
INFORMATION
RETRIEVAL
Luca Manzoni 
lmanzoni@units.it

mailto:lmanzoni@units.it

AND SOME INFORMATION ABOUT THE COURSE

WHO AM I

Luca Manzoni

email: lmanzoni@units.it

office: C5, 2nd floor, room 3.20

Information retrieval & data visualisation

Luca Manzoni

November and (early) December

Tea Tušar 
(you already did it)

All the material of the course will be available online on Moodle and Teams

mailto:lmanzoni@units.it

BOOK

Freely available at: https://nlp.stanford.edu/IR-book/

Introduction to Information Retrieval

Christopher D. Manning 
Prabhakar Raghavan

Hinrich Schütze

Cambridge University Press. 2008.

https://nlp.stanford.edu/IR-book/

THE EXAM (1)

Project + presentation of the project (with questions)
How

When
Mid December and Mid January (we can discuss to fix a day). 

The projects will be assigned by the end of November

Is the project the same for everybody?
No, each student will have a different project

How can we select a project?
There will be a selection of project to choose from 

or you can propose your own

THE EXAM (2)

Code or report (approx. 10 pages)
What kind of project?

How is the final mark computed?
It is the average of the marks in the two parts

I want to do a project on X
We can discuss and prepare a personalised 

project on X

Can I use language X?
Generally yes, but please ask if it is not in the following list: 

Python, C, C++, Java, R, Julia, Common Lisp, Clojure, Haskell

INFORMATION RETRIEVAL PART

OUTLINE OF THE COURSE

• Introduction to information retrieval (IR)

• Data structures for IR

• Models for IR:

• Boolean

• Vector space

• Probabilistic

• Evaluation of IR

• IR on the Web

• Recommender Systems

Manning, Raghavan, Schütze

Introduction to Information Retrieval

Information Retrieval (IR) is 
f inding material (usually documents) 

of an unstructured nature (usually text)

that satisf ies an information need 

from within large collections 
(usually stored on computers)

Baeza-Yates, Ribeiro-Neto

Modern Information Retrieval

(IR) par t of computer science which studies 
the retr ieval of information (not data) 
from a collection of written documents. 

The retr ieved documents aim at satisfying 
a user information need  

usually expressed in natural language.

EXAMPLES OF INFORMATION RETRIEVAL

• Web search

• Searching emails in your email client

• Searching documents using  
Spotlight/Windows Desktop Search/Tracker/Nepomuk

• Search inside a knowledge base

BEFORE COMPUTERS

A BRIEF HISTORY OF IR

Sanderson, Mark, and W. Bruce Croft.  
"The history of information retrieval research." 
Proceedings of the IEEE 100.Special Centennial Issue (2012): 1444-1451.

The origin of IR is in the cataloguing of books in libraries

Each books has one or more topics 
associated to it

Multiple machines were invented 
to help librarians in retrieving books

MACHINE FOR RETRIEVAL BASED ON MICROFILM 
AND A PHOTOCELL. GOLDBERG, 1931

EARLY USE OF COMPUTERS

A BRIEF HISTORY OF IR

The use of computer allowed to speed up 
the traditional search methods, 
like searching across records 
in 15 hours using a UNIVAC computer

106

First move to indexing based on words 
instead of assigning topics to document 
(Uniterm system, 1952)

How to rank the results:  
position based on the frequency 
of the words in the documents

(term frequency weighting, 1958)

But new techniques were also 
being developed:

PRE-INTERNET (’60—EARLY ‘90)

A BRIEF HISTORY OF IR

Clustering of documents 
with similar contents

Representing documents as vectors: 
the vector space mode

First private companies focused 
on information retrieval

Relevance feedback: 
the user feedback can be used 
to improve the query results

tf-idf: less common words tend 
to refer to more specific concepts, 

which were more important in retrieval
Text REtrieval Conference (TREC)

WEB SEARCH

A BRIEF HISTORY OF IR

1993: ~100 websites

2019: ~2 billions websites

Instead of using an authoritative source 
now the web must be scraped to get information

The links between the pages 
are a source of additional information

Altavista: 
first fully-searchable  

index of the web (1995)

Google: 
currently the most used 

web search engine (1997)

SOME TERMINOLOGY

• Document: individual unit on which we build an IR system

• Books, chapters, webpages, scientific papers, etc.

• Images, videos, Music, etc.

• Collection (also called Corpus): the group of documents on which
we perform the search

• All Shakespeare plays, the emails in your mailbox, all the
products on an online shop, the web

• Some collections are static, while others are dynamic

DOCUMENTS AND COLLECTIONS

PROPERTIES OF UNSTRUCTURED DOCUMENTS

• Significant text contents

• Some structure might be
present (e.g., title, author)

• The semantics of the document
is not well-defined

• Example query:  
“find all stories about holidays
in Ireland”

• Predefined structure

• Usually the semantics of the
fields is well defined

• Finding matches is (usually)
done by comparing specific
fields

• Example Query: “select all
products that cost at most 50€”

DOCUMENT DATABASE RECORD

FROM INFORMATION NEED TO QUERIES

SOME TERMINOLOGY (2)

• Information need: a topic about which the user what to know
more

• Query: the way the user formulate his/her information need to the
IR system

• For the same information need the users might formulate
different queries

• E.g., what query would you use to know which is the current
record holder in Tetris?

GOAL OF AN IR SYSTEM

INFORMATION 
NEED

DOCUMENTSDOCUMENTS

INFORMATION SOURCE

IR SYSTEM

RELEVANT

DOCUMENTS

An IR System must interpret the information needs of the user 
and estimate the relevance of the documents with respect to it.

HINT: NO

IS AN IR SYSTEM JUST “GREP”?

> grep term_to_search corpus

DOCUMENTSDOCUMENTS
GREP

DOCUMENTS
CONTAINING

THE TERM

• Searching across all the text does not scale to large collections

• We might want a more flexible query language

• We might want ranked retrieval (i.e., more relevant documents first)

HOW TO AVOID GREPPING

INDEXING

• It is unfeasible to scan the entire corpus for each query…

• …therefore, the corpus is scanned once* and an index is built

• An index will have for each term (e.g., a word) all documents
containing that term

• In this way we can avoid a linear scan of all documents

*assuming it never changes

STRUCTURE OF AN IR SYSTEM

INDEXING

INFORMATION 
NEED

QUERY

MATCHING
MECHANISM

ANSWER TO
THE QUERY

QUERY
REPRESENTATION

DOCUMENTS

FORMAL 
DOCUMENTS 

REPRESENTATION

OFFLINE

MAIN COMPONENTS

A FORMAL REPRESENTATION 
OF THE QUERIES

A FORMAL REPRESENTATION
OF THE DOCUMENTS

A WAY OF MATCHING  
THE QUERY AND DOCUMENTS REPRESENTATIONS 

AND A WAY TO MEASURE RELEVANCE

Exact matching

The document is either 
relevant or not relevant

Partial matching

The document that are 

“sufficiently similar” 
to the query are recovered

QUERIES AND DOCUMENTS

DIFFERENT KINDS OF REPRESENTATIONS

BOOLEAN
FORMULAE

FREE FORM QUERIES

+ EXTENSIONS
SET OF TERMS

POINT IN 
A VECTOR SPACE

BINARY VECTOR

Query Document

cat AND dogs

common house pets

From https://flickr.com/photos/12836528@N00/3350737685

IMAGES

THE TWO ASPECTS OF IR

We need to manage technical and a semantic aspects

Technical aspects Semantic aspects

• How to represent information 
in a computer?

• How to retrieve the information 
fast enough?

• How can we store information in a 
way that preserves its meaning?

• How can we retrieve the relevant 
documents?

EFFICIENCY EFFECTIVENESS

MEASURING EFFECTIVENESS

RELEVANT

DOCUMENTS

NON RELEVANT

DOCUMENTS

Retrieved documents

precision =
relevant ∩ retrieved

retrieved

recall =
relevant ∩ retrieved

relevant

Which fraction 
of the retrieved documents 

is relevant

Which fraction 
of the relevant documents 

has been retrieved

BOOLEAN
RETRIEVAL

WHAT IS BOOLEAN RETRIEVAL?

• Only exact matching: either a document is relevant or not

• The query is expressed like a Boolean formula:

• E.g., (dog OR cat) AND box

• We can ask for the inclusion (or exclusion) of certain terms

• Going forward, we can decide to extend this model to allow more
powerful queries

• For now we ignore the issue of ranking the results according to
relevance.

BOOLEAN QUERIES AND SETS

A VISUAL EXAMPLE

DOCUMENTS  
 

 

DOCUMENTS  
 

 

DOCUMENTS  
 

 

Information AND retrieval

Information AND retrieval 
AND NOT cat

LINKING BOOLEAN QUERIES AND SETS

d1 = {t1, t3, t4}

d2 = {t1, t2, t5}

d2 = {t2, t3, t5}

Documents 
as sets of terms

t1 = {d1, d2}
t2 = {d2, d3}
t3 = {d1, d3}
t4 = {d1}
t5 = {d2, d3}

Terms as sets 
of documents

q1 = t2

q2 = t2 ∧ t3

q3 = t2 ∨ t3

{d2, d3}

{d2, d3} ∩ {d1, d3} = {d3}

{d2, d3} ∪ {d1, d3} = {d1, d2, d3}

Queries Answers

HOW TO ASSOCIATE DOCUMENTS AND TERMS

THE ALLIES AFTER NASSAU IN DECEMBER 1960, THE U.S . FIRST […]

RUSSIA WHO'S IN CHARGE HERE ? IT WAS IN 1954 THAT NIKITA […]

BERLIN ONE LAST RUN HANS WEIDNER HAD BEEN HOPING FOR MONTHS TO […]

THE ROAD TO JAIL IS PAVED WITH NONOBJECTIVE ART SINCE THE […]

Let us consider as a corpus a set of ~400 articles from “Time”1 in the ‘60s:

…

0.

1.

2.

3.

…

We can build an incidence matrix of documents and terms

1 Available at http://ir.dcs.gla.ac.uk/resources/test_collections/time/

http://ir.dcs.gla.ac.uk/resources/test_collections/time/

THE INCIDENCE MATRIX

Article 0 Article 1 Article 2 Article 3 Article 4 Article 5

A 1 1 1 1 1 1

AACHEN 0 0 0 0 0 0

ABABA 0 0 0 0 0 0

ABABAS 0 0 0 0 0 0

ABACK 0 0 0 0 0 0

ABADAN 0 0 0 0 0 0

ABANDON 0 0 0 0 0 0

ABANDONED 0 0 0 0 0 0

ABANDONING 0 0 0 0 0 0

ABANDONMENT 0 0 0 0 0 0

…and another 22484 rows

STORAGE REQUIREMENTS

INCIDENCE MATRIX

The size needed to store an incidence matrix is #terms × #documents

Hence the size requirements make this data structure impractical

The Oxford English Dictionary has over words in common use171000

In 2019 the English Wikipedia contains over articles5.9 × 106

The resulting incidence matrix would have more than entries1012

A simple example

QUERIES

Query 1 = FRANCE AND BRITAIN

FRANCE 1 0 0 0 0 0 0 0 1
BRITAIN 1 0 0 0 0 0 1 0 1

Query 2 = FRANCE OR BRITAIN

Document matching Query 1

Documents matching Query 2

Query 1 1 0 0 0 0 0 0 0 1

FRANCE 1 0 0 0 0 0 0 0 1
BRITAIN 1 0 0 0 0 0 1 0 1

Query 1 1 0 0 0 0 0 1 0 1

A MORE COMPACT DATA STRUCTURE

THE INVERTED INDEX

• We want to avoid storing rows that will be mostly empty

• We store, for each term, the list of documents containing it

• This is similar to the difference between adjacency matrices and
and adjacency lists for graphs.

• We keep the list ordered to improve performances for union and
intersection

• Why inverted index? Because it is not from documents to terms
but from terms to documents. Apart from that, it is a “normal”
index

A VISUAL REPRESENTATION

THE INVERTED INDEX

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

0

250

167

229

23

119

22

70

261

359

List of terms

Ordered list of 
documents containing the term

1 2

226 229

326 353

271 284

187 192

THIS TIME FOR INVERTED INDICES

SOME TERMINOLOGY (3)

• DocID (Document Identifier): a unique number associated to a
document. E.g., consecutive integers.

• Dictionary: the collection of all terms that we have in the inverted
index

• Posting list: list of DocIDs associated to a term

• Posting: element of the list (different from a simple DocID
because it is associated to a term)

SORTING AND GROUPING

BUILDING AN INVERTED INDEX

• For each document we extract the sequence of terms

• We tag each term with the corresponding DocID

• We sort the list of terms extracted from all the documents

• We group together equal terms and we “merge” the posting lists
of the two terms

EXAMPLE OF SORTING AND GROUPING

Document 1: the cat is inside the box
Document 2: the dog is barking at the box

the 1
cat 1

is 1

inside 1

the 1

box 1

the 2

dog 2

is 2

barking 2

at 2

the 2

box 2

at 2
barking 2

box 1

box 2

cat 1

dog 2

inside 1

is 1

is 2

the 1

the 1

the 2

the 2

at 2
barking 2

box 1,2

cat 1

dog 2

inside 1

is 1,2

the 1,2

WORST-CASE BOUNDS AND THE REAL WORLD

WHAT ABOUT THE SPACE REQUIREMENTS?

• But… the space occupied by an inverted index is not necessarily
lower than the one of the incidence matrix.

• In the worst case (each document contains all the terms) they both
occupy space.

• In practice most document contains only a small subset of the
terms.

• The same reasoning applies to the time complexity of the
operations (intersection and union) performed on the set of
documents.

O (#terms × #documents)

INVERTED INDEX:  
UNION AND INTERSECTION

BASIC IMPLEMENTATION AND OTHER IMPROVEMENTS

HOW TO IMPLEMENT AN INVERTED INDEX

• We will spend some time in discussing how to implement and
improve the inverted index

• Basic functionality: answer queries of the form

• term1 AND term2

• term1 OR term2

• Additional functionalities: 
term1 NEAR term2, “term1 term2”, term1* (wildcards), etc.

• How to compress the index, how to update it, etc.

A SINGLE WORD QUERY

ANSWERING A SIMPLE QUERY

QUERY

ABANDONED

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

0

250

167

229

23

119

22

70

261

359

1 2

226 229

326 353

271 284

187 192
We find the term 
in the list of terms

We return the 
associated list of terms

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER

Now we need to compare the two lists of documents

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 8

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 8

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 8

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 8 12

NOW WITH TWO WORDS

ANSWERING AN “AND” QUERY

QUERY FRANCE AND BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 8 12

Complexity: linear in the lengths of the lists

Size of the answer ≤ minimum of the lengths of the lists

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER

We still need to compare the two lists of documents

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6 8

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6 8

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6 8 10

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6 8 10

WITHOUT DUPLICATES!

ANSWERING A “OR” QUERY

QUERY FRANCE OR BRITAIN

FRANCE

BRITAIN

0

0

8 12

6 8

22

10 12 19

25 26

ANSWER 0 6 8 10 12

Complexity: linear in the lengths of the lists

Size of the answer ≤ sum of the lengths of the lists

HINT: NO

IS THAT ALL?

A 0 1 2

Some terms are not useful: “A” is in all the documents!

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

Some terms are very similar semantically.

Example 
Do we really want to keep “CAR” and “CARS” separated?

IMPROVING THE QUALITY OF RETRIEVAL

THIS TIME FOR TOKENIZATION

TERMINOLOGY (4)

• Token: instance of a sequence of characters

• Type: collection of all tokens with the same character sequence

• Term: a type that is inserted into the dictionary

THE CAT IS INSIDE THE BOX Text

THE CAT IS INSIDE THE BOX Tokens

THE CAT IS INSIDE BOX Types (notice only one instance of “the”)

CAT INSIDE BOX Terms (after removal of common words)

SPLITTING THE TEXT IN WORDS

TOKENIZATION

• First step in the indexing process is to decide what is the
granularity of the indexing (i.e., return chapters or paragraphs
instead of entire books).

• The second step is to split a text sequence into tokens.

• In some cases deciding where to split the text sequence is
simple…

• …but in many others it is not, even in English.

• For others languages it might not even be clear where a word
ends and the next one starts.

EXAMPLES OF PROBLEMATIC TOKENIZATION

Text Possible tokenizations

New York [New] [York]

File-system [File] [system], [File-system]

555-1234 567 [555] [1234] [567], [555-1234] [567], [555-1234 567]

Upper case [Upper] [case]

Uppercase [Uppercase]

O’Hara [O] [Hara], [O’Hara]

Aren’t [Aren][t], [Aren’t]

Possible (partial) solutions:

• use the same tokeniser for the documents and the queries

• use a collection of heuristics to decide where to split words

DROPPING COMMON TERMS

STOP WORDS

A 0 1 2

Some terms are not useful: “A” is in all the documents!

As anticipated before:

• Stop words: common words that do not help in selecting 
a document. They are discarded from the indexing and 
querying processes

• Stop list: list of stop words. Specific for a language/corpus. 
Usually consists of the most frequent words, curated for 
their semantic.

FREQUENCIES OF WORDS IN A CORPUS

DISTRIBUTION OF WORDS

Data extracted from the “Time” dataset

Stop words are usually located here

AND STOP WORDS FOR SPECIFIC TOPICS

STOP WORDS FOR THE ENGLISH LANGUAGE

• You can find multiple lists of stop words for the English language.
They usually include words like:

• a, about, above, after, again…

• … the, their, theirs, … , your, yours, yourself, yourselves.

• The list of stop words is language specific: stop words in Italian
are different (additional challenge: you might need to infer the
language of a document).

• Stop lists can be specific by topic. E.g., in a “books on cats”
corpus, the word “cat” might be a stop word.

SOMETIMES STOP WORDS ARE USEFUL

PROBLEMS WITH STOP WORDS

• You now have a IR system that removes all stop words.

• You receive the queries:

• To be or not to be

• Dr Who

• Do it yourself

• Let it be

• Removing stop words can reduce the recall.

SOMETIMES STOP WORDS ARE USEFUL

PROBLEMS WITH STOP WORDS

• A single stop word alone can usually be removed…

• …but in a phrase search it might be important

• The trend is to have small (7-12 terms) or no stop word list but:

• Use compression techniques to reduce the storage
requirements

• Use weighting to limit the impact of stop words

• Use specific algorithms to limit the runtime impact of stop
words

REMOVING SUPERFICIAL DIFFERENCES

NORMALIZATION

• The same word can be written in different ways and it must be
normalized to allow the matching to occur.

• The idea is to define equivalence classes of terms, for example:

• By ignoring capitalization (e.g., “HOME”, “home”, “HoMe”).

• By removing accents and diacritics (e.g., cliché is considered the
same as cliche).

• Other normalization steps specific to the language, like ignoring
spelling differences (e.g., “colors” vs “colours”).

AN ALTERNATIVE TO EQUIVALENCE CLASSES

RELATIONS BETWEEN UNNORMALIZED TOKENS

Sometimes capitalization and other features are important

This can be solved by saving (possibly asymmetric) relations between token

windows (can mean both the object and the OS) Windows (the OS)

Query Term Equivalent terms

Windows Windows

windows Windows, windows, window

window windows, window

REDUCE WORDS TO A COMMON BASE FORM

STEMMING AND LEMMATIZATION

IS

ARE

WAS

WERE

BE

Idea 
reduce all variants of a word 
to a “common root”

Two main ways: stemming and lemmatization

Based on heuristics Uses a vocabulary and 
morphological analysis

MOST USED STEMMER FOR THE ENGLISH LANGUAGE

PORTER STEMMER

Porter Stemmer implementations: https://tartarus.org/martin/PorterStemmer/ 
(or you can read the original paper and the BCLP implementation)

Invented in 1979 (published 1980) by Martin Porter, 
it is one of the most common stemmers for the English language

Five stages applied sequentially.

Each stage consists of a series of rewriting rules for words, 
an example is given here

Rule

SSES → SS caressess → caress

IES → I poinies → poni

SS → SS caress → caress

S → cats → cat

https://tartarus.org/martin/PorterStemmer/

THE “PREPROCESSING” PIPELINE

NORMALIZATION

STOP WORDS
REMOVAL

STEMMING

DOCUMENTS

INDEXING

There are multiple steps,

this a possible way 
of combining them

Additional steps might be present 
and not all steps are mandatory

(e.g., if no stop list is present)

