = 0

and after the application of Gauss’ Theorem, it becomes:
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Forces Acting on a CV

Forces acting on a Control Volume consist of body forces 
that act throughout the entire body of the CV (such as 
gravity, electric, and magnetic forces) and surface forces 
that act on the control surface (such as pressure and 
viscous forces, and reaction forces at points of contact).

•Body forces act on each 
volumetric portion dV of the 
CV. 
•Surface forces act on each 
portion dA of the CS.
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Body Forces

The most common body force 
is gravity, which exerts a 
downward force on every 
differential element of the CV
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Surface Forces

Surface forces are not as simple to 
analyze since they include both normal 
and tangential components 

Diagonal components σxx, σyy, σzz are 
called normal stresses and are due to 
pressure and viscous stresses 

Off-diagonal components σxy, σxz, etc., 
are called shear stresses and are due 
solely to viscous stresses 

Total surface force acting on CS  

F
S
= σ

ij!∫ ⋅ndS
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Stress Tensor

For a fluid at rest, according to Pascal’s law, regardless of 
the orientation the stress reduces to: 

Hydrostatic pressure is the same as the thermodynamic 
pressure from study of thermodynamics. P is related to 
temperature and density through some type of equation of 
state (e.g., the ideal gas law). 

We must be very careful when expanding the last term of Eq. 9–50, which
is the divergence of a second-order tensor. In Cartesian coordinates, the
three components of Cauchy’s equation are

x-component: (9–51a)

y-component: (9–51b)

z-component: (9–51c)

We conclude this section by noting that we cannot solve any fluid
mechanics problems using Cauchy’s equation by itself (even when com-
bined with continuity). The problem is that the stress tensor sij needs to be
expressed in terms of the primary unknowns in the problem, namely, den-
sity, pressure, and velocity. This is done for the most common type of fluid
in Section 9–5.

9–5 ! THE NAVIER–STOKES EQUATION

Introduction
Cauchy’s equation (Eq. 9–37 or its alternative form Eq. 9–48) is not very
useful to us as is, because the stress tensor sij contains nine components, six
of which are independent (because of symmetry). Thus, in addition to den-
sity and the three velocity components, there are six additional unknowns,
for a total of 10 unknowns. (In Cartesian coordinates the unknowns are r, u,
v, w, sxx, sxy, sxz, syy, syz, and szz). Meanwhile, we have discussed only
four equations so far—continuity (one equation) and Cauchy’s equation
(three equations). Of course, to be mathematically solvable, the number of
equations must equal the number of unknowns, and thus we need six more
equations. These equations are called constitutive equations, and they
enable us to write the components of the stress tensor in terms of the veloc-
ity field and pressure field.

The first thing we do is separate the pressure stresses and the viscous
stresses. When a fluid is at rest, the only stress acting at any surface of any
fluid element is the local hydrostatic pressure P, which always acts inward
and normal to the surface (Fig. 9–36). Thus, regardless of the orientation of
the coordinate axes, for a fluid at rest the stress tensor reduces to

Fluid at rest: (9–52)

Hydrostatic pressure P in Eq. 9–52 is the same as the thermodynamic pres-
sure with which we are familiar from our study of thermodynamics. P is
related to temperature and density through some type of equation of state
(e.g., the ideal gas law). As a side note, this further complicates a compress-
ible fluid flow analysis because we introduce yet another unknown, namely,
temperature T. This new unknown requires another equation—the differential
form of the energy equation—which is not discussed in this text.
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For fluids at rest, the only stress on a
fluid element is the hydrostatic
pressure, which always acts inward
and normal to any surface.
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Stress Tensor

Separate σij into pressure and viscous stresses

Viscous (Deviatoric)  
Stress Tensor

σ ij =

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
−P 0 0
0 −P 0
0 0 −P
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⎜
⎜
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⎞
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⎟
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Internal force due to the fact that in a flowing fluid there can also be a shearing 
stress, and it is called the viscous force

Momentum...

The fluid in the volume is accelerated by the total 
force acting on it:

Fluid moves from high-pressure areas to low-pressure areas. Moving implies that 
fluid moves in direction of largest change in pressure

External forces that act at a distance; we can suppose that they are 
conservative (like gravity and electricity)

Newton’s law

ρ dv
dt

= −grad(P) − ρgrad(φ) + f
visc
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Momentum...

The fluid in the volume is accelerated by the total 
force acting on it:

Newton’s law

that can be compared with what we obtained considering for 1D sound waves:

Pressure variations generate gas motion

ρ dv
dt

= −grad(P) − ρgrad(φ) + f
visc

  
ρ0

∂2s
∂t2

= − ∂ΔP
∂x
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Lagrangian vs. Eulerian description
 A fluid flow field can be 

thought of as being comprised 
of a large number of finite 
sized fluid particles which have 
mass, momentum, internal 
energy, and other properties. 
Mathematical laws can then be 
written for each fluid particle. 
This is the Lagrangian 
description of fluid motion.

 Another view of fluid motion is 
the Eulerian description. In the 
Eulerian description of fluid 
motion, we consider how flow 
properties change at a fluid 
element that is fixed in space 
and time (x,y,z,t), rather than 
following individual fluid 
particles.

Governing equations can be derived using each 
method and converted to the other form.
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If we move a parcel in time Δt

Using Taylor series expansion

Higher 
Order 
Terms

Assume increments over Δt are small, and 
ignore Higher Order Terms

Δf = ∂f
∂t

Δt + ∂f
∂x

Δx + ∂f
∂y

Δy + ∂f
∂z

Δz +



Fabio Romanelli Fluids

If we move a parcel in time Δt

Dividing by Δt and taking the small limit:

Introduction of convention of d( )/dt ≡ D( )/Dt

df
dt

= ∂f
∂t

+ ∂f
∂x

dx
dt

+ ∂f
∂y

dy
dt

+ ∂f
∂z

dz
dt

Dx
Dt

= v
x
,Dy
Dt

= v
y
,Dz
Dt

= v
z

Df
Dt

= ∂f
∂t

+ v
x

∂f
∂x

+ v
y

∂f
∂y

+ v
z

∂f
∂z

Df
Dt

= ∂f
∂t

+ v ⋅ grad(f)
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Advection

In mathematics and continuum mechanics, including fluid 
dynamics, the substantive derivative (sometimes the 
Lagrangian derivative, material derivative or advective 
derivative), written D/Dt, is the rate of change of some 
property of a small parcel of fluid. 
Note that if the fluid is moving, the substantive 
derivative is the rate of change of fluid within the small 
parcel, hence the other names advective derivative and 
fluid following derivative. Advection is transport of a 
some conserved scalar quantity in a vector field.

v
x

∂f
∂x

+ v
y

∂f
∂y

+ v
z

∂f
∂z

= v ⋅ grad(f)
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Euler equations

Newton’s law Conservation of matter+ - Viscosity

∂v
∂t

+ (v ⋅ grad)v = − grad(P)
ρ

− grad(φ)
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Flow Visualization

Flow visualization is the 
visual examination of 
flow-field features. 
Important for both 

physical experiments and 
numerical (CFD) solutions. 
Numerous methods 

Streamlines and 
streamtubes 
Pathlines 
Streaklines 
Timelines

While quantitative study of 
fluid dynamics requires 

advanced mathematics, much 
can be learned from flow 

visualization
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Streamlines

A Streamline is a curve 
that is everywhere tangent 
to the instantaneous local 
velocity vector.
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Pathlines

A Pathline is the actual 
path traveled by an 
individual fluid particle 
over some time period. 
Same as the fluid 

particle's material 
position vector 
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Streaklines

A Streakline is the 
locus of fluid particles 
that have passed 
sequentially through a 
prescribed point in the 
flow. 
Easy to generate in 

experiments:  dye in a 
water flow, or smoke 
in an airflow.
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Comparisons

For steady flow, streamlines, pathlines, and 
streaklines are identical.  
For unsteady flow, they can be very different.  

Streamlines are an instantaneous picture of the 
flow field 
Pathlines and Streaklines are flow patterns that 

have a time history associated with them.  
Streakline:  instantaneous snapshot of a time-

integrated flow pattern. 
Pathline:  time-exposed flow path of an individual 

particle.
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Timelines

A Timeline is a set of 
adjacent fluid 
particles that were 
marked at the same 
(earlier) instant in 
time. 
Timelines can be 

generated using a 
hydrogen bubble wire.
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Vorticity and Rotationality

The vorticity vector is defined as the curl of the 
velocity vector              , is a measure of rotation of a 
fluid particle. 

Vorticity is equal to twice the angular velocity of a 
fluid particle  
In regions where Ω= 0, the flow is called irrotational. 
Elsewhere, the flow is called rotational

rotv = Ω
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Euler equations

Newton’s law Conservation of matter+ - Viscosity

1.
∂v
∂t

+ (v ⋅ grad)v = − grad(P)
ρ

− grad(φ)

Using the identity (v ⋅ grad)v = (rotv) × v + 1
2
grad(v2)

and defining the vorticity as rotv = Ω

2.
∂Ω
∂t

+ rot(Ω × v) = 0
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Euler equations - Steady flow

Euler eq. + + (v ・)

and if the motion is irrotational (potential flow), it is valid everywhere, i.e. 

Bernoulli’s theorem

∂v
∂t

= 0

v ⋅ grad(P
ρ
+ φ + v2

2
) = 0

that means that along a streamline one has:

P
ρ
+ φ + v2

2
= constant
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Equation of state
The functional relationship between density, pressure and temperature: 

P=P(ρ,T) or equivalently, ρ=ρ(P,T)  

with T the absolute temperature in Kelvin.  

The archetype of an equation of state is that of an ideal gas, P=ρRT/M 
where R=8.31 (Joule moles-1 K -1) is the universal gas constant and M is the 
molecular weight (kg/mole).  
If the composition of the material changes, then the appropriate equation of state 
will involve more than three variables, for example the concentration of salt if sea 
water, or water vapor if air.  
An important class of phenomenon may be described by a reduced equation of 
state having state variables density and pressure alone,  

P=P(ρ) or equivalently, ρ = ρ(P)  

and the fluid is said to be barotropic.
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Equation of state - barotropic

The temperature of the fluid will change as pressure work is done on or by the fluid, and 
yet temperature need not appear as a separate, independent state variable provided 
conditions approximate one of two limiting cases: 

1)  If the fluid is a fixed mass of ideal gas, say, that can readily exchange heat with a 
heat reservoir having a constant temperature, then the gas may remain isothermal 
under pressure changes; 

2) the other limit, which is more likely to be relevant, is that heat exchange with the 
surroundings is negligible because the time scale for significant conduction is very long 
compared to the time scale (lifetime or period) of the phenomenon. In that event the 
system is said to be adiabatic and in the case of an ideal gas the density and pressure 
are related by the well-known adiabatic law.

that can be compared with what we obtained considering sound waves:

Density variations cause pressure variations  ΔP = κΔρ = c2Δρ

Δρ = ∂ρ
∂P

ΔP
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Incompressible fluids
In many cases of the flow of fluids their density may be 

supposed invariable, i.e. constant throughout the volume and 
its motion and we speak of incompressible flow

ρ = constant

Conservation of matter div (v)=0

Euler equation
∂v
∂t + Ω × v = −grad 1

2 v2 + P
ρ
+ φ

⎛

⎝⎜
⎞

⎠⎟

i.e. the time taken by a sound signal to traverse distances must be small compared 
with that during which flow changes appreciably

i.e. v<<c

i.e. τ >> λ
c

The conditions under which the fluid can be considered incompressible are:

∂ρ
∂t << ρdiv(v) ⇒ Δρ

τ
<< ρv

λ

Δρ = ΔP
c2 ≈ 1

c2 ρ ∂v
∂t λ

⎛

⎝⎜
⎞

⎠⎟
≈ 1
c2 ρ v

τ
λ

⎛

⎝⎜
⎞

⎠⎟
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Incompressible & Irrotational flow
From Euler equations we have that only viscosity can generate vorticity if none 

exists initially. And if the flow is irrotational rot(v)=0, and thus 
v=grad(θ) and the flow is called potential.

Conservation of matter div (v)=0

Euler equation rot (v)=0

and we can separate the variables...

∇2(θ)=0

the potential has to satisfy Laplace equation:

and if it is also incompressible:
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Separation of variables + BC at bottom

Let us consider a velocity potential propagating along the x-axis and uniform 
in the y- direction: all quantities are independent of y.  
We shall seek a solution which is a simple periodic function of time and of the 
coordinate x, i.e. we put 

θ = F(z) cos(kx − ωt)

d2F
dz2 − k2F = 0 F(z) = Aekz + Be-kz⎡⎣ ⎤⎦

and if the liquid container has depth h, there the vertical flow has to be 0:

vz = dF
dz z=−h

= 0  ⇒   B=e-2khA
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BC at bottom

and this leads to:

Thus, at the bottom (z=-h) the cosh(0)=1, while at top it is cosh(kh), 
thus F grows as z goes from bottom to top values. 

If the container is infinitely deep (h goes to infinity) we have that 
B has to be 0 and the potential as well is going to 0: 

F(z) = Aekz

F(z)=2Ae-khcosh k(z + h)⎡⎣ ⎤⎦
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Gravity waves

The free surface of a liquid in equilibrium in a gravitational 
field is a plane.  

If, under the action of some external perturbation, the 
surface is moved from its equilibrium position at some point, 
motion will occur in the liquid.  

This motion will be propagated over the whole surface in 
the form of waves, which are called gravity waves, since they 
are due to the action of the gravitational field.  

We shall here consider gravity waves in which the velocity 
of the moving fluid particles is so small that we may neglect 
the term (v•grad)v in comparison with ∂/∂t in Euler's equation. 
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Gravity waves
The physical significance of this is easily seen. During a time interval of the order of 
the period, τ, of the oscillations of the fluid particles in the wave, these particles 
travel a distance of the order of the amplitude, a, of the wave. Their velocity v is 
therefore of the order of a/τ. It varies noticeably over time intervals of the order of 
τ and distances of the order of λ in the direction of propagation (where λ is the 
wavelength). Hence the time derivative of the velocity is of the order of v/τ, and the 
space derivatives are of the order of v/λ.  

i.e. the amplitude of the oscillations in the wave must be small compared 
with the wavelength.

Thus the condition  

is equivalent to  

(v ⋅ grad)v << ∂v
∂t

1
λ

a
τ

⎛

⎝⎜
⎞

⎠⎟

2

<< a
τ

1
τ
  or   a<<λ
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Small amplitude gravity waves

For waves whose amplitude of motion is smaller than the wavelength, all 
significant terms in the fluid equation are gradients, and the Euler equation can 
be expressed as:

grad( ∂θ
∂t + P

ρ
+ φ) = 0

thus, in space:

∂θ
∂t + P

ρ
+ φ = constant

and assuming a gravitational potential gz, we obtain:

P = −ρgz − ρ ∂θ
∂t
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Let us denote by f the z coordinate of a point on the surface; f is a function of x, 
y and t.  

In equilibrium f=0, so that f gives the vertical displacement of the surface in its 
oscillations.  

Let a constant pressure p0 act on the surface. Then we have at the surface:

Gravity waves: BC at the top

p0 = −ρgf − ρ ∂θ
∂t

The constant p0 can be eliminated by redefining the potential, adding to it a 
quantity independent of the coordinates. We then obtain the condition at the 
surface as 

gf + ∂θ
∂t z=f

= 0
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Since the amplitude of the wave oscillations is small, the displacement f is 
small. Hence we can suppose, to the same degree of approximation, that the 
vertical component of the velocity of points on the surface is simply the time 
derivative of f: 

Since the oscillations are small, we can take the value of the derivatives at z=0 
instead of z=f. Thus we have finally the following system of equations to 
determine the motion in a gravitational field: 

Gravity waves: BC at top

vz = ∂θ
∂z z=f

= ∂f
∂t = − 1

g
∂2θ
∂t2

⎛

⎝⎜
⎞

⎠⎟

incompressibility

B.C.

Δθ = 0
∂θ
∂z + 1

g
∂2θ
∂t2

⎛

⎝⎜
⎞

⎠⎟ z=0

= 0
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Gravity waves: dispersion

and the boundary at the top gives the dispersion relation for  incompressible, 
irrotational, small amplitude “gravity” waves:

F(z)=2Ae-khcosh k(z + h)⎡⎣ ⎤⎦

deep water (kh goes to infinity)

ω2 = kg tanh(kh)⎡⎣ ⎤⎦

ω2 = kg

c = g
k = gλ

2π

u = ∂ω
∂k = 1

2 c = 1
2

g
k = 1

2
gλ
2π

shallow water (kh goes to zero)

ω2 = k2gh

c = gh

u = ∂ω
∂k = c = gh
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Tsunami eigenvalues & eigenfunctions

Ward: Tsunamis 2

under the ocean with a fault orientation favorable
for tsunami excitation. Thus, tsunamis that in-
duce widespread damage number about one or
two per decade. Although one’s concepts might
be cast by rare “killer tsunamis”, many more be-
nign ones get lost in the shuffle. Today, ocean
bottom pressure sensors can detect a tsunami of a
few centimeters height even in the open sea. Be-
cause numerous, moderate (≈M6.5) earthquakes
can bear waves of this size, “baby” tsunamis oc-
cur several times per year. They pass by gener-
ally unnoticed, except by scientists. Perhaps
while swimming in the surf, the reader has al-
ready been in a tsunami! Whether killer waves or
ripples, tsunamis span three phases: generation,
propagation and shoaling. This article touches
gently on each.

II. Characteristics of Tsunamis

A. Tsunami Velocity, Wavelength, and Period
This article reviews classical tsunami theory.
Classical theory envisions a rigid seafloor over-
lain by an incompressible, homogeneous, and
non-viscous ocean subjected to a constant gravi-
tational field. Classical tsunami theory has been
investigated widely, and most of its predictions
change only slightly under relaxation of these
assumptions. This article draws upon linear the-
ory that also presumes that the ratio of wave am-
plitude to wavelength is much less than one. By
and large, linearity is violated only during the
final stage of wave breaking and perhaps, under
extreme nucleation conditions.

In classical theory, the phase c(ω), and group
u(ω) velocity of surface gravity waves on a flat
ocean of uniform depth h are

c( ) =
gh tanh[k( )h]

k( )h
    (1)

and

u( ) = c( )
1
2

+
k( )h

sinh[2k( )h]
 
  

 
     (2)

Here, g is the acceleration of gravity (9.8 m/s2)
and k(ω) is the wavenumber associated with a
sea wave of frequency ω. Wavenumber connects
to wavelength λ(ω) as λ(ω)=2π/k(ω). Wave-
number also satisfies the relation

2 = gk( )tanh[k( )h]    (3)

Figure 1. (top panel) Phase velocity c(ω) (solid lines) and
group velocity u(ω) (dashed lines) of tsunami waves on a
flat earth covered by oceans of 1, 2, 4 and 6 km depth.
(bottom panel) Wavelength associated with each wave
period. The ’tsunami window’ is marked.
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lipses can be thought of as tracing the path of a
water particle as a wave of frequency ω passes.
At 1500s period (left, Fig. 2), the tsunami has a
wavelength of λ=297km and it acts like a long
wave. The vertical displacement peaks at the
ocean surface and drops to zero at the seafloor.
The horizontal displacement is constant through
the ocean column and exceeds the vertical com-
ponent by more than a factor of ten. Every meter
of visible vertical motion in a tsunami of this

frequency involves ≈10m of “invisible” hori-
zontal motion. Because the eigenfunctions of
long waves reach to the seafloor, the velocity of
long waves are sensitive to ocean depth (see top
left-hand side of Fig. 1). As the wave period
slips to 150s (middle Fig. 2), λ decreases to
26km -- a length comparable to the ocean depth.
Long wave characteristics begin to break down,
and horizontal and vertical motions more closely
agree in amplitude. At 50s period (right, Fig. 2)
the waves completely transition to deep water
behavior. Water particles move in circles that
decay exponentially from the surface. The eigen-

functions of short waves do not reach to the sea-
floor, so the velocities of short waves are inde-
pendent of ocean depth (see right hand side of
Fig. 1, top). The failure of short waves (λ<<h) to
“feel” the seafloor also means that they can not
be excited by deformations of it. This is the
physical basis for the short wavelength bound on
the tsunami window that I mentioned above.

III. Excitation of Tsunamis

Suppose that the seafloor at points r0 uplifts in-
stantaneously by an amount uz

bot (r0) at time τ(r0).
Under classical tsunami theory in a uniform
ocean of depth h, this sea bottom disturbance
produces surface tsunami waveforms (vertical
component) at observation point r=x ˆ x +y ˆ y  and
time t of

uz
surf (r,t) = Re dk ei [k •r− ( k ) t ]

4 2 cosh(kh)
F(k)

k
∫

with

F(k) = dr0 uz
bot (r0 )e

r0

∫
−i[ k •r0 − (k) ( r0 )]

   (5a,b)

with k=|k|, and 2(k) = gktanh(kh). The inte-
grals in (5) cover all wavenumber space and lo-
cations r0 where the seafloor disturbance
uz

bot (r0)≠0.

Equation (5a) looks scary but it has three identi-
fiable pieces:
    a) The F(k) term is the wavenumber spectrum
of the seafloor uplift. This number relates to the
amplitude, spatial, and temporal distribution of
the uplift. Tsunami trains (5a) are dominated by
wavenumbers in the span where F(k) is greatest.

Figure 2 . Tsunami eigenfunctions in a 4 km deep ocean
at periods 1500, 150 and 50s. Vertical displacements at
the ocean surface has been normalized to 1 m in each
case.
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Gravity waves in deep water

The velocity distribution in the moving liquid is found by simply taking the space 
derivatives the velocity potential:  

We see that the velocity diminishes exponentially as we go into the liquid. At any 
given point in space (i.e. for given x, z) the velocity vector rotates uniformly in the 
xz-plane, its magnitude remaining constant.  

Let us also determine the paths of fluid particles in the wave. We temporarily 
denote by x, z the coordinates of a moving fluid particle (and not of a point fixed 
in space), and by x0, z0 the values of x and z at the equilibrium position of the 
particle. Then vx = dx/dt, vz = dz/dt, and on the right-hand side  we may 
approximate by writing x0, z0 in place of x, z, since the oscillations are small. 

vx = −Akekz sin(kx − ωt)   vz = Akekz cos(kx − ωt)
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Gravity waves in deep water
An integration with respect to time then gives: 

Thus the fluid particles describe circles about the points (x0, z0) with a radius 
which diminishes exponentially with increasing depth. 

x − x0 = −A k
ω

ekz0 cos(kx0 − ωt)   z − z0 = −A k
ω

ekz0 sin(kx0 − ωt)


