
INFORMATION 
RETRIEVAL
Luca Manzoni 
lmanzoni@units.it

Lecture 4

mailto:lmanzoni@units.it


*PROBABLY CONTAINS PROBABILITIES

LECTURE OUTLINE

Relevance 
Feedback

Probabilistic 
Information 

Retrieval

DOCUMENTS
DOCUMENTS

x

y

z

⃗v1 ⃗v2

Vector Space 
Model



THE VECTOR SPACE MODEL



JUST TO REFRESH SOME BASIC NOTION AND FIX NOTATION

VERY BRIEF RECAP

• In  the Euclidean length of a vector  is




• A vector is a unit vector if its length is one.


• The inner products of two vectors  

 and  is defined as 

ℝn ⃗v = (v1, v2, …, vn)

| ⃗v| =
n

∑
i=1

v2
i

⃗v = (v1, v2, …, vn) ⃗u = (u1, u2, …, un)
n

∑
i=1

viui



THE START OF THE VECTOR SPACE REPRESENTATION

DOCUMENTS AS VECTORS

ecat = (0,0,1,0,0)

edog = (0,0,0,1,0)

edrone = (0,0,0,0,1)

ebox = (0,1,0,0,0)

ebart = (1,0,0,0,0)

Each term is an element of the canonical 
base of  with  the number of terms 
in the dictionary.

ℝn n

We will limit ourselves to 3D visualisation due to the limits of the physical world

A document is a point in this -dimensional space:n

⃗V (d) = (0.6, 0.5, 0.1, 0, 0.9)
tf-idfcat,d



HOW TO COMPARE DOCUMENTS

COSINE SIMILARITY

bart

box

cat

⃗V (d1) ⃗V (d2)

We can compute the similarity 
of two documents by computing 
the cosine similarity between the 
two corresponding vectors:

sim(d1, d2) =
⃗V (d1) ⋅ ⃗V (d2)

| ⃗V (d1)|| ⃗V (d2)|

Which represents the cosine 
of the angle formed by the 
two vectors

The similarity is the cosine of this angle



LOOKING AGAIN AT COSINE SIMILARITY

NORMALISING VECTORS

If we look again at cosine similarity we can see that we can 
replace a vector  with the unit vector :⃗V (d) ⃗v(d)

⃗v(d) =
⃗V (d)

| ⃗V (d)|

In fact, since the angle formed by the vectors does not depend 
on the magnitude of the vectors, we can assume, without 

loss of generality, each document vector to be a unit vector.



THE MISSING HALF OF THE REPRESENTATION

QUERIES AS VECTORS

In addition to documents, also queries can be represented as vectors

Query: CAT Vector: (0,0,1,0,0)

Query: CAT DOG Vector: (0,0,1/ 2,1/ 2,0)

Each query is a unit vector  
with the non-zero components  

corresponding to the query terms



COSINE SIMILARITY (AGAIN)

ANSWERING QUERIES

⃗v(q)

⃗v(d2)

⃗v(d1)

cat

dog The answer to the query can be computed 
using (again) the cosine similarity:

score(q, d1) = sim( ⃗v(q), ⃗v(d1))

score(q, d2) = sim( ⃗v(q), ⃗v(d2))

Since all vectors are unit vectors 
this is equivalent to:

score(q, d1) = ⃗v(q) ⋅ ⃗v(d1)

score(q, d2) = ⃗v(q) ⋅ ⃗v(d2)



CONSIDERATIONS

VECTOR SPACE MODEL

• The fact that we compute a similarity score means that we have a 
ranking of documents; we can retrieve the K most relevant 
documents.


• A document might have a non-zero similarity score even if not all 
terms are present: the matching is not exact like in the Boolean 
model.


• Even if we have used  to define the document vectors, any 
other measure might be used.


• Notice that we cannot exclude (for now) the computation of the 
cosine similarity for each document in the collection!

tf-idf



COMPUTING SIMILARITY EFFICIENTLY



THE LOW-HANGING FRUITS

A FEW INITIAL CONSIDERATIONS

• We can have an inverted index in which each term has an associated 
 value (since it depends only on the term).


• Each posting will have the term frequency  associated to it (since it 
depends on both the term and the document).


• We can then compute the score of each document while traversing the 
posting lists.


• If a DocID does not appear in the posting list of any query term its 
score is zero.


• To retrieve the K highest scoring documents we can use a heap data 
structure, which is more efficient than sorting all documents.

idft

tft,d



BEING FAST AND “WRONG”

INEXACT TOP K DOCUMENT RETRIEVAL

• Sometimes it is more important to be efficient than to retrieve exactly the 
K highest scoring documents.


• We want to retrieve K documents that are likely to be among the K highest 
scored.


• Notice that the similarity score is a proxy of the relevance of a document 
to a query, so we already have some “approximation”.


• The main idea to perform an inexact retrieval is:


• Find a subset  of the documents that is both small and likely to contain 
documents with scores near to the K highest ranking.


• Return the K highest ranked documents in .

A

A



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

standard inverted index



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

 scoresidf

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

 scorestf

4 1

2 3

7 9 1

1

9 34 12 27

4 2



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

4 1

2 3

7 9 1

1

9 34 12 27

4 2

We can remove terms with very low  score from the search: 
they are like “stop words” with very long postings list

idf



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

• By removing terms with low  value we can only work with 
relatively shorter lists.


• The cutoff value can be adapted according to the other terms 
present in the query.


• We can also only consider documents in which most or all the 
query terms appears…


• …but a problem might be that we do not have at least K 
documents matching all query terms.

idf



OR “TOP DOCS”

CHAMPION LISTS

• Keep an additional pre-computed list for each term containing 
only the  highest-scoring documents (usually ).


• These additional lists are known as champion lists, fancy lists, or  
top docs.


• We compute the union of the champion lists of all terms in the 
query, obtaining a set  of documents.


• We find the K highest ranked documents in .


• Problem: we might have too few documents if K is not known until 
the query is performed.

r r > K

A

A



ADDING A PRE-COMPUTABLE SCORE TO DOCUMENTS

STATIC QUALITY SCORES

• In some cases we might want to add a score to a document that is 
independent from the query: a static quality score, denoted by 

.


• Example: good reviews by users might “push” a document higher 
in the scoring.


• We need to combine  with the scoring given by the query, a 
simple possibility is a linear combination: 

.


• We can also sort posting list by , to process documents 
more likely to have high scores first.

g(d) ∈ [0,1]

g(d)

score(q, d) = g(d) + ⃗v(d) ⋅ ⃗v(q)

g(d) + idft,d



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

• Union and intersection for posting lists works efficiently because 
of the ordering…


• …but everything work as long as they are ordered with some 
criterium, not necessarily by DocID.


• Idea: Order the documents by decreasing . In this way the 
documents which will obtain the highest scoring will be processed 
first.


• If the  value drops below a threshold, then we can stop.

tft,d

tft,d



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

4 1

2 3

7 9 1

1

9 34 12 27

4 2

From this…



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

2 3 1

12 37

43 12 50

4

2 5 4 1

15

23 15

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

1722 13 6

4 1

3 2

9 7 1

1

34 27 12 9

4 2

…to this



SEARCHING ONLY INSIDE A CLUSTER

CLUSTER PRUNING

• With  document,  are randomly selected as leaders. 
Each leader identifies a cluster of documents.


• For each of the remaining documents, we find the most similar 
among the  documents selected and we add it to the 
corresponding cluster.


• For a query  we find the document among the  leaders that is 
most similar to it.


• The K highest ranked documents are selected among the ones in 
the cluster of the selected leader.

N M = N

M

q M



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

The query



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

Nearest leader

The nearest leader 
is found



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

The nearest leader 
is found

The similarity is computed 
only in one cluster



ADDITIONAL CONSIDERATIONS

CLUSTER PRUNING

• The selection of  leaders randomly likely reflects the 
distribution of documents in the vector space: the most crowded 
regions will have more leaders.


• A variant more likely to return the “real” K highest ranked 
document is the following:


• When creating clusters, each document is associated to  
leaders (i.e., it is part of more than one cluster).


• When a query is received the clusters of the  nearest leaders 
are considered.

N

b1

b2



RELEVANCE FEEDBACK



RECEIVING FEEDBACK FROM THE USER

WHAT IS RELEVANCE FEEDBACK

• The main idea is to involve the user in giving feedback on the 
initial set of results:


• The user issues a query.


• The system returns an initial set of results.


• The user decides which results are relevant and which are not.


• The system computes a new set of results based on the feedback 
received by the user.


• If necessary, repeat.



AND WHAT IT CANNOT SOLVE

WHAT RELEVANCE FEEDBACK CAN SOLVE

• Relevance feedback can help the user in refining the query without 
having him/her reformulate it manually.


• It is a local method, where the initial query is modified, in contrast 
to global methods that change the wording of the query (like 
spelling correction).


• Relevance feedback can be ineffective when in the case of


• Misspelling (but we have seen spelling correction techniques).


• Searching documents in another language.


• Vocabulary mismatch between the user and the collection.



FEEDBACK FOR THE VECTOR SPACE MODEL

THE ROCCHIO ALGORITHM

• It is possible to introduce relevance feedback in the vector space 
model


• We will see the Rocchio Algorithm (1971)


• It was introduced in the SMART (System for the Mechanical 
Analysis and Retrieval of Text) information retrieval system…


• …which is also where the vector space model was firstly 
developed



MOVING THE QUERY VECTOR

ROCCHIO ALGORITHM: MAIN IDEA

Documents



MOVING THE QUERY VECTOR

ROCCHIO ALGORITHM: MAIN IDEA

Query



MOVING THE QUERY VECTOR

ROCCHIO ALGORITHM: MAIN IDEA

Documents 
returned to 
the user



MOVING THE QUERY VECTOR

ROCCHIO ALGORITHM: MAIN IDEA

Feedback from the user



MOVING THE QUERY VECTOR

ROCCHIO ALGORITHM: MAIN IDEA

Revised query



ROCCHIO ALGORITHM: THEORY

• The user gives us two sets of documents:


• The relevant documents 


• The non-relevant documents 


• We want to maximise the similarity of the query with the set of 
relevant documents…


• …while minimising it with respect to the set of non-relevant 
documents.

Cr

Cnr



ROCCHIO ALGORITHM: THEORY

⃗qopt = arg max
⃗q

[sim( ⃗q, Cr) − sim( ⃗q, Cnr)]

This can be formalised as defining the optimal query  as:⃗qopt

If we use cosine similarity, we can reformulate the definition as:

⃗qopt =
1

|Cr | ∑⃗
d∈Cr

⃗d −
1

|Cnr | ∑⃗
d∈Cnr

⃗d

Centroid of 
relevant documents

Centroid of 
non-relevant documents



ROCCHIO ALGORITHM

However, we usually do not have knowledge of the relevance of all documents 
in the system. Instead we have:


• a set  of known relevant documents


• a set  of  known non-relevant documents


We also have the original query  performed by the user.


We can perform a linear combination of:


• The centroid of 


• The centroid of 


• The original query 

Dr

Dnr

⃗q0

Dr

Dnr

⃗q0



ROCCHIO ALGORITHM

In the Rocchio algorithm the query is updated as follows:

⃗qm = α ⃗q0 + β
1

|Dr | ∑⃗
d∈Cr

⃗d − γ
1

|Dnr | ∑⃗
d∈Cnr

⃗d

Centroid of the 
known relevant documents

Centroid of the known 
non-relevant documents

Original query

If one of the components of  is less than , we set it to  
(all documents have non-negative coordinates)

⃗qm 0 0



SELECTING THE WEIGHTS

ROCCHIO ALGORITHM

• We need to select reasonable weights , , and :


• Positive feedback is more valuable than negative feedback, so 
usually .


• Reasonable values might be , , and .


• It is also possible to also have only positive feedback with .

α β γ

γ < β

α = 1 β = 0.75 γ = 0.15

γ = 0



NOW WITHOUT THE USER

PSEUDO-RELEVANCE FEEDBACK

• It is possible to perform a relevance feedback without the user…


• …even before he/she receives the results of the first query.


• Perform the query  as usual.


• Consider the first  retrieved documents in the ranking as 
relevant.


• Perform relevance feedback using this assumption.


• Might provide better results, but the retrieved documents might 
drift the query in an unwanted direction.

⃗q

k



PROBABILISTIC INFORMATION RETRIEVAL



MAIN IDEAS

PROBABILISTIC IR

• If we know some relevant and some non-relevant documents for a 
query we can estimate the probability of a document to be 
relevant given the terms it contains.


• This is the main idea of a probabilistic model of IR: estimate 
probabilities of a document being relevant with respect to a query 
based on its content.


• There will be some assumptions to simplify the computation of 
this probability…


• …and some estimates: we do not known most of the probabilities 
involved!



BASICS OF PROBABILITY THEORY

A QUICK REVIEW

• The probability of  and  can be written as a conditional 
probability:  




• The probability of  and  plus the probability of  and not  is 
simply the probability of :  




• The odds of an event  is defined as: 

A B

P(A, B) = P(A |B)P(B) = P(B |A)P(A)

B A B A
B

P(B) = P(B, A) + P(B, A)

A

O(A) =
P(A)
P(A)

=
P(A)

1 − P(A)



BASICS OF PROBABILITY THEORY

A QUICK REVIEW

• The classical Bayes’ rule is:


• 


• Which can be interpreted as:


• Given the prior probability  of …


• …how we can update it based on the evidence , thus 
obtaining a posterior probability .

P(A |B) =
P(B |A)P(A)

P(B)
=

P(B |A)
∑X∈[A,A] P(B |X)P(X)

P(A)

P(A) A

B
P(A |B)



AND THE BASIS FOR PROBABILISTIC IR

PROBABILITY RANKING PRINCIPLE

P(R = 1 |d, q)

Probability of having

something relevant

Given that the document is  
and the query is 

d
q

For each document we consider the random variable  (or  for short) 
representing wether a document is relevant to not.


We want to rank documents according to their probability of being relevant to a 
given query :

Rd,q R

q



AN THE OPTIMAL DECISION RULE

1/0 LOSS

The simples case:


• Penalty when we retrieve a document that is not relevant.


• Penalty when we miss a relevant document.


• The penalty is the same in all cases, there are no costs associated to 
retrieving documents.


If we need to rank documents then we rank them by decreasing .


If we need to return a set of documents we return all then ones where 
.


It can be proved that this choice minimise the expected loss under the 1/0 loss.

P(R = 1 |d, q)

P(R = 1 |d, q) > P(R = 0 |d, q)



MORE THAN THE 1/0 LOSS

RETRIEVAL COSTS

We can also have a more complex model for costs:


•  is the cost of retrieving a relevant document.


•  is the cost of retrieving a non-relevant document


Then to select the document to be retrieved  we must the one where for all 
non-retrieved documents  it holds that:

C1

C0

d
d′￼

C1 ⋅ P(R = 1 |d, q) + C0 ⋅ P(R = 0 |d, q) ≤ C1 ⋅ P(R = 1 |d′￼, q) + C0 ⋅ P(R = 0 |d′￼, q)

Weighted cost of

retrieving d

Weighted cost of 
retrieving d′￼



THE BINARY INDEPENDENCE MODEL



OR “BIM”

THE BINARY INDEPENDENCE MODEL

Binary Or “Boolean”. Each document (and query) is 
represented as a vector    
where  if the term is present and  otherwise

⃗x = (x1, …, xM)
xi = 1 xi = 0

Independence We assume that all terms occurs in a document 
independently.


Not a correct assumption, but “it works”

Additionally, we assume the relevant of a document to be independent 
on the relevance of other documents. 
This is not true in practice: e.g., duplicate and near-duplicate documents 
are not independent.



ESTIMATION OF THE PROBABILITY

P(R = 1 |d, q)

Probability for a document  
with representation  is retrieved 
given that a relevant document 

for the query  is retrieved

⃗x

q

Probability of retrieving a relevant 
document for the query q

P(R = 1 | ⃗x, ⃗q)

In out model this is given by

P( ⃗x |R = 1, ⃗q) P(R = 1 | ⃗q)
P( ⃗x | ⃗q)

By Bayes’ rule

WE DO NOT KNOW THE EXACT 
VALUE, WE WILL NEED TO 

PROVIDE ESTIMATES!



ESTIMATION OF THE PROBABILITY

P(R = 0 |d, q)

Probability for a document  
with representation  is retrieved 

given that a non-relevant document 
for the query  is retrieved

⃗x

q

Probability of retrieving a non-relevant 
document for the query q

P(R = 0 | ⃗x, ⃗q)

In out model this is given by

P( ⃗x |R = 0, ⃗q) P(R = 0 | ⃗q)
P( ⃗x | ⃗q)

By Bayes’ rule



FOR RANKING ODDS ARE SUFFICIENT

DO WE REALLY NEED TO KNOW THE PROBABILITY?

For the purpose of ranking, we can use a monotone function of the probability. 
For example, the odds of  given  and :R ⃗x ⃗q

O(R | ⃗x, ⃗q) =
P(R = 1 | ⃗x, ⃗q)
P(R = 0 | ⃗x, ⃗q)

P( ⃗x |R = 1, ⃗q) P(R = 1 | ⃗q)
P( ⃗x | ⃗q)

P( ⃗x |R = 0, ⃗q) P(R = 0 | ⃗q)
P( ⃗x | ⃗q)

P( ⃗x |R = 1, ⃗q) P(R = 1 | ⃗q)
P( ⃗x |R = 0, ⃗q) P(R = 0 | ⃗q)

CAN WE SIMPLIFY IT FURTHER?



RANKING AND PROBABILITIES

P( ⃗x |R = 1, ⃗q) P(R = 1 | ⃗q)
P( ⃗x |R = 0, ⃗q) P(R = 0 | ⃗q)

Depends on the document The same for all documents

Does not affect the ranking

We can remove it
P( ⃗x |R = 1, ⃗q)
P( ⃗x |R = 0, ⃗q)

We now have to estimate:



USING THE BIM

P( ⃗x |R = 1, ⃗q)
P( ⃗x |R = 0, ⃗q)

We can now employ the independence assumption: 
each of the terms is assumed to appear 
independently from the others

P(x1 |R = 1, ⃗q)
P(x1 |R = 0, ⃗q)

×
P(x2 |R = 1, ⃗q)
P(x2 |R = 0, ⃗q)

× ⋯ ×
P(xM |R = 1, ⃗q)
P(xM |R = 0, ⃗q)

M

∏
i=1

P(xi |R = 1, ⃗q)
P(xi |R = 0, ⃗q)

Which means the the value 
to estimate is now:



SPLITTING UP FURTHER

M

∏
i=1

P(xi |R = 1, ⃗q)
P(xi |R = 0, ⃗q)

Each  can only assume two values: 
 if the  term is not present 
 if the  term is present

xi

0 ith

1 ith

∏
i:xi=1

P(xi = 1 |R = 1, ⃗q)
P(xi = 1 |R = 0, ⃗q)

⋅ ∏
i:xi=0

P(xi = 0 |R = 1, ⃗q)
P(xi = 0 |R = 0, ⃗q)

For the terms 
in the document

For the terms not 
in the document



HOW MANY PROBABILITIES TO ESTIMATE?

For each term we need only to estimate four probabilities:

Document relevant Document not 
relevant

Term present

Tern absent 1 − pi

pi

1 − ui

ui

∏
i:xi=1

P(xi = 1 |R = 1, ⃗q)
P(xi = 1 |R = 0, ⃗q)

⋅ ∏
i:xi=0

P(xi = 0 |R = 1, ⃗q)
P(xi = 0 |R = 0, ⃗q)



SIMPLIFYING FURTHER

Let us assume that all query terms not in the query appears equally 
in relevant and non-relevant documents. That is,  when .pi = ui qi = 0

∏
i:xi=1

pi

ui
⋅ ∏

i:xi=0

1 − pi

1 − ui

∏
i:xi=1;qi=1

pi

ui
⋅ ∏

i:xi=0;qi=1

1 − pi

1 − ui

We can remove the factors for all terms not in the query, obtaining:



SIMPLIFYING FURTHER

∏
i:xi=1;qi=1

pi

ui
⋅ ∏

i:xi=0;qi=1

1 − pi

1 − ui

We now multiply everything by

∏
i:xi=1;qi=1

1 − pi

1 − ui
⋅

1 − ui

1 − pi

Each term is actually .1

By rearranging the factors we obtain:

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi
⋅ ∏

i:qi=1

1 − pi

1 − ui



SIMPLIFYING FURTHER

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi
⋅ ∏

i:qi=1

1 − pi

1 − ui

This part does not depend 
on the document! 
We can remove it

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi



RATIO OF ODDS

Odds of the term appearing 
in the document if 

the document is relevant

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi

pi

1 − pi

Inverse odds of the term 
appearing in the document if 
the document is not relevant

1 − ui

ui

Each factor can be seen as two odds:



RETRIEVAL STATUS VALUE

RSVd = log ∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi

The Retrieval Status Value (RSV) of a document  
is defined as the logarithm of the quantity that we now have:

d

= ∑
i:xi=1;qi=1

log
pi

ui

1 − ui

1 − pi



RETRIEVAL STATUS VALUE

Consider each term of the sum:

ci = log
pi

ui

1 − ui

1 − pi

ci = log
pi

1 − pi
+ log

1 − ui

ui

Which can be rewritten as a log odds ratio:

 can be considered the weight of the  term of the dictionary, 
and can be pre-computed (like other measures like the inverse 
document frequency)

ci ith



RETRIEVAL STATUS VALUE

At the end the RSV of a document  can be written as:d

RSVd = ∑
i:xi=qi=1

ci

Which algorithmically, can be described as:

To compute the RSV of a document , sum 
the weight  of each term contained in both 
the document and the query

d
ci

We now need a way to estimate the various probabilities to 
(pre-)compute all .ci



PROBABILITY ESTIMATION 
IN PRACTICE



ESTIMATION FOR NON-RELEVANT DOCUMENTS

• We assume that non-relevant documents are a majority inside the 
collection.


• Thus, we approximate the probability for non-relevant documents 
with statistics computed using the entire collection.


• Usually  for a term .


• Which is approximately , which is actually the inverse 

document frequency  for the term .

log
1 − ui

ui
= log

N − dfi

dfi
i

log
N
dfi

idfi i



ESTIMATION FOR RELEVANT DOCUMENTS

• Estimation for relevant documents is more complex. There are 
multiple approaches used in practice:


• We can estimate the probabilities by looking at statistics on a set 
of relevant documents that we have obtained in some way.


• We can put all probabilities equal to . With this estimate and 
assuming  for non-relevant documents, this approximation is 
the sum of the  for all query terms that occurs in the document.


• Another possibility is using some collection level statistics, for 

example obtaining .

0.5
idfi

idfi

pi =
dfi

N



COMBINATION WITH RELEVANCE FEEDBACK

We can combine relevance feedback to help us estimate the 
probability used in computing the :


1. Start with probabilities estimated as before


2. Retrive a set  of documents


3. The user classifies the documents retrieved and gives us a set of 
relevant documents:  


4. Re-compute our estimates for  and 

RSVd

V

VR = {d ∈ V : Rd,q = 1}

pi ui



RE-COMPUTING ESTIMATES

COMBINATION WITH RELEVANCE FEEDBACK

If   is large enough we can use the following updating: 
For each  let  be the set of relevant documents containing the  term:

VR
i VRi ith

pi =
|VRi |
|VR |

ui =
dfi − |VRi |
N − |VR |

However in most case the set of documents evaluated by the user is not 
large, so we use a “smoothed” version:

pi =
|VRi | + 1

2

|VR | + 1
ui =

dfi − |VRi | + 1
2

N − |VR | + 1



PSEUDO-RELEVANCE FEEDBACK

COMBINATION WITH RELEVANCE FEEDBACK

We can extend the previous model to allow for pseudo-relevance feedback.

Select the first  highest ranked documents, consider them as a set k V

Consider all of them relevant, and update the probability accordingly 
(simply substituting  with  in the previous equations):VR V

pi =
|Vi | + 1

2

|V | + 1
ui =

dfi − |Vi | + 1
2

N − |V | + 1

Repeat until the ranking converges



OKAPI BM25



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

This model is non-binary, since it takes into account the frequency of the 
terms inside the document.

RSVd = ∑
t∈q

idftWe start with:

Recall that this is the formula that we obtain with one of our estimates.

We now need a way to add information about the term frequencies



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

Let  be the length of the document and  the average length of the 
documents in the collection.

Ld Lavg

 and  are two parameters, with  and , usually k1 b b ∈ [0,1] k1 ≥ 0 k1 ∈ [1.2, 2.0]

RSVd = ∑
t∈q

idft ⋅
(k1 + 1)tft,d

k1((1 − b) + b ⋅ Ld

Lavg
) + tft,d



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

Let us break up the formula in its components

RSVd = ∑
t∈q

idft ⋅
(k1 + 1)tft,d

k1((1 − b) + b ⋅ Ld

Lavg
) + tft,d

How much to normalise with respect to length, 
regulated by , with : no normalisation, 
with , full scaling by document length

b b = 0
b = 1

How much to consider term frequency,

With  we have the binary modelk1 = 0


