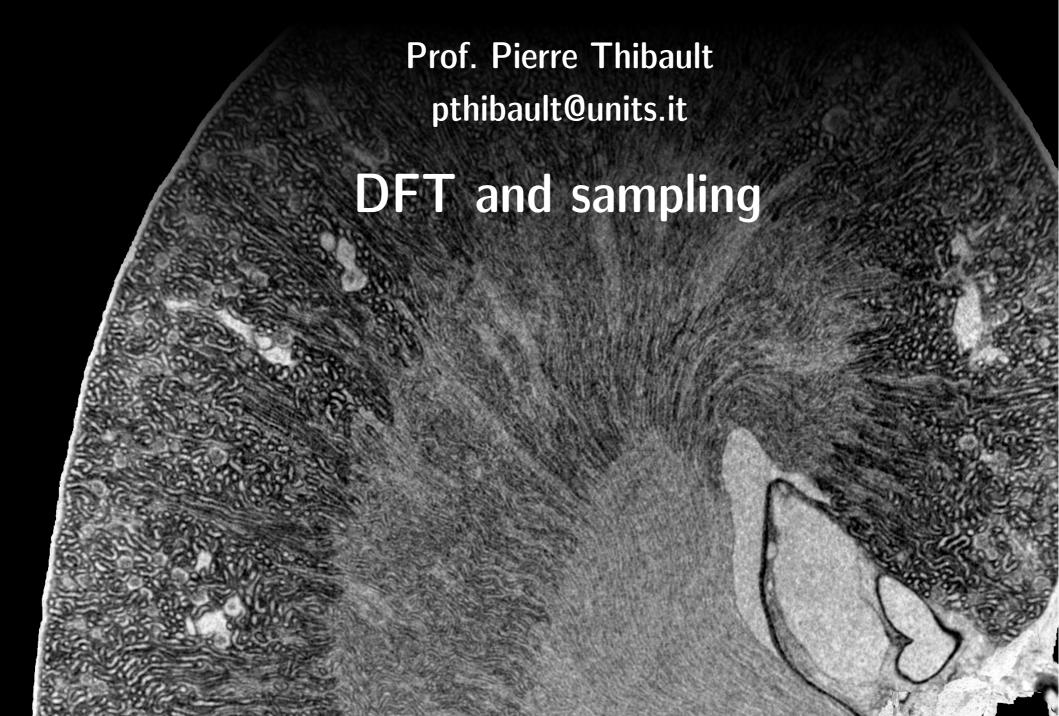
Image Processing for Physicists



Overview

- Discrete Fourier transform
 - Nyquist theorem
 - Undersampling and Aliasing
- Interpolation (resampling)

Reminder: Dirac distribution

"sifting" property

Selects "value of f
at position X.

$$\int_{-\infty}^{\infty} f(x) \, \delta(x-x_o) \, dx = f(x_o)$$

normalization

relation to Fourier transforms

$$\int_{-\infty}^{\infty} \left\{ 1 \right\} = \begin{cases} -2\pi i u \times \\ e = \delta(x) \end{cases}$$

Periodic signals

fa): Periodic function with period P

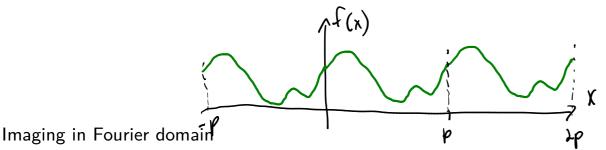
$$f(x) = f'\{F\} = \int_{-\infty}^{\infty} F(u)e$$

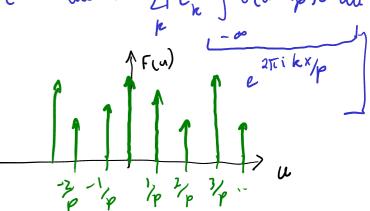
but also:

$$f(x) = \sum_{k=-\infty}^{\infty} C_k e^{2\pi i kx/p}$$
 = fourier series discrete variable

$$F(w) = \sum_{k=-\infty}^{\infty} c_k \delta(u-k/p)$$

[because.
$$\int_{-\infty}^{\infty} F(u) e^{2\pi i u x} du = \int_{-\infty}^{\infty} \int_{k}^{\infty} C_{k} \delta(u-\frac{k}{p}) e^{2\pi i u x} du = \int_{k}^{\infty} \int_{k}^{\infty} \int_{-\infty}^{\infty} \delta(u-\frac{k}{p}) e^{2\pi i u x}$$

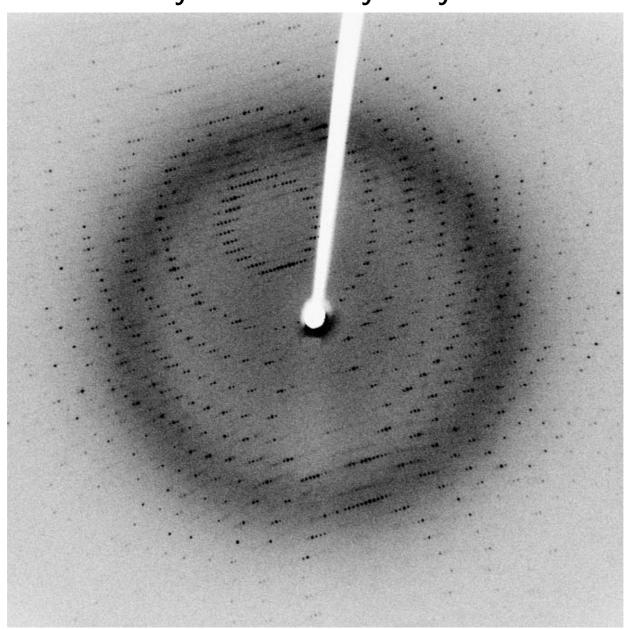




Fourier synthesis

Periodic signals

X-ray diffraction by a crystal



Brago !

peaks

Dirac datas

Dirac Ly

coursed Ly

periodicity

The Dirac comb

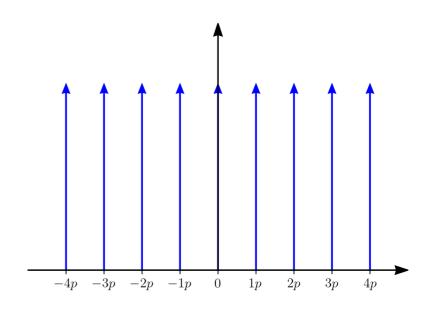
A periodic function made of Dirac functions

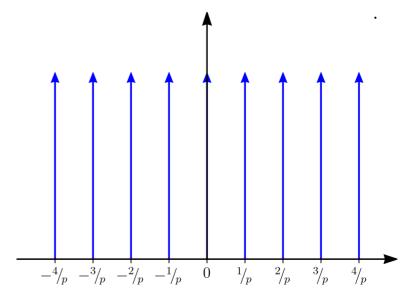
$$\Delta_{p}(x) = \sum_{n=-\infty}^{\infty} \delta(x-np)$$

$$\Delta_{\frac{1}{p}}(u) = \sum_{k=-\infty}^{\infty} \delta(u - \frac{1}{p})$$

$$\int_{\Gamma} \left\{ D_{\rho}(x) \right\} = \int_{\Gamma} D_{+}(u)$$

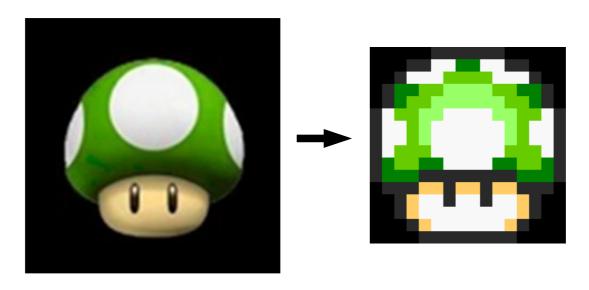
Fourier transform of a Dirac comb

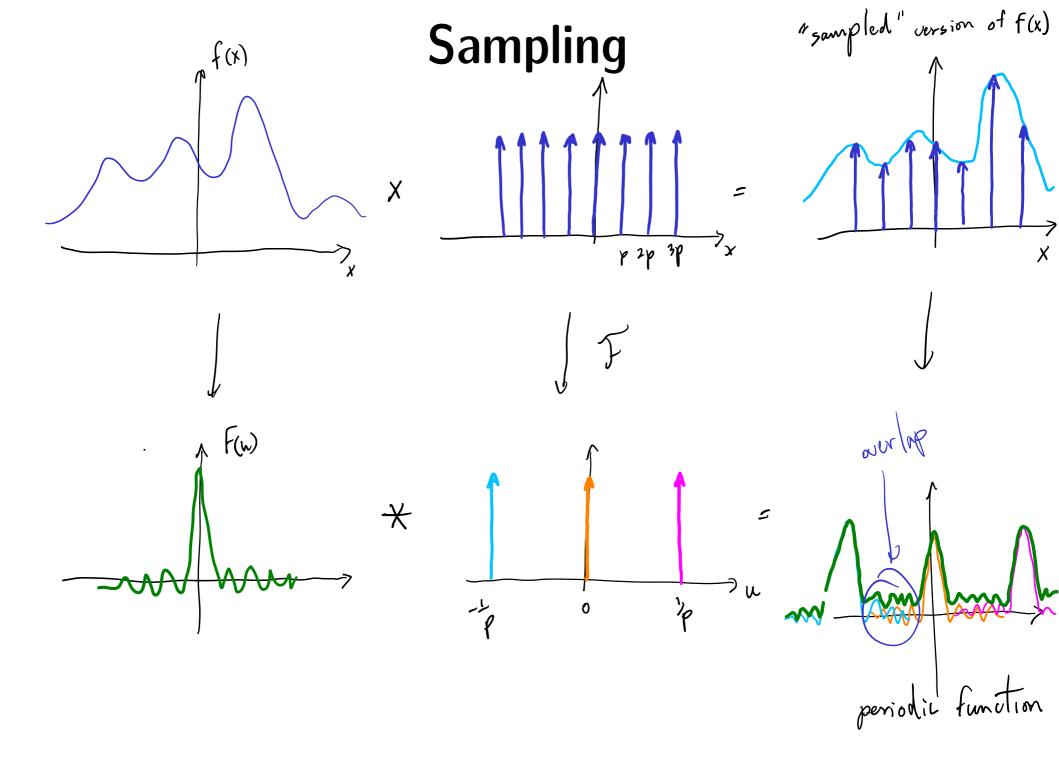




The discrete Fourier transform

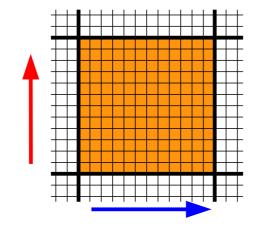
- additional ingredients needed:
 - sampling in space
 - finite field of view in space
 - sampling in frequency domain
 - finite frequency band
- discrete approximation of some continuous function

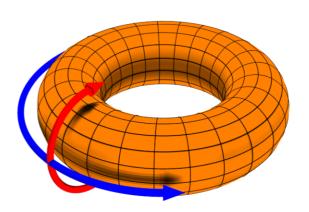




Discrete Fourier Transform

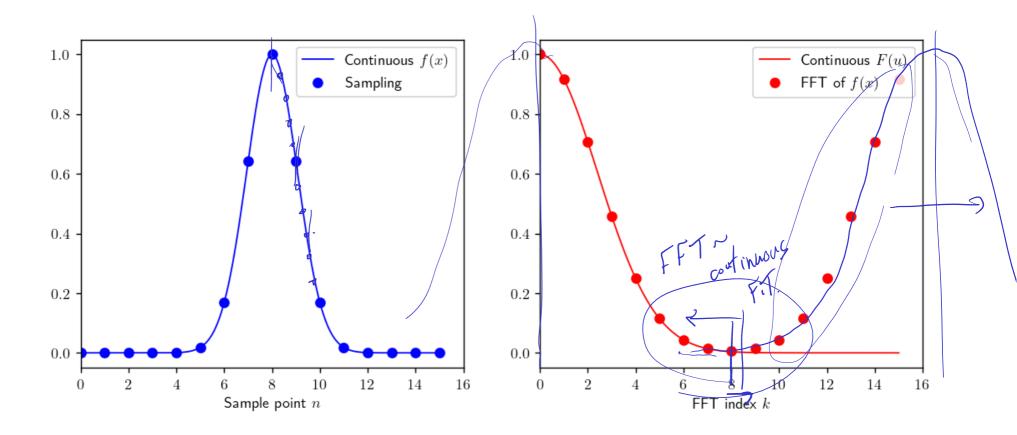
- A periodic function has a discrete spectrum in the Fourier domain;
- A function with discrete values in the spatial domain is periodic in the Fourier domain;
 - ⇒ A periodic and discrete function has a periodic and discrete Fourier transform.





DFT example

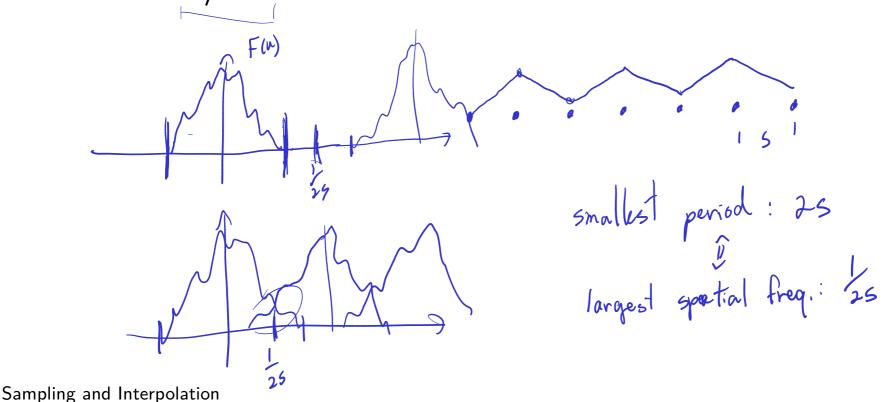
• Example: relation between space, sampling and frequency



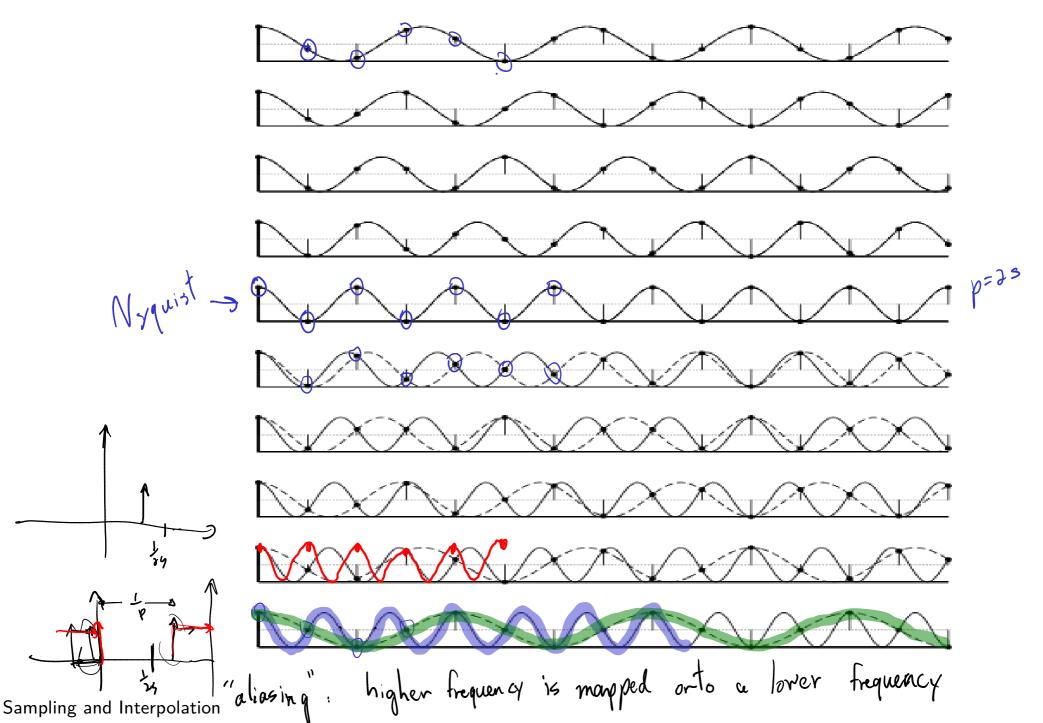
zero frequency component is in the top left corner output array.

The Nyquist-Shannon sampling theorem

"The largest frequency that can be represented in a signal sampled at intervals s is 1/2s"



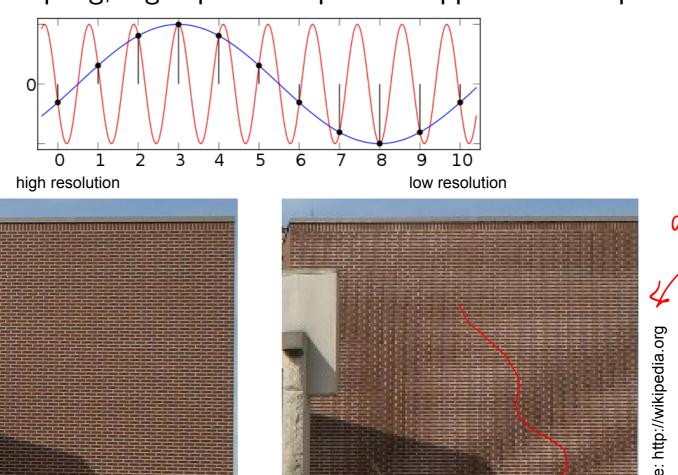
Undersampling and aliasing



Aliasing

Moiré: after resampling, high spatial frequencies appear as low spatial

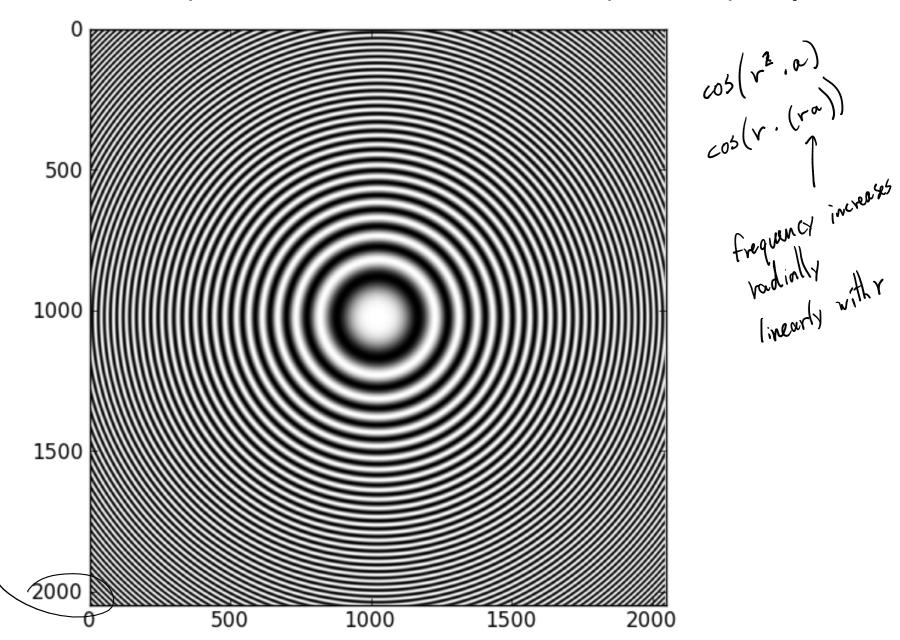
frequencies



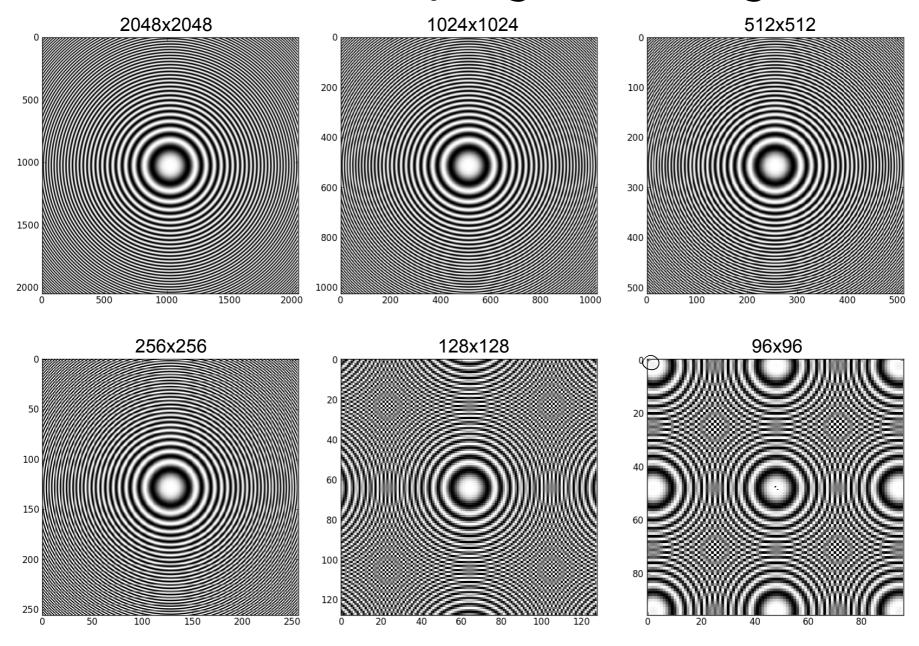
source: http://wikipedia.org

Undersampling

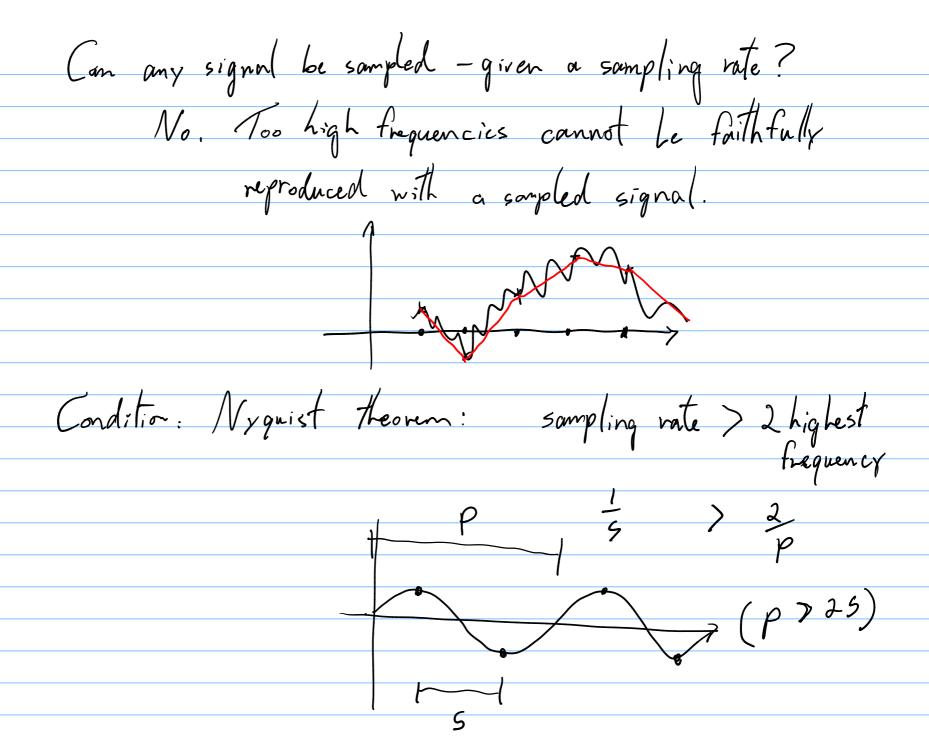
"Fresnel zone" test pattern: radial linear increase in spatial frequency

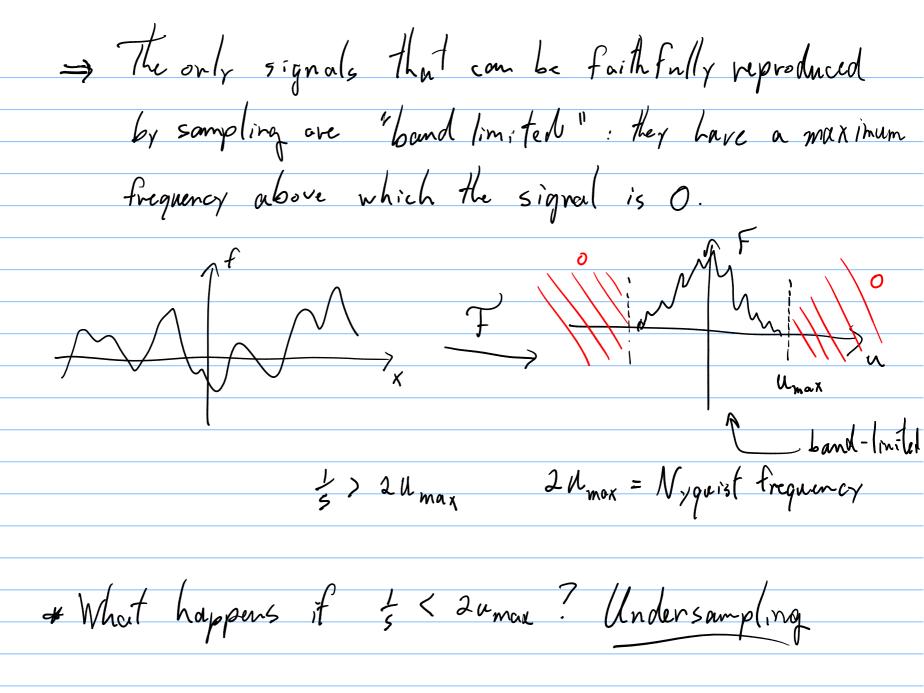


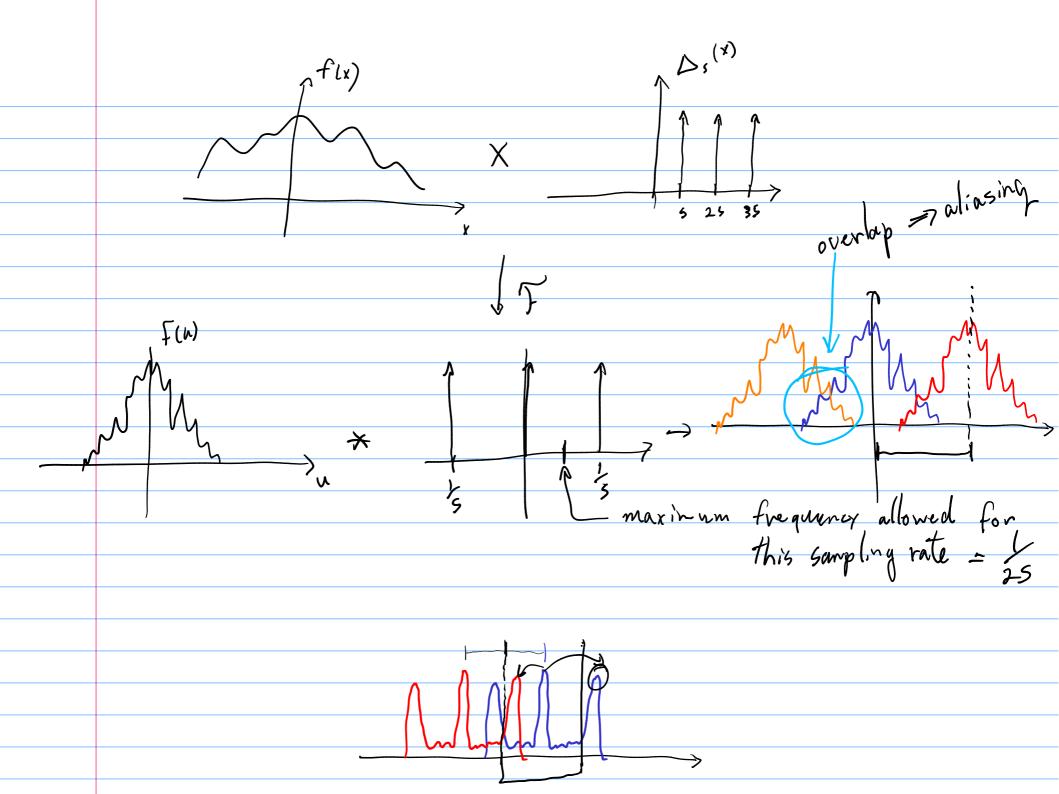
Undersampling & aliasing



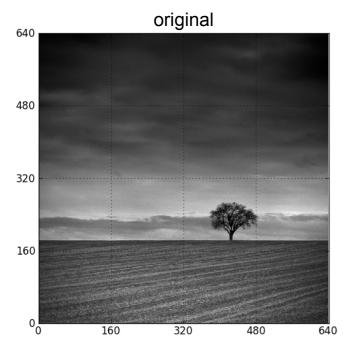
Sampling-summary * what is sampling? The approximation of a signal (function) with a discrete set of values. f(x) \longrightarrow $f = f(x_n)$ { f_n } samples of f { x_n } sampling positions Most often {x, 3 is on a regular grid. sompling is an unavoidable step in all data acquisition almost







Fourier space translation



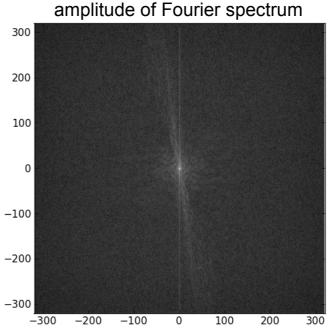


Image shifting using shifting property of FT

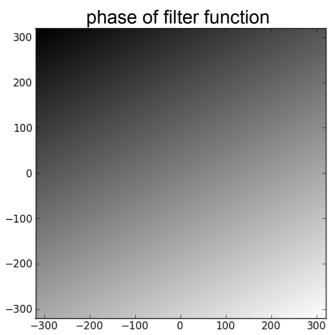
$$f(x+x_0)$$

$$\int_{-2\pi i} x_0 u$$

$$f(u) e$$

$$\int_{-2\pi i} f(\vec{r}+\vec{r}_0)^2$$

$$\int_{-2\pi i} f(\vec{u}) e$$



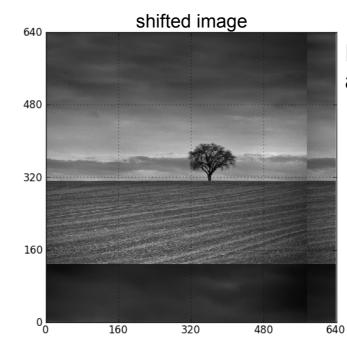
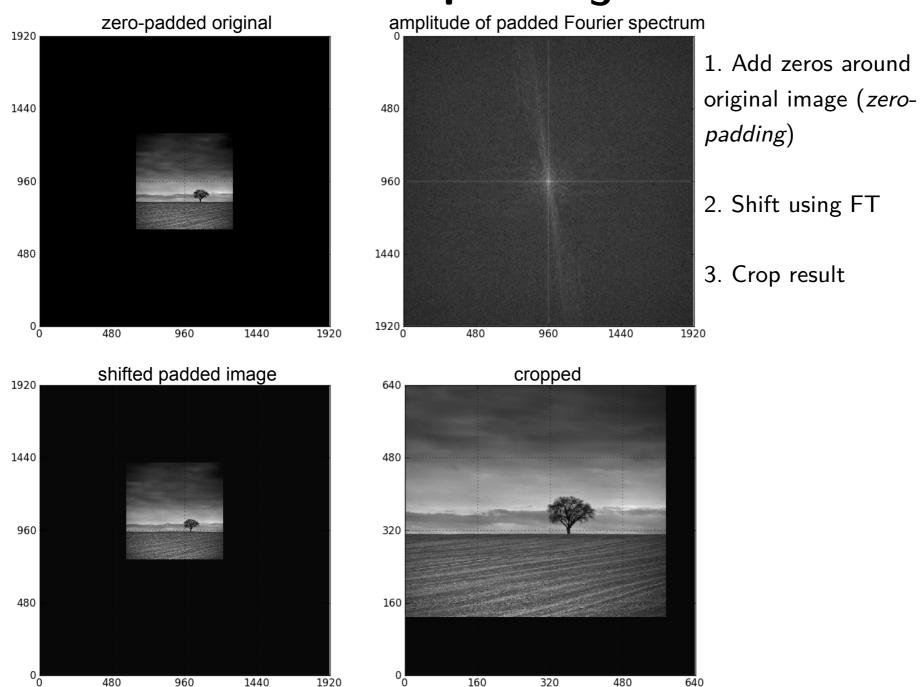


Image gets wrapped around

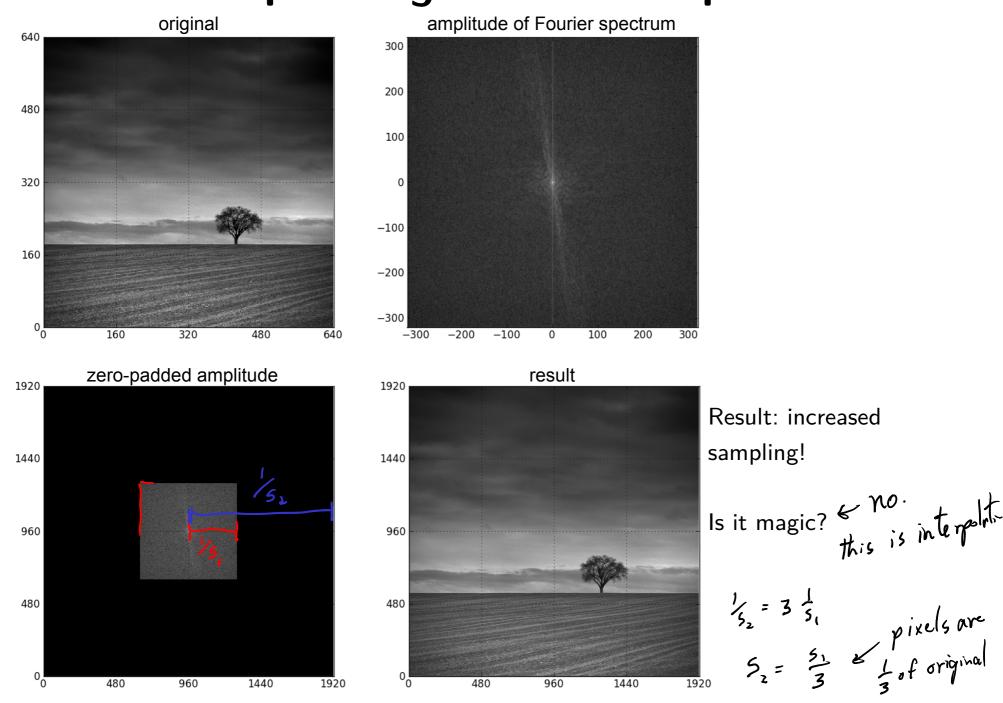
Sampling and Interpolation

Zero-padding



Sampling and Interpolation

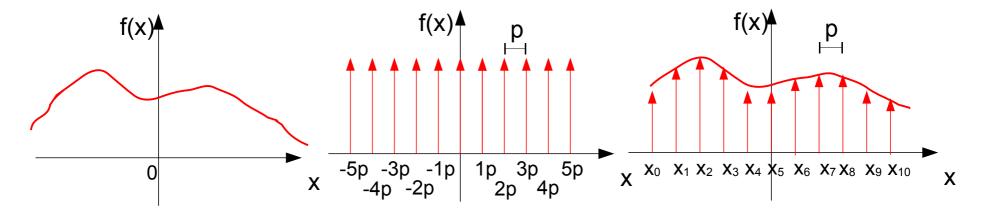
Zero-padding in Fourier space



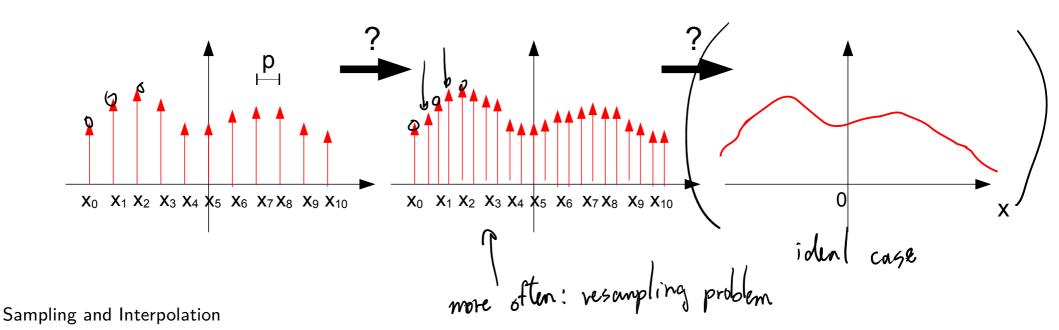
Sampling and Interpolation

Interpolation

Discrete sampling of a continuous function



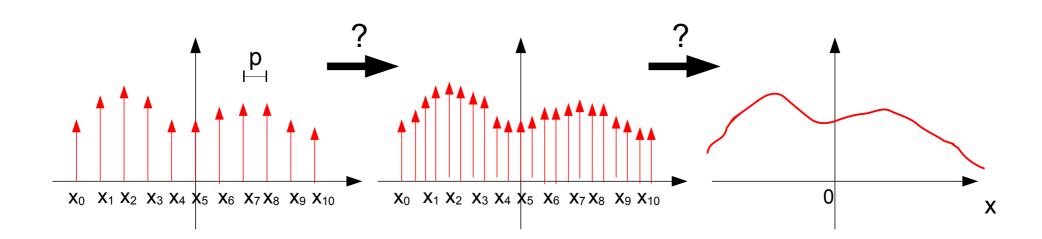
Reconstruct original function from sampled data?



Interpolation

Finding unknown points between known ones

- wide field, many different approaches
- closely related to approximation theory and curve fitting



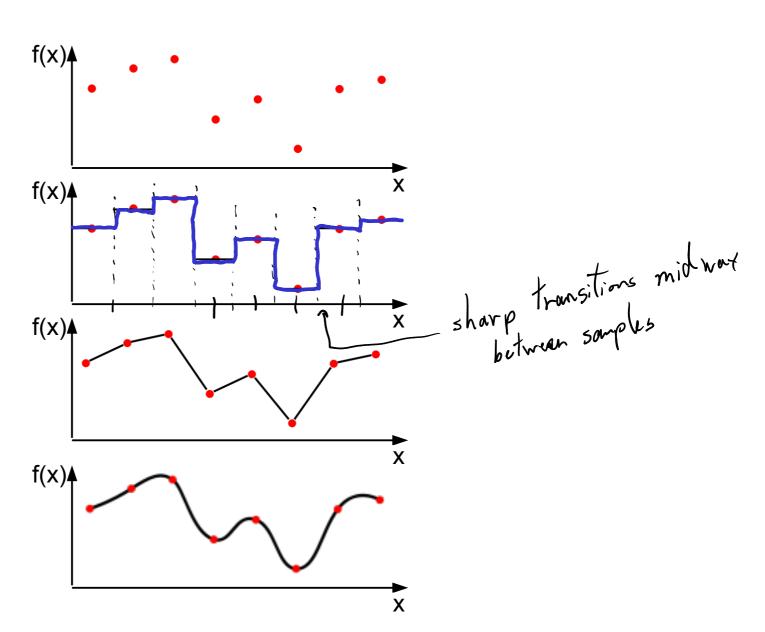
Interpolation

Various "classical" interpolation methods available

nearest neighbor

linear

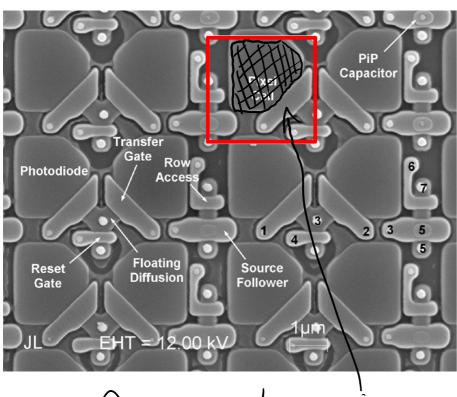
cubic spline



Pixels

- distinguish between detector pixels, image pixels and screen pixels
 - detector pixels are rarely square
 - image pixels are commonly, but not necessarily square

- screen pixels are rarely square



Detector pixel

region sensitive to light

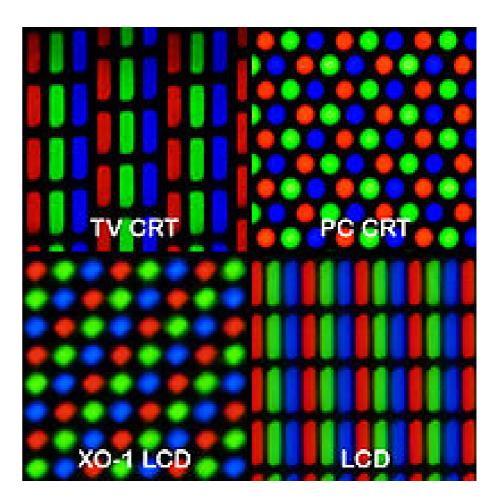
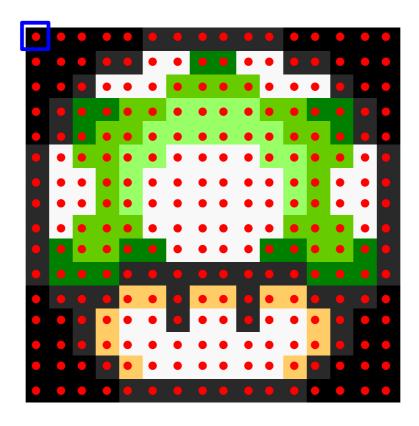


Image pixels

Images are discrete samples of a continuous function

- ...with coordinates
- ...and values (voltage at coordinate, integral over pixel area, ...)
- ...represented by <u>pixel basis functions</u> on a <u>sampling grid</u>



Linear interpolation

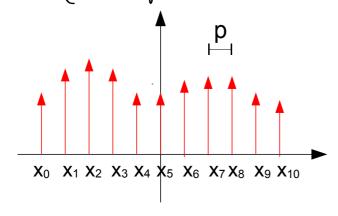
Interpolation as an operator

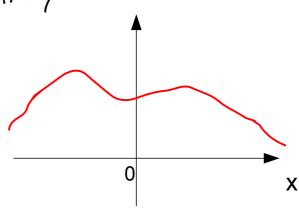
$$f(x) = \int_{-\infty}^{\infty} \{f_n\}$$

• Linear interpolation operator

Shift invariance

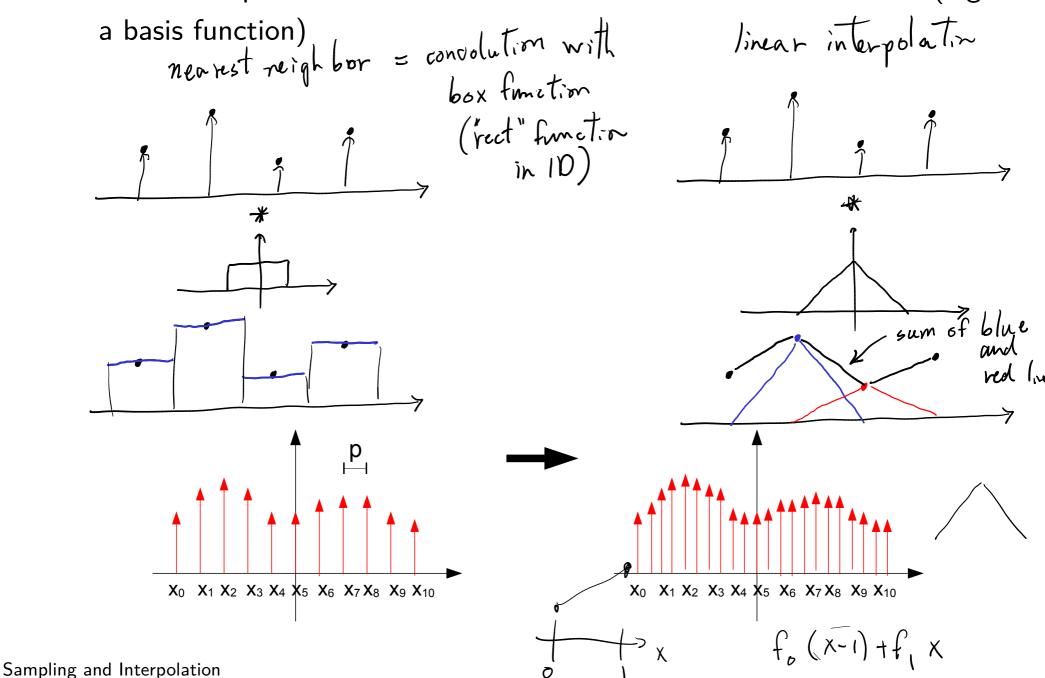
· Kernel (interpolation seen as a convolution)



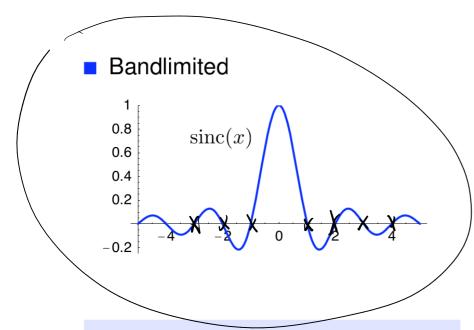


Linear interpolation

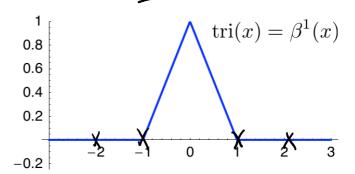
• Linear interpolation can be written as a convolution with a kernel (e.g.



Linear interpolation



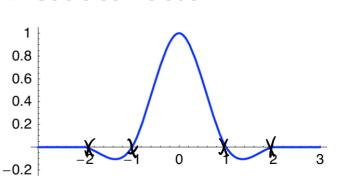
Piecewise linear



Interpolation condition:

$$\varphi_{\mathrm{int}}(k) = \delta_k = \begin{cases} 1, & k = 0 \\ 0, & \text{otherwise} \end{cases}$$

Cubic convolution

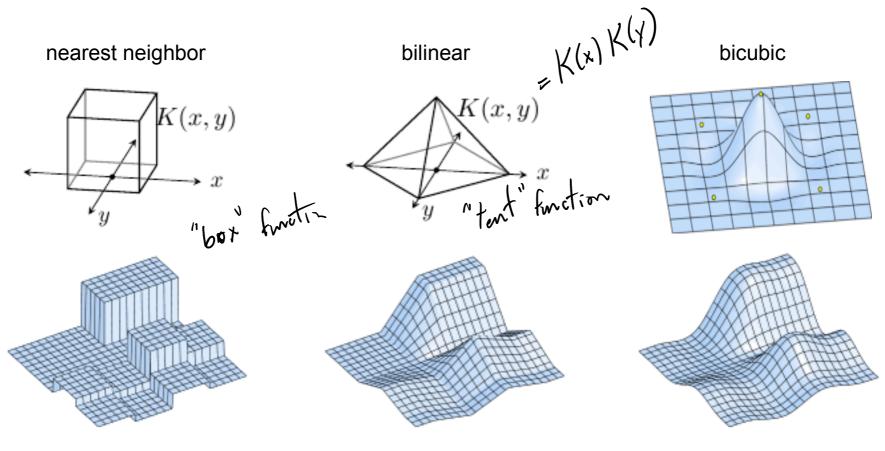


[Keys, 1981; Karup-King 1899]

Interpolation via convolution

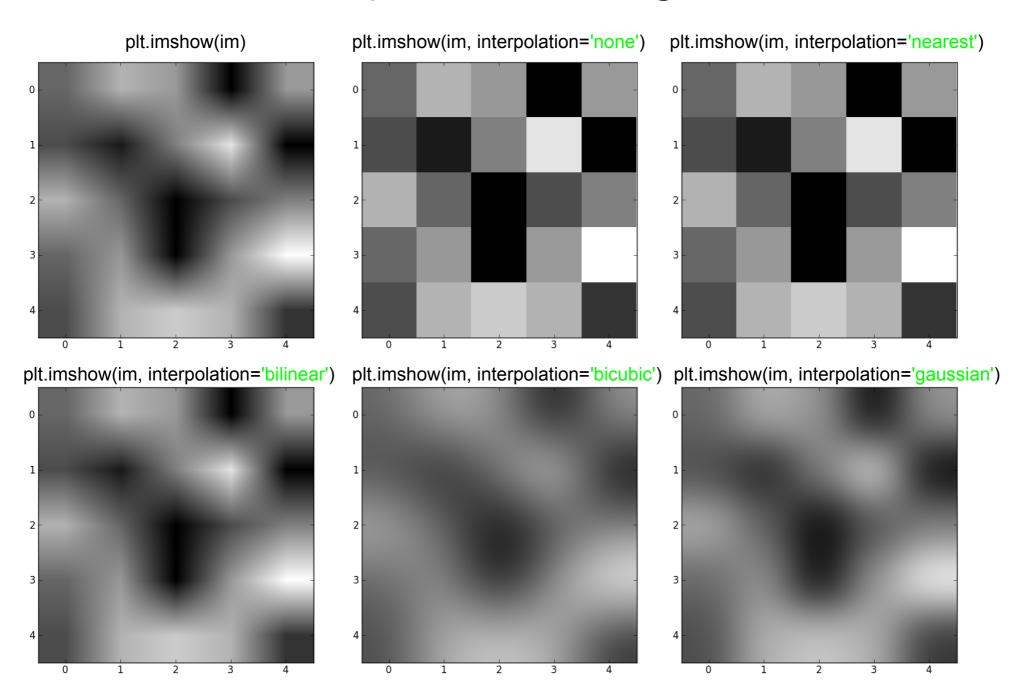
2D interpolation

Make 2D interpolation linear in each variable



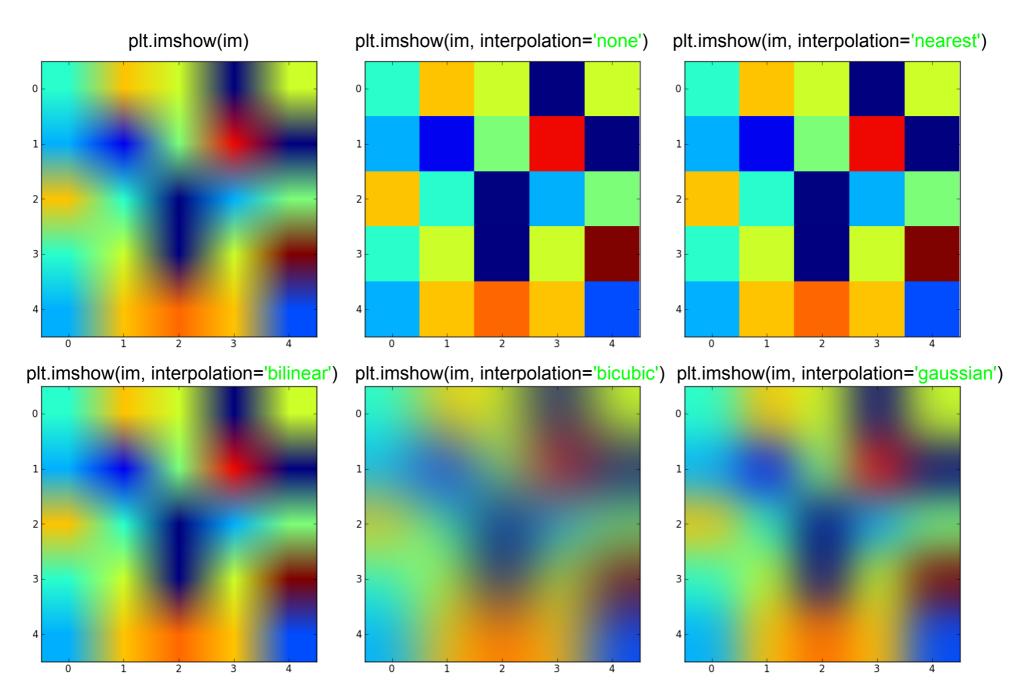
source: http://www.ipol.im/pub/art/2011/g lmii/

Python plotting



Sampling and Interpolation

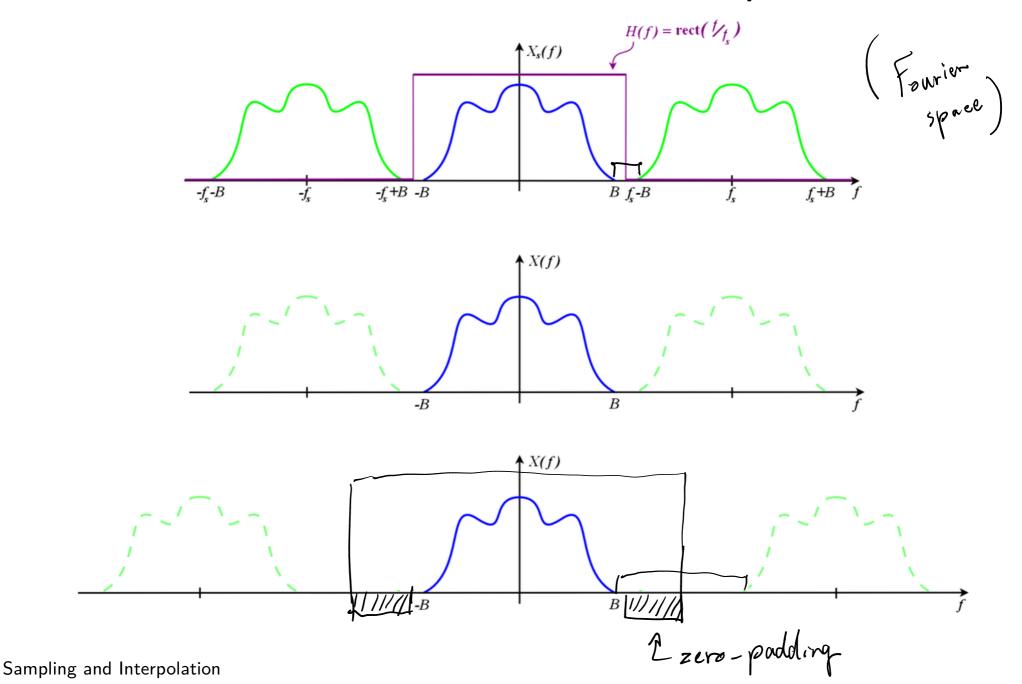
Python plotting



Sampling and Interpolation

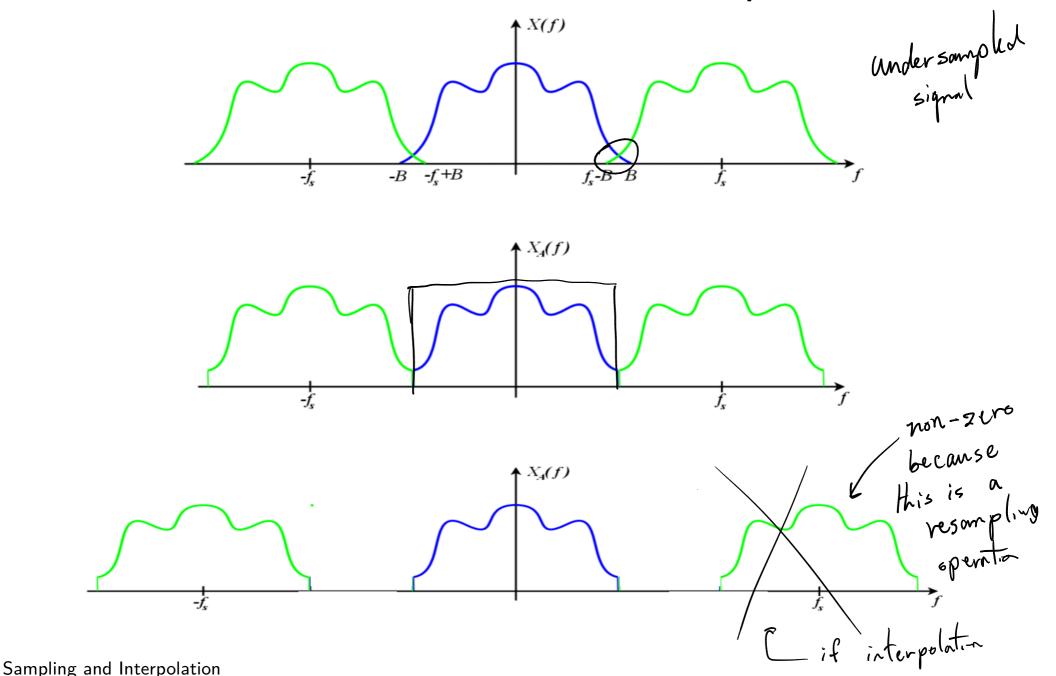
Sinc interpolation and zero-padding

Also known as "Whittaker-Shannon interpolation"



Sinc interpolation and zero-padding

Also known as "Whittaker-Shannon interpolation"



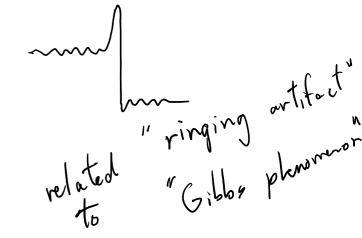
Reconstruction from samples

Sinc interpolation can perfectly reconstruct a function from its samples if

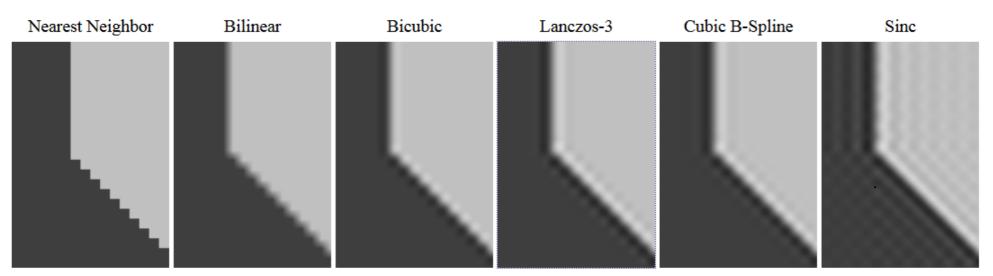
- sampled at a rate higher than Nyquist rate

- bandlimited up to Nyquist frequency

- no aliasing



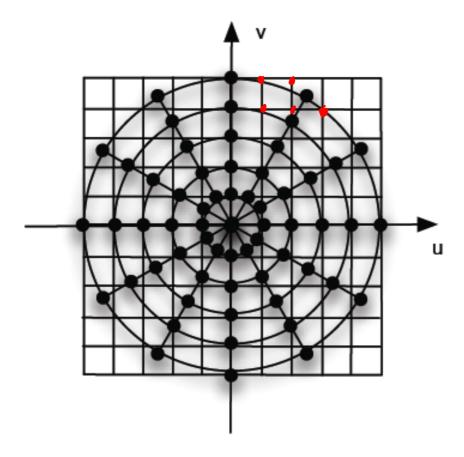
 Sinc interpolation introduces ringing otherwise, due to leakage of aliased frequencies



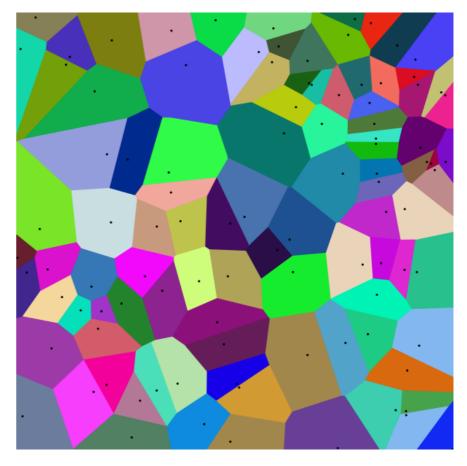
Linear interpolation of a step edge: a balance between staircase artifacts and ripples.

Other Interpolation

- Change from polar to cartesian grid
- Linear, but not translation invariant



polar vs. cartesian sampling



irregular sampling

Summary

- Images can be represented as a sampling grid and pixel basis functions
- Need for interpolation arises when changing the grid
- Linear and translation invariant interpolation can be written as a convolution with an interpolation kernel function
- Typical interpolation kernels include nearest neighbor, linear, cubic and higher B-spline interpolation
- Zero-padding in one domain equals sinc interpolation in the other
- "ideal" sinc interpolation may lead to ringing artifacts