Simmetries of QCD Layrengian
let's consider the QCD Layrengian

$$\begin{aligned} \text{Let's consider} & \text{He QCD Ly. with generated master} \\ & \text{Lacs} = -\frac{A}{4} \mp_{W} \mp^{+\mu\nu} + \frac{2}{2} \left(\frac{\pi}{q^{-1}} i D q^{-1} - m^{-1} \frac{\pi}{q^{-1}} \right) \\ & \mp_{\mu\nu}^{-} \mp_{\mu}A^{+} - 2 A^{+} - 2 \int^{+\mu\nu} A^{+} A^{+} \\ & q^{-} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int^{+\mu\nu} A^{+} A^{+} \\ & q^{-} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int^{+\mu\nu} A^{+} A^{+} \\ & q^{-} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int^{+\mu\nu} A^{+} A^{+} \\ & pq^{-} e^{-\frac{\pi}{2}} \partial^{-\frac{\pi}{2}} \partial^{-\frac{\pi$$

$$\int_{L/R}^{d} = \overline{\psi} \partial_{n} \frac{1}{1 + \gamma_{s}} f^{d} \psi = \frac{1}{2} (j^{d} \mu_{+} j^{d} \mu_{+})$$

$$\int_{L/R}^{d} \overline{\psi} \frac{1}{2} \int_{L/R}^{d} f^{d} \psi = \frac{1}{2} (j^{d} \mu_{+} j^{d} \mu_{+})$$

$$\int_{L/R}^{d} \overline{\psi} \frac{1}{2} \int_{L/R}^{d} f^{d} \psi = \frac{1}{2} (j^{d} \mu_{+} j^{d} \mu_{+})$$

- Are these symmetries good sym. at the quantum level? I.e. which ones are anometry?
- U(1), is coupled to the PHOTON (i.e. to a young field) =) it cound be anomalous.

-
$$SU(N_f)_V$$
 or $SU(N_f)_A$; their aroundly may have a contrib.
proportional to make $Tr[t^{a}[\underline{\tau}^{a}, \underline{\tau}^{b}](...)]$
 $Tr[t^{a}[\underline{\tau}^{a}, \underline{\tau}^{b}](...)]$

- $U(1)_A$ however is ANOMALOUS! It is exactly the SIMULET ANOMALY discussed before. $j_A^{\mu} = \int_{\tau_A}^{\tau_A \tau_A^{\nu}} \leq ANOMALY \int_{\mu\nu} F_{\mu\nu} F_{\mu\nu} \int_{\etauous}^{\infty} F_{\mu\nu} \int_{\etauo$

Spontaneous breetoom of an APPROXIMATE sym
lead to low-mass sprinless particles , called
PSEUDO - GOLDSTONE BOSONS.
In QCD there is a non-zero quark condensate (lattre)

$$< \overline{q}_{L}^{T} q_{R}^{T} > = -c \overline{5}^{TT} = c - \Lambda_{acg}^{3}$$

 \Rightarrow the vacuum is nost invariant
and the sym SU(N_F)_L × SU(N_F/z is Spont broten.
to SU(N_F)_V
 \longrightarrow we expect 2 dimSU(N_F) - dimSU(N_F) - N_F²-1
(pseudo) Goldston bosons.
When N_F = 3 , one has 8 (quart we soless scalars.
If the vacuum is s.t. $< \overline{q}_{L}^{T} q_{R}^{T} > = -c \overline{5}^{TT}$
then unbroken sym is (L, R) s.t. L=R
 \subset wassless deformations are obtained by applying
sym group with parameters objecting on x. There live is
 $\frac{SU(N_F)_L \times SU(N_F)_R}{SU(N_F)} \simeq SU(N_F)$
 \Rightarrow massless particles on parameterized by Identify with
 $ressons ?$
 $U(K) = e$

observed hundred of MESONS in Noture. Simple model of mesons views them as BOUND STATES of q q. Since querks have spin 1/2, MESONS hour integer spin (BosoNS). all pseudo-scolors (panty = -1) mosks \$\$ Mp \$\$ 938 Nev SPIN 0 : m (Mev) MESON quark content life time (sec) ud = (uu - da) = (uu + dd - 255) 140 135 548 358 108 PLON R[†] complex π° 10-16 PLON rul 10^{-15} 10^{-21} 10^{-8} $10^{-8} - 10^{-10}$ neal ETA η. $\sqrt{3}$ ($u\bar{u} + d\bar{d} + s\bar{s}$) ETA real us 494 angler KAON ds k° compkx 6 88 KAON why do these mesons arise? Why does this particular pattern of masses emerge ? -> explanation from ssb of drival sym. In fact these mesars can be rearrand in a 3x3 mothing \mathcal{K}^{+} \mathcal{K}° $\sqrt{2}\sqrt{3}$ $\overline{\mathcal{K}} = \begin{pmatrix}
\frac{1}{12}\pi^{\circ} + \frac{1}{16}\eta^{\circ} & \pi^{+} \\
\pi^{-} & -\frac{1}{15}\pi^{\circ} + \frac{1}{16}\eta^{\circ} \\
\overline{\mathcal{K}}^{-} & \overline{\mathcal{K}}^{\circ}
\end{cases}$

By embedding $U(1)_{1505PIN} \times U(1)_{5TRANGRESS}$ into $SU(3)_{V}$, these are identified with TC(X) above.

Chiral Lagrangian
The Unique
$$SU(3) \times SU(3)_R$$
 - invariant term in
He (pseudo) Goldstone boson Lagrangian (IR - effective Heary)
that is of second order in space-time derivatives is
 $L_{22} = \frac{1}{16} f_{\pi}^2 \operatorname{Tr} (\partial_{\mu} U \partial^{\mu} U^{\dagger})$ (*)
This is actually invariant under $SU(3)_L \times SU(3)_R$
and the vacuum breaks it to $SO(3)_L \times SU(3)_R$ (in fact,
 $det U = 1$ and $UU^{\dagger} = 1$ me up to $SU(3)_L \times SU(3)_R$ it is
He fly that breaks to $SU(3)_L$

- From (*) one obtains at quadratic order

$$-\frac{1}{2} \partial_{\mu} \pi^{0} \partial^{\mu} \pi^{0} - \partial_{\mu} \pi^{+} \partial^{n} \pi^{-} - \partial_{\mu} k^{+} \partial^{\mu} k^{-} - \partial_{\mu} k^{0} \partial^{\mu} k^{0} - \frac{1}{2} \partial_{\mu} \eta^{0} \partial^{\mu} h^{0}$$
- One obtains also interaction terms that goes like

$$-\frac{2}{4\pi^{2}} + r \left(\pi^{2} (\partial \pi)^{2} - (\pi \partial \pi)^{2} \right) + \dots$$

$$= \inf_{\pi^{2}} \frac{1}{4\pi^{2}} + \left(\pi^{2} (\partial \pi)^{2} - (\pi \partial \pi)^{2} \right) + \dots$$

$$= \inf_{\pi^{2}} \frac{1}{4\pi^{2}} + \frac{1}{4\pi^{2$$

Cuelents
We started with microscopic non-ob gauge theory
and got very different effective theory of law energy.
It is useful to know how operators in UV got anopped
to ops in IR. For a cuencours, thus map is any.
Jup = Jup + JRp = JAp - Jup - Jep
In UV: Jup - 4: Tij Yp 4: JAp - Tits Yp 8'4;
In IR:
consider infinitesimal transf. L = 4+ id T^{*}

$$\delta_1 U = -id^* T^* U = (U+T^*) + U = (2pU)^* TU)$$

 $compute current in standard may : d = a(x) = 2put Jup = Jup = \frac{1}{2} + \frac{1}{2}$