AG 3 - fifth assignment

Valentina Beorchia

November 20, 2022

- 1. Let *X* and way be a qp variety, and let f : -- Y be a rational map. Prove that *f* is dominant if and only if for every representative pair (U, φ) , we have that $\varphi(U)$ is dense in *Y*.
- 2. Let $X = V_P(x_1^2 + x_2^2 x_0^2) \subseteq \mathbb{P}^2_{\mathbb{C}}$ be the projective closure of the unit circle. Let

$$U = X \setminus V_P(x_1, x_0 - x_2),$$

and consider the morphism $\varphi: U \to \mathbb{P}^1$ given by $\varphi(x_0: x_1: x_2) = (x_0 - x_2: x_1)$. Show that:

- (a) the rational map $f = \langle U, \varphi \rangle$ is in fact a morphism on *X*;
- (b) the morphism *f* is an extension to the north pole of the stereographic projection;
- (c) find the image of the north pole;
- (d) the morphism f is an isomorphism, and find its inverse.
- 3. Consider the affine curve $C = V(y^4 + x^4 x^2) \subseteq \mathbb{A}^2$ and determine its strict transform under the blow up of \mathbb{A}^2 at the origin.
- 4. Optional Show that the second projection

$$p_2: \hat{\mathbb{A}}^2_{\mathbb{R}} \to \mathbb{P}^1_{\mathbb{R}}$$

gives the blow-up $\hat{\mathbb{A}}_{\mathbb{R}}^2$ of $\mathbb{A}_{\mathbb{R}}^2$ in the origin the structure of a vector bundle on $\mathbb{P}_{\mathbb{R}}^1$. What kind of vector bundle is it?