AG 3 - fourth assignment

Valentina Beorchia

November 13, 2022

- 1. Prove that the homogeneous coordinate ring $S(X) = \frac{\mathbb{K}[x_0,...,x_n]}{I_H(X)}$ is not invariant under isomorphisms of projective varieties.
- 2. Let *X*, *Y* be irreducible topological spaces. Assume $X \times Y$ has a topology for which the inclusions

and

 $j_p: Y \to X \times Y, \quad b \to (p, b),$

$$i_q: X \to X \times Y, \quad a \to (a,q),$$

are continuous for all $p \in X$ and for all $q \in Y$. Prove that $X \times Y$ is irreducible.

3. Let $\mathbb{K} = \overline{\mathbb{K}}$. Show that $\mathbb{A}^1_{\mathbb{K}} \setminus \{\text{point}\}\ \text{is not isomorphic to a projective variety.}$ Similarly, prove that $\mathbb{P}^1_{\mathbb{K}} \setminus \{\text{point}\}\ \text{is not isomorphic to a projective variety.}$