
INFORMATION
RETRIEVAL
Luca Manzoni 
lmanzoni@units.it

Lecture 3

mailto:lmanzoni@units.it

*
*MAY CONTAIN TRACES OF PEANUTS

LECTURE OUTLINE

Spelling Correction

Wildcard Queries

CATT

DO YOU MEAN “CAT”?

SEARCH

Boolean Queries
Optimisation

(a ∧ b) ∧ c

+ IMPLEMENTATION

a ∧ (b ∧ c)

DOCUMENT 1

DOCUMENT 2

DOCUMENT 3

1)

2)

3)

Ranked RetrievalCAT

TF-IDF

WILDCARD QUERIES

SEARCHING AN ENTIRE SET OF WORDS

WHAT ARE WILDCARD QUERIES?

• Examples of wildcard queries:

• Car*: captures “car”, “cars”, “cart”, “carbon”, etc.

• *e*a*: captures “flea”, “ear”, “head”, “Eva”, etc.

• The uses might use wildcard queries when he/she:

• Is uncertain of the spelling of a word.

• Knows that a word has multiple spellings.

• Want to catch all variants of term 
(which might also be “captured” by stemming).

In a binary tree/b-tree or 
a variant (as shown below) 

all terms are inside 
a collection of subtrees

THE SIMPLEST CASE

TRAILING WILDCARDS

term* Trailing wildcard 
there is only one wildcard  
and it is at the end of the word

CAT DOG DRONEBOX CARBON CARTBART

Let us consider the query CA*
We can retrieve the posting lists 

of all of them and perform 
a union of the results

Then the “leading wildcard” is 
like an “inverse wildcard” 

for the reverse B-tree

AND REVERSE (B-)TREES

LEADING WILDCARDS

*term Leading wildcard 
there is only one wildcard  
and it is at the beginning of the word

CATDOGDRONE BOXCARBON CARTBART

Let us consider the query *T

We can build an additional B-tree 
with the words ordered in reverse

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

• Now we can answer all queries with leading and trailing wildcards.

• What about queries like “word1*word2”?

• Can we reformulate the problem of “one wildcard” as a leading or
trailing wildcard problem?

• Yes, using the “permuterm index”

• We can also extend the solution to queries with more than one
wildcard.

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

C A T $ Special “end of word” symbol

CA T $

C AT $

C A T$

Rotations of the word

We insert all the rotations of the word (including the “end of word”) 
in the dictionary.

All the rotations of the same word points to the same postings list

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

C*TOur query:

C*T$ Put the “end of word” at the end

T$C* Rotate the word to have the wildcard at the end

We can have a trailing wildcard, that we 
know how to solve!

POSTINGS LIST FOR
“CAT”

POSTINGS LIST FOR
“CART”

Term in the dictionary

T$CAR

T$CA

WHAT ABOUT MULTIPLE WILDCARDS?

PERMUTERM INDEX

*A*TOur query:

*A*T$ Put the “end of word” at the end

*T$ Consider the more general query where everything 
between the first and last wildcard is “folded” 
inside a single wildcard

T$* Rotate to have a trailing wildcard query

CATCARTBART BORT
Collect all the terms matching the 
simplified query

Scan the list to remove the ones not matching the original query

ADVANTAGES AND DISADVANTAGES

PERMUTERM INDEX

• We can now answer wildcard queries with any number of
wildcards!

• Even if for more than one wildcard a linear scan of a list of terms
is still needed.

• There is an interesting interplay between the algorithm that we
use and the data structures employed.

• The main problem of permuterm indices: the amount of space
needed to store all rotations of a word. A word with letters will
have rotations (due to the “end of word” symbol).

n
n + 1

ANOTHER WAY TO MANAGE WILDCARD QUERIES

K-GRAM INDEXES

k-gram: a sequence of charactersk

DRONE

DRO
RON

ONE

3-grams of “DRONE”

We create a dictionary of -grams 
obtained from all the terms

k

DRO
RON

ONE

We actually use the 
“$” symbol to denote  
the beginning and end 
of the word

$DR

NE$

AN EXAMPLE

K-GRAMS INDEXES

CARBON

CARTBART

DRO

RON

ONE

DOG

CAR

ARB

RBO

BON

CAT

BAR

ART

BOX

All 3-grams in 
the dictionary

BART

CARBON

BOX

CARBON CART

CAT

DOG

DRONE

DRONE

CARBON

DRONE

Each 3-gram points to the list 
of terms containing it.

-GRAMSk

TERMS

POSTINGS

The current structure 
of the system:

+
be

gi
nn

in
g

an
d

en
d

of
 s

tr
in

gs

HOW TO USE THEM TO ANSWER QUERIES

K-GRAMS INDEXES

CARBON

CARTBART

CAR

ARB

BON

BAR

ART

BOX

BART

CARBON

BOX

CARBON CART

CA*ONOur query:

$CA CARBON CART CAT

$CA*ON$Add “$”:

$CAExtract 3-grams: ON$

ON$ CARBON

…
…

Search each one of the 3-grams

Intersect the results: CARBON

ADVANTAGES AND DISADVANTAGES

K-GRAMS

• They allow to answer wildcard queries

• A filtering step might still be needed:

• Query: GOL*

• 3-grams: $GO and GOL

• Possible element of the intersection: GOGOL, which does not
respect the original query.

• -grams can also be used to help in spelling correctionk

SPELLING CORRECTION

BASICS OF SPELLING CORRECTION

• There are two main principle behind spelling correction:

• If a word is misspelled, then find the nearest one.

• If two or more words are tied (or nearly tied) select the most
frequent word.

• Which means that we need to define what “nearest” means.

• Two main approaches:

• Edit (or Levenshtein) distance

• -grams overlapk

AKA LEVENSHTEIN DISTANCE

EDIT DISTANCE

• The idea is that the distance between two words and is
given by the smallest number of edit operations that must be
performed to transform in .

• The possible edit operations are:

• Insert a character in a string (e.g, from brt to bart).

• Delete a character from a string (e.g., from caar to car).

• Replace a character in a string (e.g., from arx to art).

w1 w2

w1 w2

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

• How to compute efficiently the edit distance?

• There is a classical dynamic programming algorithm the runs in
time , where denotes the length of a word.

• We are now going to detail the idea formally and then with an
example

O(|w1 | × |w2 |) | ⋅ |

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

• Let and with characters and words.

• The main idea is that you know the edit distance
between and is the minimum between:

• if (i.e., we replace by)

• if (i.e., the distance does not increase)

• (i.e., we remove from the first word)

• (i.e., we add in the second word)

w1 = v1a w2 = v2b a, b v1, v2

d(w1, w2)
w1 w2

d(v1, v2) + 1 a ≠ b a b

d(v1, v2) a = b

d(v1, v2b) + 1 a

d(v1a, v2) + 1 b

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

Distance between “HOM” and “H”

Distance between “HOUS” and “HO”

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

The distance between a word 
and an empty string is simply 
the length of the word

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

This is the minimum between:

d(ε, H) + 1 = 2

d(H, ε) + 1 = 2

d(ε, ε) + 0 = 0

0

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

This is the minimum between:

d(HO, ε) + 1 = 3

d(H, H) + 1 = 1

d(H, ε) + 1 = 2

0 1

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2 1 0 1 2

4 3 2 2 3

2 31

2 1 1 23

4 3 3 25

We compute each element of 
the matrix

The result is in the bottom right 
corner of the matrix

Computing the value for one cell 
requires constant time…

…and there are cellsO(|w1 | × |w2 |)

0 1

ADVANTAGES AND DISADVANTAGES

THE EDIT DISTANCE

• By computing the edit distance we can find the set of words that
are the closest to a misspelled word.

• However, computing the edit distance on the entire dictionary can
be too expensive.

• We can use some heuristics to limit the number of words, like
looking only at words with the same initial letter (hopefully this
has not been misspelled).

• Or we can use -grams to retrieve terms with low edit distance
from the misspelled word.

k

THIS TIME FOR SPELLING CORRECTION

K-GRAM INDEXES

• We can try to retrive terms with “many” -grams in common with
a word.

• We hypothesise that having “many” -grams in common is
indicative of a low edit distance.

• This might not be true. Consider the the word “cata”:

• it has all of its 2-grams in common with “catastrophic”, but it is
not a “good” correction.

• “cats”, which has has fewer 2-gram in common, is a more
reasonable correction

k

k

MEASURING THE OVERLAP OF TWO SETS

THE JACCARD COEFFICIENT

|A ∩ B |
|A ∪ B |

The Jaccard coefficient of two sets and is defined as:A B

We can use the Jaccard coefficient to select the terms 
obtained by looking at the -grams in common.k

In this “cata” and “catastrophe” have a Jaccard coefficient 
of , while “cata” and “cats” of .3/10 1/2

SOMETIMES CONTEXT IS IMPORTANT

CONTEXT-SENSITIVE CORRECTION

• Sometimes all the words of a query are spelled correctly… 
…but one is actually the wrong word.

• Consider “Flights form Malpensa”. 
The correct query should have been “Flights from Malpensa”.

• How can we mitigate the problem?

• Substitute one at a time the words of the query with the most
similar in the dictionary, perform the modified queries and look at
the variants with most results.

• Can be expensive, but some heuristics can help (e.g., looking at
common pairs of words)

WHEN A WORD IS WRITTEN “AS IT SOUNDS”

PHONETIC CORRECTION

• Sometimes the user does not know how to spell a word…

• …so he/she tries to write it based on the sound…

• …and gets the result wrong.

• We can try to correct this kind of error by using specific
algorithms that tries to put similar-sounding words in the same
equivalence class.

• These algorithms are language-specific (or, at least, non universal).

• For English we will see the Soundex algorithm.

SOUNDEX ALGORITHM

Keep the first letter unchanged through the algorithmMARSHMALLOW

Change all occurrences of A, E, I, O, U, H, W, Y to 0 M0RS0M0LL00

Convert the letters according to the following table: 
1) B, F, P, V 
2) C, G, J, K, Q, S, X, Z 
3) D,T  
4) L 
5) M, N 
6) R

M0620504400

Remove all occurrences of 0 and pad the string with 0M6254400000

M625 Return the first four positions (1 letter, 3 digits)

HOW TO USE IT

THE SOUNDEX ALGORITHM

• We can search for words with the same “phonetic hash” as the
ones in the query.

• The mains ideas that make the Soundex algorithm work are:

• Vowels are seen as interchangeable.

• Consonants are assigned to different equivalence classes
depending on how they sound.

• The algorithm, however, is not perfect. There can be words that
sound similar with different “phonetic hashes” and vice versa.

OPTIMISATION OF BOOLEAN QUERIES

SOMETIMES ORDER IS IMPORTANT

WHICH ONE IS BETTER?

Query: Monty AND Python AND Grail

(Monty AND Python) AND Grail

(Python AND Grail) AND Monty

Can be evaluated in three ways:

(Monty AND Grail) AND Python

The result is the same but the performances might differ

OPTIMISATION OF BOOLEAN QUERIES

• The main idea is to select the order the reduce the size of the
intermediate results…

• …but we don’t know the size of the intersection

• But we know that , hence we use
 as an estimate.

• We evaluate the terms from the one with the shorter postings list
to the largest.

• Similar considerations can be made with the union, using
 as an estimate

|A ∩ B | ≤ min(|A | , |B |)
min(|A | , |B |)

|A | + |B |

RANKED RETRIEVAL

MOTIVATIONS

• Until now we have returned all documents matching a Boolean
query as a set.

• If many documents are returned then it might be important to
rank them according to how relevant they are.

• A first way of ranking them is to “split” a document according to
some structure and then weight different zones in different ways.

• We will then see how we can extend the idea of adding weights
also to the terms of a document.

METADATA, FIELDS, AND ZONES

DOCUMENT STRUCTURE

TITLE

AUTHOR

DATE OF
PUBLICATION

ABSTRACT

SECTION

• A text may have associated
metadata.

• Some of them can be fields,
with a set of values that can
be finite, like publication
dates.

• Others might be zones,
arbitrary areas of free-form
text (e.g., abstract, section,
etc.).

SEARCHING INSIDE FIELDS

PARAMETRIC INDEXES

• To allow for searching inside the fields we might want to build
additional indexes, called parametric indexes.

• A parametric index can be thought as a standard index that only
has information about a field (e.g., all the dates).

• If a query asks for “cat” in the title and “dog” inside the
document we will retrieve the posting lists for dog from the
“standard” index e “cat” from the parametric index for the title.

• The operations of union and intersections works as usual.

POSSIBLE APPROACHES

ZONE INDEXES

CAT.TITLE

CAT.ABSTRACT

CAT.AUTHOR

33

CAT

45

12

12 33

12 33 45

ABSTRACT TITLE TITLE

AUTHORAUTHOR

Separate inverted index for each zone

Single inverted index in which the zones are 
part of the postings

AN ADDITIONAL USE FOR ZONES

WEIGHTED ZONE SCORING

• We now have a way of searching inside different parts of a
document…

• …but different parts might carry different importance: 
e.g., a title vs inside the main text.

• We can rank retrieved documents according to where the term is
found inside the document.

• We can do this via weighted zone scoring 
(also called ranked Boolean retrieval).

DEFINITION

SCORING FUNCTION

• Consider a pair of a query and a document .

• A scoring function associates a value in to each pair .

• Higher scores are better.

• Suppose that a document has zones.

• Each zone has a weight for .

• The weights sums to one:  

(q, d) q d

[0,1] (q, d)

ℓ

gi ∈ [0,1] 1 ≤ i ≤ ℓ

ℓ

∑
i=1

gi = 1

PART II

SCORING FUNCTION

• Given a query let be defined as 

• Actually, can also be defined to be any function that maps “how
much” a query matches in the -th zone.

• The weighted zone score in then defined as: 

q si

si = {1 if q matches in zone i
0 otherwise

si
i

ℓ

∑
i=1

gisi

A SIMPLE EXAMPLE

WEIGHTED ZONE SCORING

TITLE: LIFE OF A CAT 
AUTHOR: JAMES CAT 

ONCE THERE WAS A CAT…

TITLE: DOGS AND OTHER PETS

AUTHOR: ANONYMOUS

DOGS AND CATS ARE THE…

TITLE: ORCHARDS MANAGEMENT

AUTHOR: JAMES CAT

THE MANAGEMENT OF ORCHARDS…

Query: CAT
Title: 0.5 Author: 0.2 Body: 0.3

0.5

0

0

0.2

0

0.2

0.3

0.3

0

1

0 . 3

0 . 2

OR SETTING THEM MANUALLY

LEARNING WEIGHTS

• The new problem is now to find how to set the weights for the
different scores.

• One possibility is to ask a domain expert.

• Another possibility is to have users label documents relevant or
not with respect to a query…

• …and trying to learn the weights using the training data.

• In addition to the binary classification (relevant or not) more
nuanced classifications might be used.

THE TRAINING SET

Example DocID Query In the title In the body Judgment

e1 43 LISP 1 1 Relevant

e2 43 BASIC 1 0 Relevant

e3 76 LISP 0 1 Non-relevant

e4 76 BASIC 0 1 Relevant

e5 87 SMALLTALK 1 1 Relevant

e6 87 APL 1 0 Non-relevant

HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

score(d, q) = g ⋅ stitle + (1 − g) ⋅ sbody

With only two zones, site score is computed as:

Since we know the queries and the real relevance of the documents 
in the training set we can compute the output that a weight would give:g

score(43,LISP) = g ⋅ 1 + (1 − g) ⋅ 1

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0

score(76,LISP) = g ⋅ 0 + (1 − g) ⋅ 1

⋮

HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

If we decide that relevant is and non-relevant is  
we can compare the real score with the computed one 

and compute an error:

1 0

Err(g, e1) = (1 − score(43,LISP))2

Err(g, e2) = (1 − score(43,BASIC))2

Err(g, e3) = (0 − score(76,LISP)2

⋮

(AND MAYBE IT CANNOT BE ZERO)

MINIMISING THE ERROR

We now want to minimise the sum of the errors:

n

∑
i=1

Err(g, ei)

Notice that it might not be possible to reach an error of zero:

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0 = g
score(87,APL) = g ⋅ 1 + (1 − g) ⋅ 0 = g

Err(g, e2) = (1 − g)2

Err(g, e6) = g2

But:

RANKED RETRIEVAL

MOTIVATIONS

• Until now we have returned all documents matching a Boolean
query as a set.

• If many documents are returned then it might be important to
rank them according to how relevant they are.

• A first way of ranking them is to “split” a document according to
some structure and then weight different zones in different ways.

• We will then see how we can extend the idea of adding weights
also to the terms of a document.

METADATA, FIELDS, AND ZONES

DOCUMENT STRUCTURE

TITLE

AUTHOR

DATE OF
PUBLICATION

ABSTRACT

SECTION

• A text may have associated
metadata.

• Some of them can be fields,
with a set of values that can
be finite, like publication
dates.

• Others might be zones,
arbitrary areas of free-form
text (e.g., abstract, section,
etc.).

SEARCHING INSIDE FIELDS

PARAMETRIC INDEXES

• To allow for searching inside the fields we might want to build
additional indexes, called parametric indexes.

• A parametric index can be thought as a standard index that only
has information about a field (e.g., all the dates).

• If a query asks for “cat” in the title and “dog” inside the
document we will retrieve the posting lists for dog from the
“standard” index e “cat” from the parametric index for the title.

• The operations of union and intersections works as usual.

POSSIBLE APPROACHES

ZONE INDEXES

CAT.TITLE

CAT.ABSTRACT

CAT.AUTHOR

33

CAT

45

12

12 33

12 33 45

ABSTRACT TITLE TITLE

AUTHORAUTHOR

Separate inverted index for each zone

Single inverted index in which the zones are 
part of the postings

AN ADDITIONAL USE FOR ZONES

WEIGHTED ZONE SCORING

• We now have a way of searching inside different parts of a
document…

• …but different parts might carry different importance: 
e.g., a title vs inside the main text.

• We can rank retrieved documents according to where the term is
found inside the document.

• We can do this via weighted zone scoring 
(also called ranked Boolean retrieval).

DEFINITION

SCORING FUNCTION

• Consider a pair of a query and a document .

• A scoring function associates a value in to each pair .

• Higher scores are better.

• Suppose that a document has zones.

• Each zone has a weight for .

• The weights sums to one:  

(q, d) q d

[0,1] (q, d)

ℓ

gi ∈ [0,1] 1 ≤ i ≤ ℓ

ℓ

∑
i=1

gi = 1

PART II

SCORING FUNCTION

• Given a query let be defined as 

• Actually, can also be defined to be any function that maps “how
much” a query matches in the -th zone.

• The weighted zone score in then defined as: 

q si

si = {1 if q matches in zone i
0 otherwise

si
i

ℓ

∑
i=1

gisi

A SIMPLE EXAMPLE

WEIGHTED ZONE SCORING

TITLE: LIFE OF A CAT 
AUTHOR: JAMES CAT 

ONCE THERE WAS A CAT…

TITLE: DOGS AND OTHER PETS

AUTHOR: ANONYMOUS

DOGS AND CATS ARE THE…

TITLE: ORCHARDS MANAGEMENT

AUTHOR: JAMES CAT

THE MANAGEMENT OF ORCHARDS…

Query: CAT
Title: 0.5 Author: 0.2 Body: 0.3

0.5

0

0

0.2

0

0.2

0.3

0.3

0

1

0 . 3

0 . 2

OR SETTING THEM MANUALLY

LEARNING WEIGHTS

• The new problem is now to find how to set the weights for the
different scores.

• One possibility is to ask a domain expert.

• Another possibility is to have users label documents relevant or
not with respect to a query…

• …and trying to learn the weights using the training data.

• In addition to the binary classification (relevant or not) more
nuanced classifications might be used.

THE TRAINING SET

Example DocID Query In the title In the body Judgment

e1 43 LISP 1 1 Relevant

e2 43 BASIC 1 0 Relevant

e3 76 LISP 0 1 Non-relevant

e4 76 BASIC 0 1 Relevant

e5 87 SMALLTALK 1 1 Relevant

e6 87 APL 1 0 Non-relevant

HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

score(d, q) = g ⋅ stitle + (1 − g) ⋅ sbody

With only two zones, site score is computed as:

Since we know the queries and the real relevance of the documents 
in the training set we can compute the output that a weight would give:g

score(43,LISP) = g ⋅ 1 + (1 − g) ⋅ 1

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0

score(76,LISP) = g ⋅ 0 + (1 − g) ⋅ 1

⋮

HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

If we decide that relevant is and non-relevant is  
we can compare the real score with the computed one 

and compute an error:

1 0

Err(g, e1) = (1 − score(43,LISP))2

Err(g, e2) = (1 − score(43,BASIC))2

Err(g, e3) = (0 − score(76,LISP)2

⋮

(AND MAYBE IT CANNOT BE ZERO)

MINIMISING THE ERROR

We now want to minimise the sum of the errors:

n

∑
i=1

Err(g, ei)

Notice that it might not be possible to reach an error of zero:

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0 = g
score(87,APL) = g ⋅ 1 + (1 − g) ⋅ 0 = g

Err(g, e2) = (1 − g)2

Err(g, e6) = g2

But:

TF-IDF WEIGHTING

REFINING THE SCORING

CHANGING SCORING

• For now we have used a weight that is either or depending on
wether a query term was present or not.

• We might want to assign different weight depending on the term
and the number of times a term is present in the document.

• This works well with free-form text queries:

• For each term in the query we compute a “match score”

• The score of a document is the sum of the scores for each term

0 1

A SIMPLE SCORE

TERM FREQUENCY

Term frequency: tft,d

Number of occurrences of the term inside the document .t d

The main motivation is that the more a term is present inside
a document the more we consider the document relevant
with respect to that term.

But what about the order of the words?

IGNORE THE ORDER!

BAG OF WORDS

The cat is on the table The table is on the cat

The cat is on the table The catis on thetable

Thecat

is
on thetable

Thecat

is
on thetable

In the 
bag of words model 

the ordering of the term 
is immaterial but 

the amount 
of occurrences 

is material

SOME LIMITATIONS

TERM FREQUENCY

• Does the number of occurrences really represents the importance
of a term?

• Which terms are more frequent?

• A small hint:

• Stop words!

• Not all terms carry the same 
weight in determining the 
relevancy of a document

RARE WORDS COUNT MORE

COLLECTION AND DOCUMENT FREQUENCIES

• The main characteristic of stop words is that they are present in
most documents.

• Therefore, we might want to scale the importance of a word
based on some measure of the frequency of the term:

• is the collection frequency of the term : 
total number of occurrences of the term in the collection.

• is the document frequency of the term : 
total number of document in which appears in the collection.

cft t
t

dft t
t

RARE WORDS COUNT MORE

COLLECTION AND DOCUMENT FREQUENCIES

• The document frequency of a term is usually preferred.

• We prefer to use a document-based measure to weight
documents.

• and can behave quite differently. For example:

• A single document with instances of a term in a
collection of documents.

• Each one of documents contains a term exactly once.

dft

cft dft

1000 t1
1000

1000 t2

MODIFYING DOCUMENT FREQUENCY

INVERSE DOCUMENT FREQUENCY

 is larger when we want the penalties to be largerdft

We use a modification of it:

idft = log
N
dft

Number of documents 
in the collection

Document frequency

Inverse 
document 
frequency

EFFECTS ON THE WEIGHTS

INVERSE DOCUMENT FREQUENCY
id

f t

0

3,5

7

10,5

14

1 10 100 1000 10000

dft

Terms present everywhere 
have zero weights

Terms present 
in only one document 

have weight log N

HOW TO COMBINE AND tft,d idft

TF-IDF WEIGHTING

We now need to combine the two ideas:

tf-idft,d = tft,d × idft

• When a rare term is present a many times in a document then the
value is high

• When a frequent term is present many times or a rare term is present
only a few time the value is low

• When a very frequent term is present only a few times then the value is
the lowest

TOWARDS THE VECTOR SPACE MODEL

SCORING A DOCUMENT

The cat is on the table

cat is on thetable

tf-idfcat,d tf-idfis,d tf-idfon,d tf-idftable,d tf-idfthe,d

 for all terms 
not in the document

tf-idft,d = 0

We can see a document as a vector with a components 
for each term in the dictionary and having as elements 
the of the term in the documenttf-idft,d t

TOWARDS THE VECTOR SPACE MODEL

SCORING A DOCUMENT

To score a document for a query  
we can simply sum the values 
for all terms appearing in :

q
tf-idft,d

q

Score(q, d) = ∑
t∈q

tf-idft,d

Notice that in this way a document where a term  
does not appear might still have a positive score. 

The “penalty” will depend on which term is not present

AND WHEN TO USE THEM

VARIANTS OF TF-IDF

• There are some possible alternative in using directly .

• One first consideration is that not all instances of a term inside a
document carry the same weight.

• There is the idea of “diminishing returns”: is a document with 20
occurrences really twice as important as one with 10 occurrences?

• Another observation is that we might be interested in the
frequency of a term relative to the other terms in the document.

tf-idf

SUBLINEAR TF SCALING

wft,d = {1 + log tft,d if tft,d > 0
0 otherwise

We can scale the value to have  
the influence of additional terms reduced:

tft,d

The new value can be replaced where is used:tft,d

wf-idft,d = wft,d × idft

TF NORMALIZATION

tft,d

tfmax(d)

We can scale the value to be dependant 
on the maximum term frequency in the document :

tft,d
tfmax(d)

tft,d

∑t′￼∈d tft′￼,d

Another possibility is to normalise according to the 
number of terms in the entire document:

In both cases there are drawbacks and some smoothing might be 
applied to limit large swings in the normalised value

