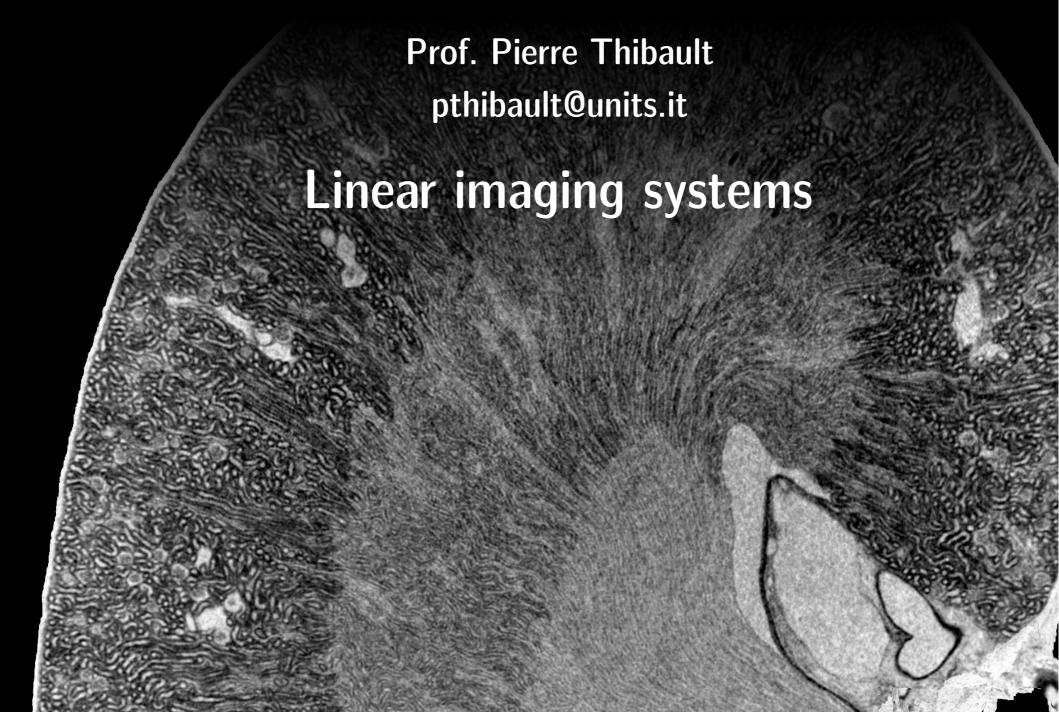
Image Processing for Physicists



Overview

- Definition of resolution
- Imaging systems:
 - Linear transfer model
 - Noise

Resolution

"the smallest detail that can be distinguished"

- No unique definition
 - Numerical aperture

microscopy, photography, telescopes,...

- Pixel size
- Other criteria (PSF, MTF)
- What is "detail"?
- What is "distinguish"?

Resolution

1280 x 1280 640 x 640

- not simply given by pixel size (i.e. sampling rate)
- light quality, optics quality, detector quality, algorithm quality, noise, ...

Linear translation-invariant systems

Point spread function ("impulse response")

•(LTI system: convolution with PSF

Imput:
$$f(x,y) = \int dx'dy' f(x',y') \delta(x-x') \delta(y-y')$$
,

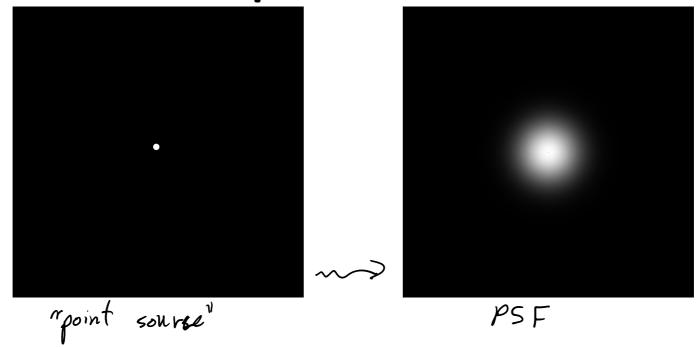
Imaging system

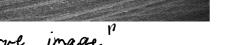
Output: $5 \{ f \} = \int dx'dy' f(x',y') h(x-x',y-y')' = f * h$

Imaging systems

Imaging systems

Point spread function





measured image

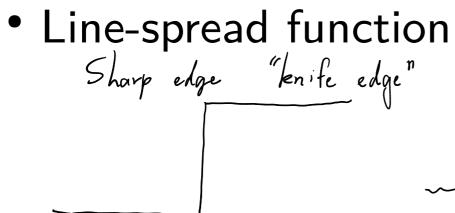
Imaging systems

PSF and resolution, andth of PSF Commonly, resolution from PSF given by FWHM full width at half maximum" Rayleigh criterion: applies to imaging systems with a circular apenture PSF. Airy disc

Imaging systems

Measurement of the PSF

Direct measurement from impulse



edge time-spread function Imaging system

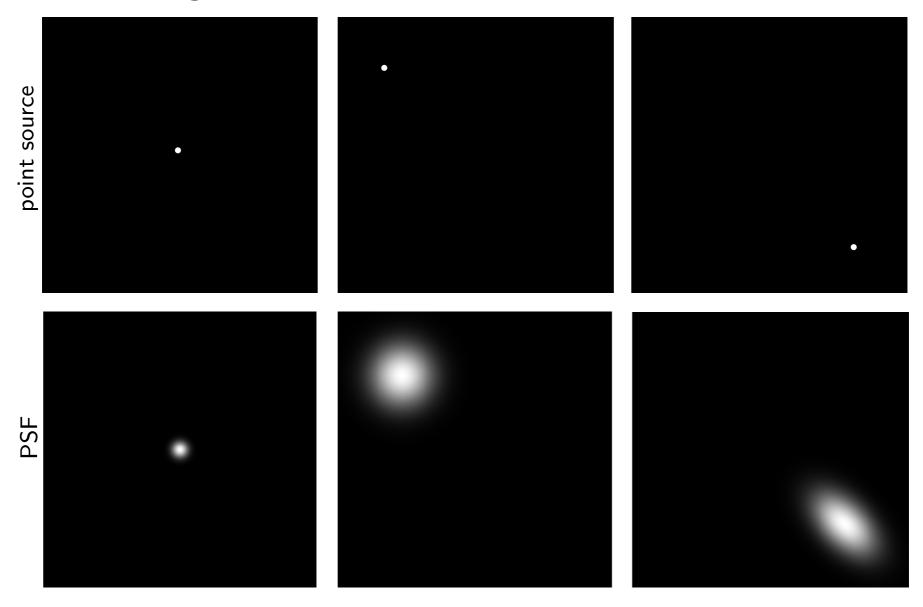
$$H(x) = \begin{cases} 0 & x (0) \\ 1 & x > 0 \end{cases}$$
 Since $\frac{\partial H}{\partial x} = \delta(x)$
Heavyside step function

Since
$$\frac{\partial X}{\partial H} = \delta(X)$$

PSF = derivative of ledge spread function

Imaging systems

PSF and translation invariance



- Not translation invariant o PSF depends on position o not a convolution
- Useful to model system imperfections, lens aberrations, ...

The Fourier picture

 $f = F(u) \cdot H(u)$ describes how an oscillating signal changes through the imaging system.

Consider a single sportial frequency Uo:

Irroginar system

G S { e 27 i uo x } = H(uo) e

P

eigenvalue

oscillating terms are eigenfunctions of the (LTI) imaging system

F.T. of PSF: OTF Poplical Transfer Function"

Optical transfer function

Response of a system to an oscillating signal with well-defined frequency

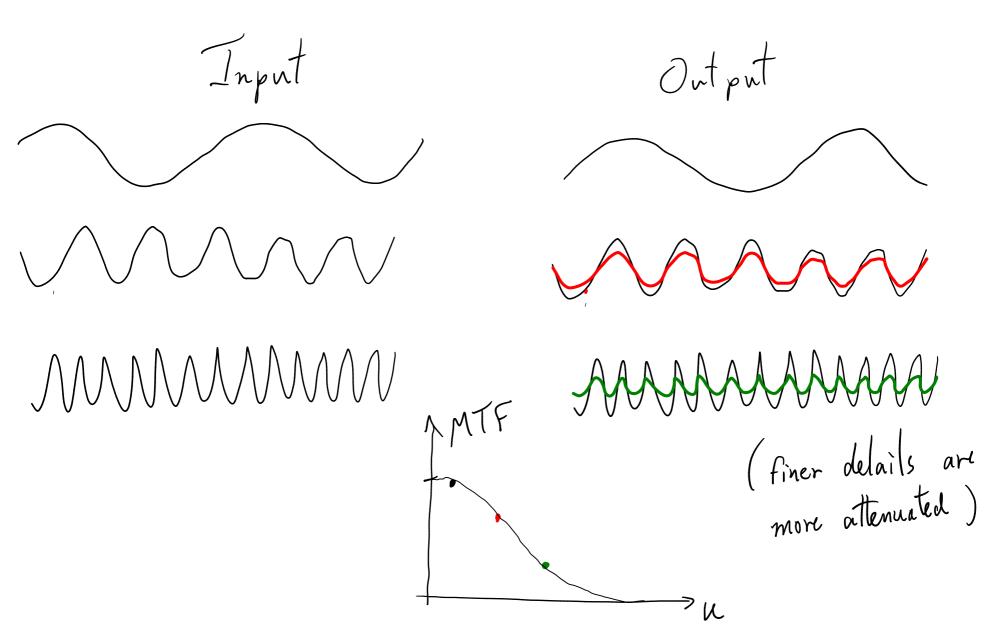
$$OTF(u) = \mathcal{F}\{PSF(x)\}$$

"modulation transfer function"

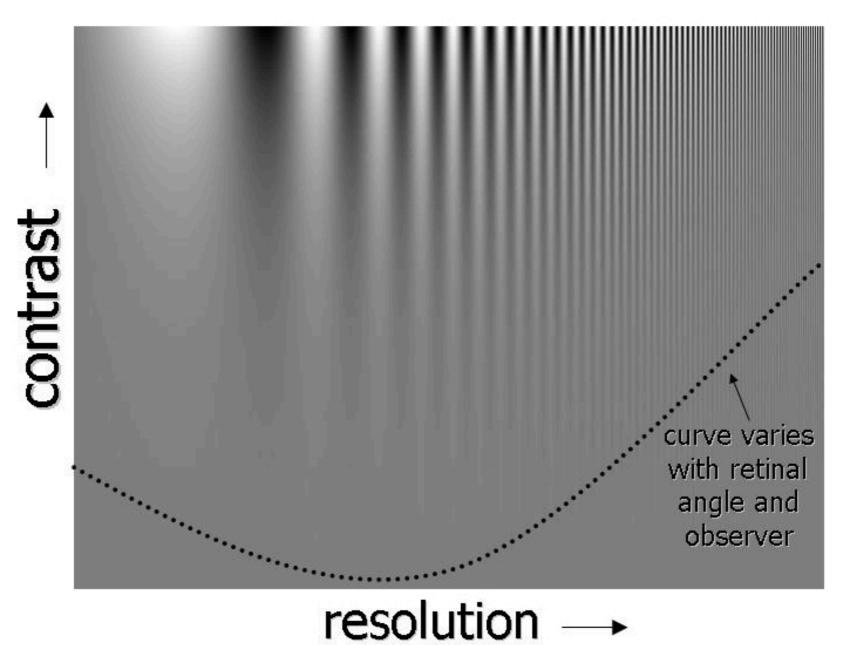
phase transfer function

Modulation transfer function

Amplitude change of an oscillating signal for a given frequency



Eye MTF



Campbell-Robson curve

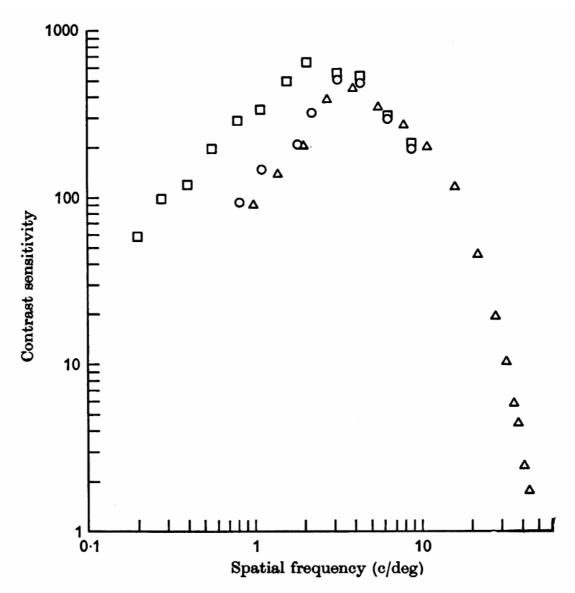
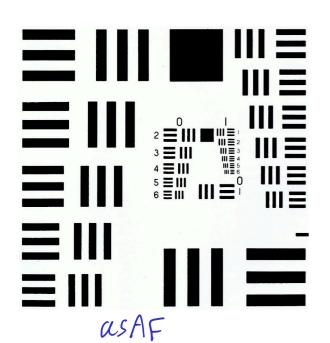
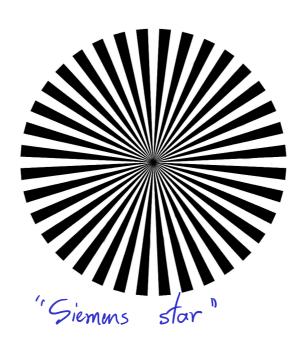
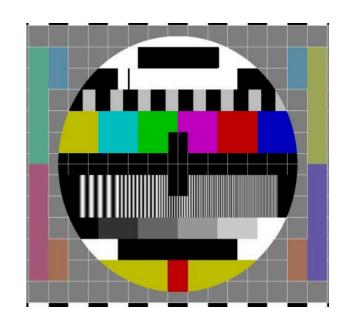


Fig. 2. Contrast sensitivity for sine-wave gratings. Subject F.W.C., luminance 500 cd/m^2 . Viewing distance 285 cm and aperture $2^{\circ} \times 2^{\circ}$, \triangle ; viewing distance 57 cm, aperture $10^{\circ} \times 10^{\circ}$, \square ; viewing distance 57 cm, aperture $2^{\circ} \times 2^{\circ}$, \bigcirc .

Measurement of MTF



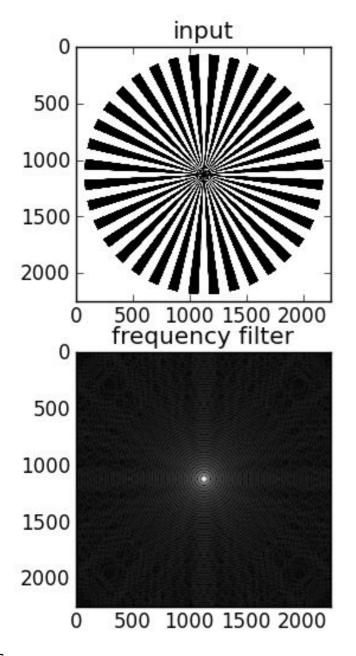


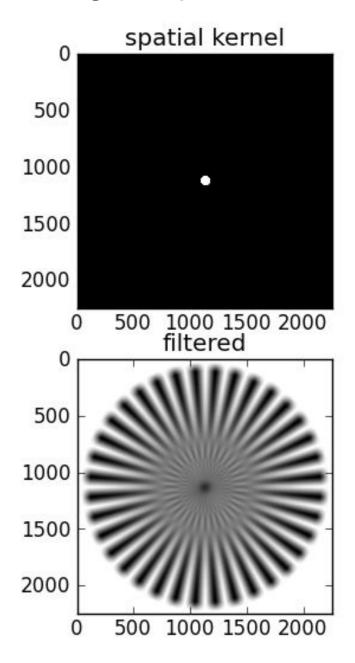


source: http://fotomagazin.de

Phase transfer function

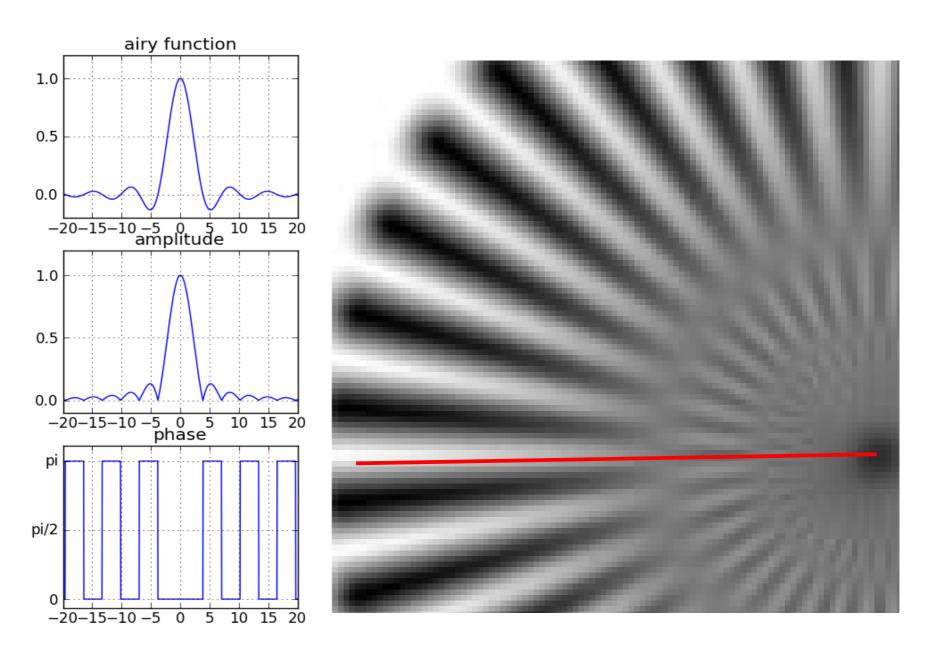
describes how an oscillating signal changes in phase due to system

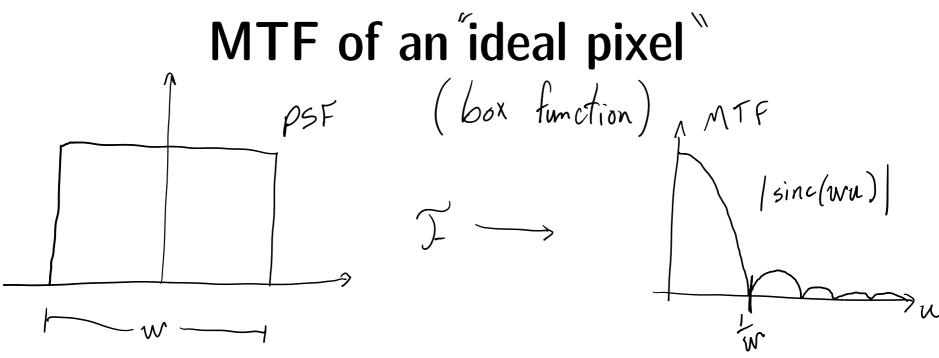




Phase transfer function

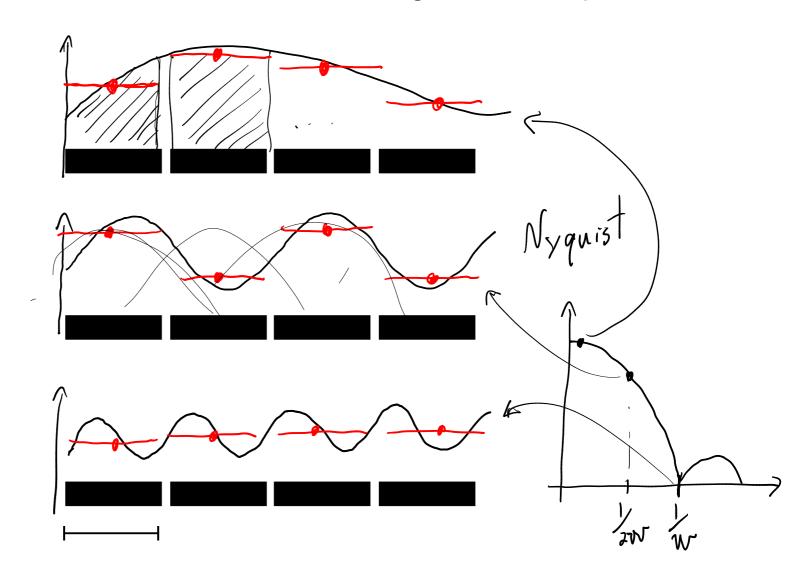
describes how an oscillating signal changes in phase due to system





Pixel MTF

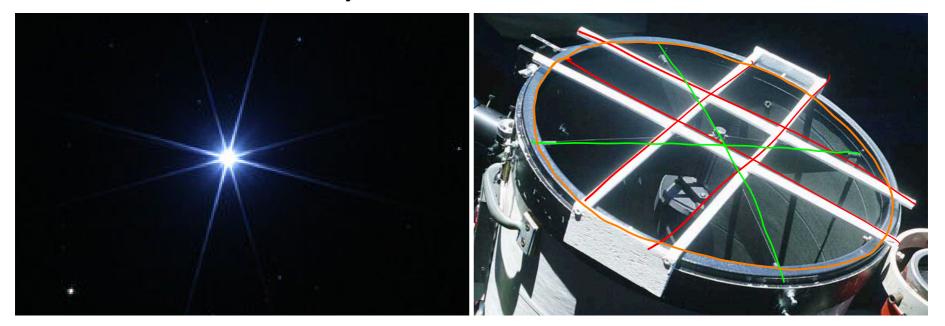
Modulation transfer function of a single detector pixel



Imaging as a linear filter

PSF examples

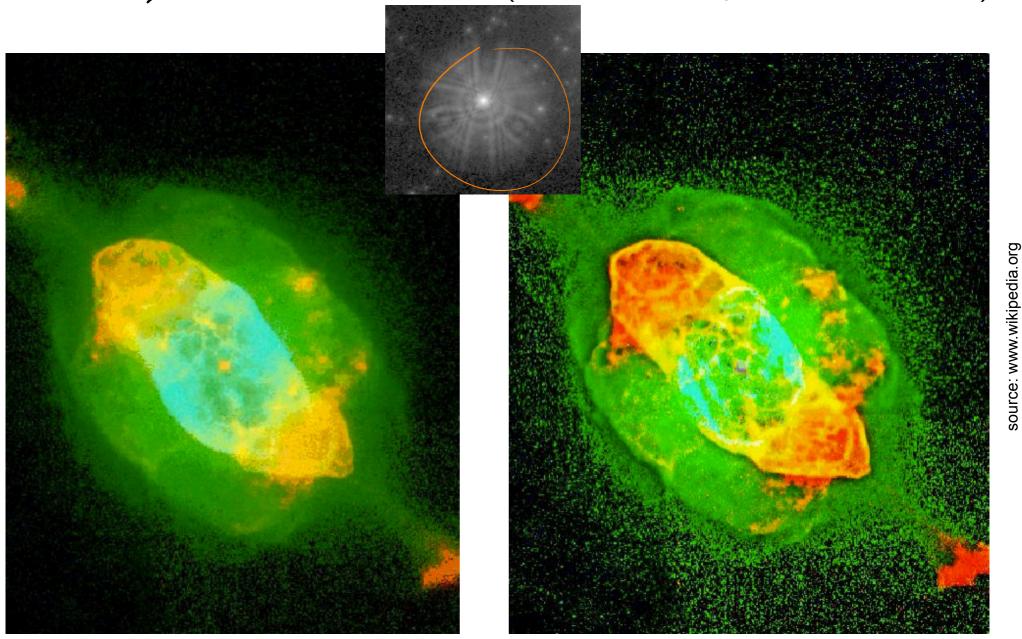
isolated stars are essentially PSFs



source: www.apod.nasa.gov

PSF examples

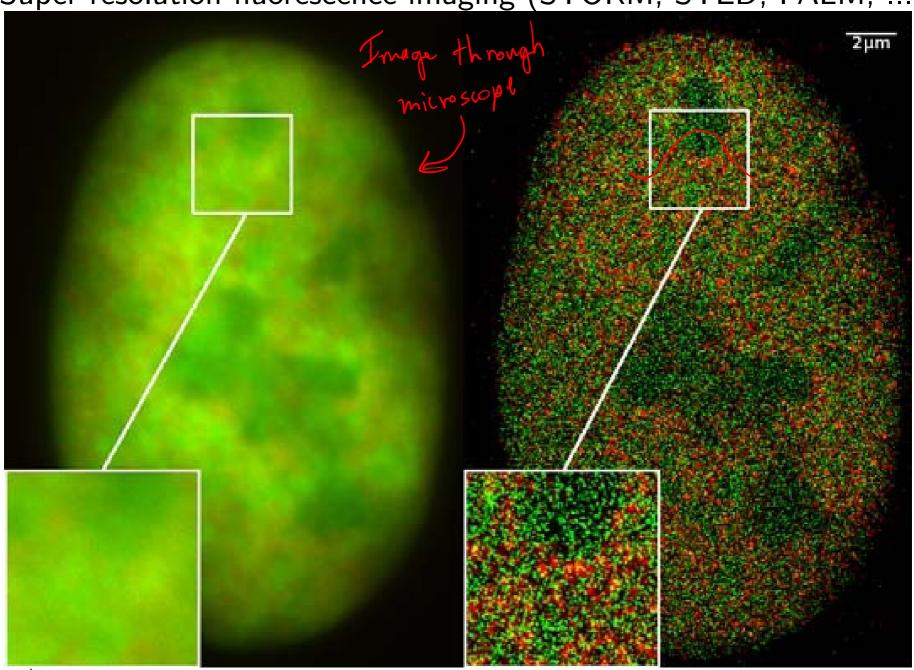
Hubble flawed mirror deconvolution (correction for spherical aberration)



Imaging systems

PSF examples

Super-resolution fluorescence imaging (STORM, STED, PALM, ...)

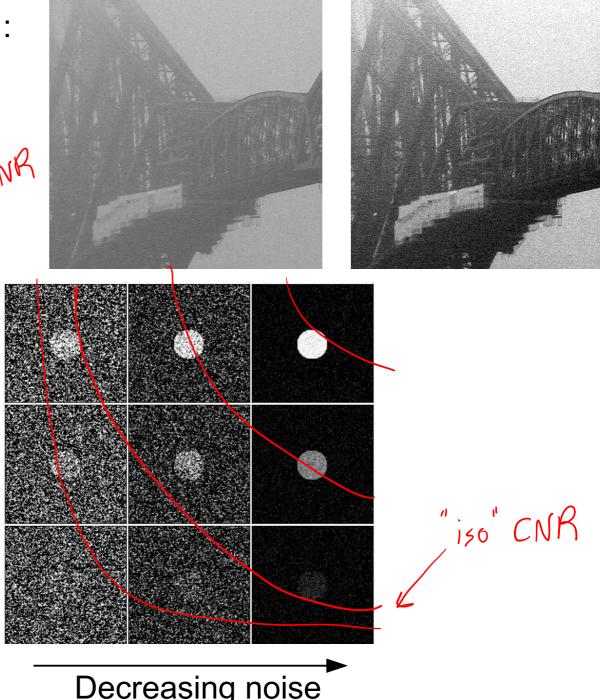


Contrast and noise

• Intensity operation: higher contrast, higher noise

 Contrast-to-noise remains constant

Increasing signa



Decreasing noise

Random variables

random variable, sample space

$$\mathcal{S}$$

• probability density function
$$PDF''$$

$$p(a < x < b) = \int_{a}^{b} p(x) dx$$

$$probability density \int_{a}^{b} p(x) dx = 1$$

$$\int_{0}^{\infty} \rho(x) dx = 1$$

expectation value

case:
$$E[x] = \langle x \rangle = \mu - \int x \rho(x) dx$$
"mean"

$$var(x) = V[x] = E[(x - E[x])^2] = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

Imaging systems

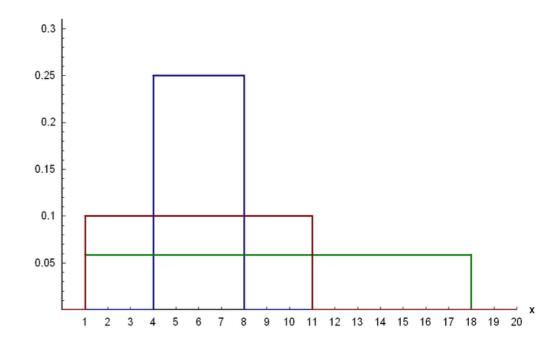
Uniform distribution

probability density function

$$P(x) = \begin{cases} b-\alpha & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
0.25
0.15

expectation value

$$\langle x \rangle = \frac{1}{2}(a+b)$$

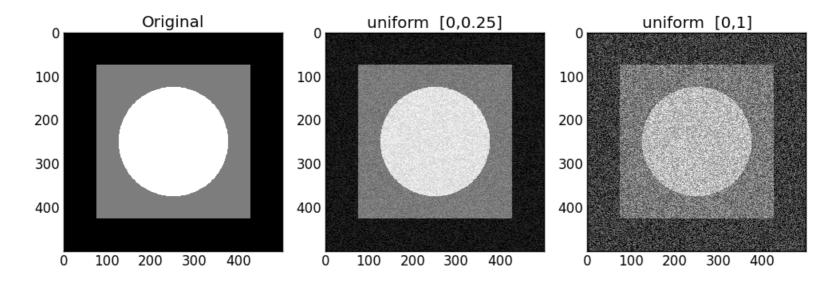


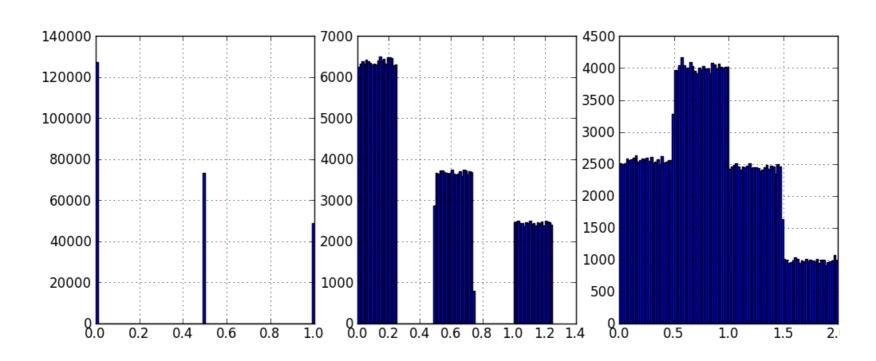
variance

$$van x = \frac{\left(b - a\right)^2}{12}$$

· occurrence not very common, but useful to construct other probability distributions

Uniform distribution



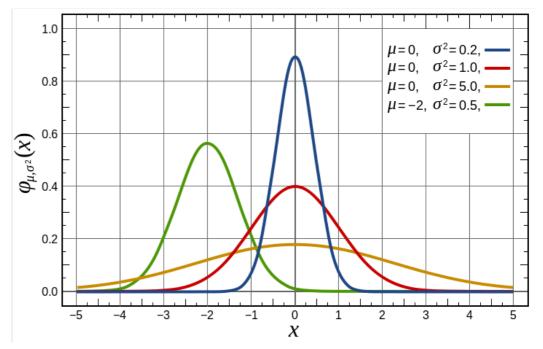


Gaussian distribution

probability density function

probability density function
$$\int_{-\infty}^{\infty} (x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$$

expectation value



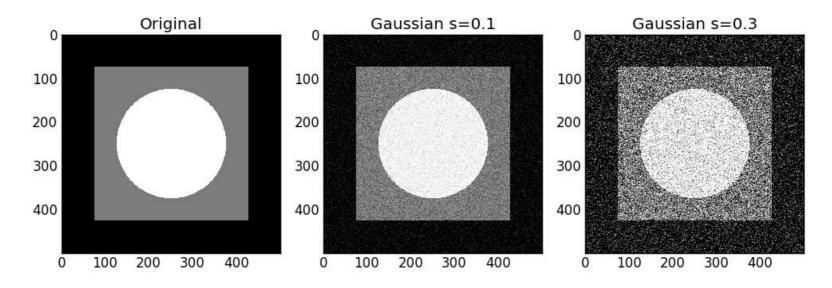
variance

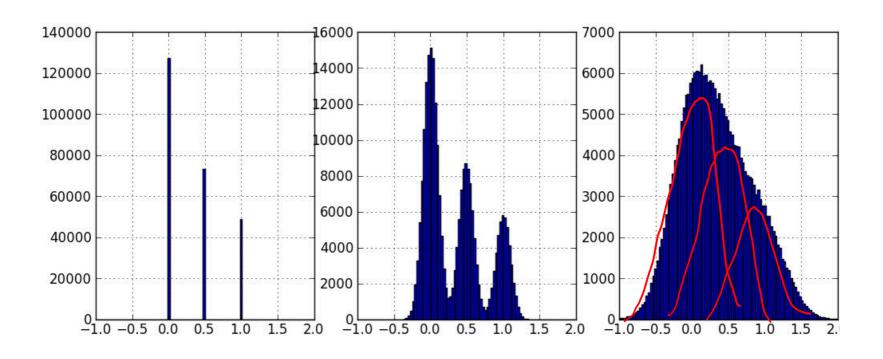
occurrence

very common

(central limit theorem)

Gaussian distribution





Poisson distribution

0.40

0.35

probability mass function

$$g(n) = \frac{1}{n!} \lambda^n e^{-\lambda}$$

expectation value

$$E[n] = \lambda$$

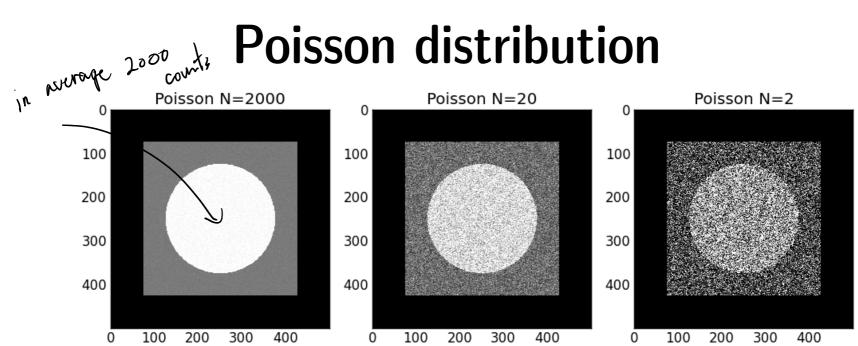
variance

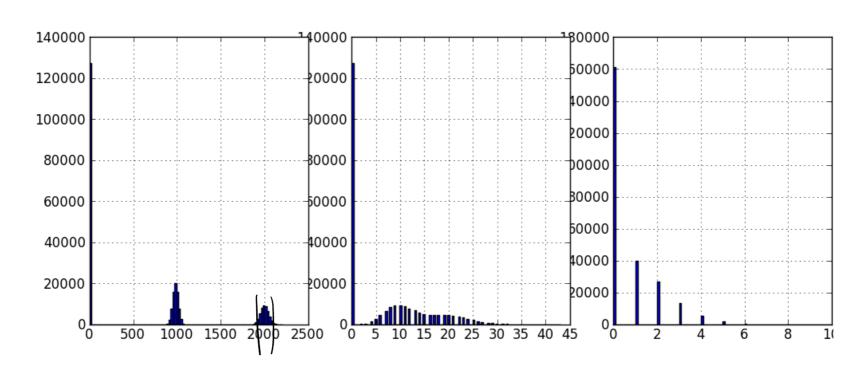
$$varn = \lambda$$

occurrence

0.30 $\lambda = 10$ 0.25 X 0.20 0.15 0.10 0.05 0.00 S/N ratio $E(n) = \frac{\lambda}{N} = \sqrt{\lambda}$

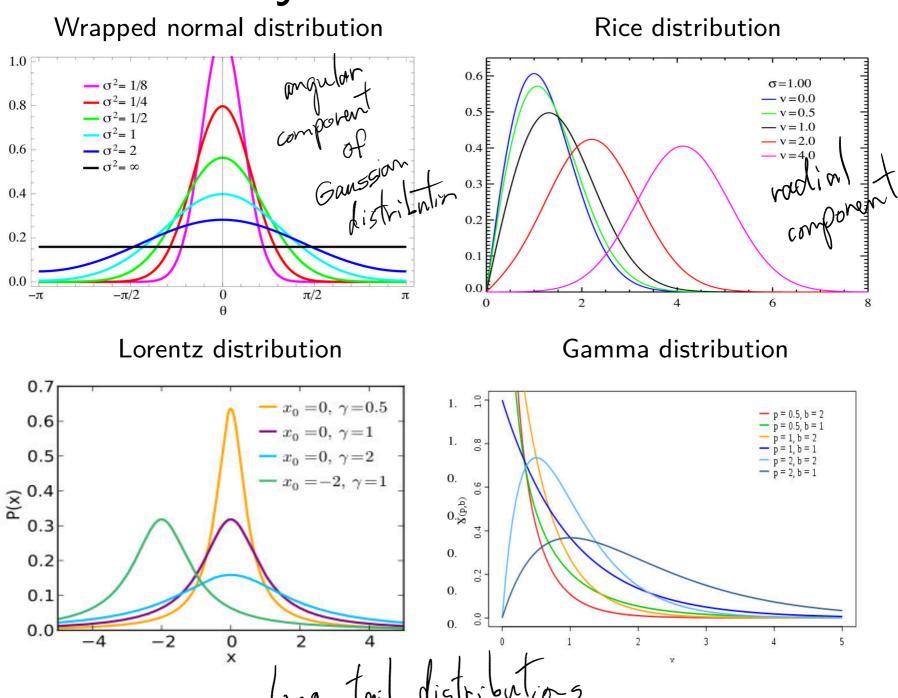
 $\lambda = 1$





Poisson distribution

Many other distributions



Imaging systems

Detector noise (CCD)

- Various sources:
 - shot noise (photon statistics, Poisson)
 - dark current (thermal electronic fluctuations in semiconductor, Poisson)
 - readout noise (fluctuations during amplification and digitization, Gauss)
 - many other imperfections ... systematic errors (some expositive)
- dark frame measures detector noise, hot pixels, dead pixels

• bright frame measures gain differences and imperfections (dust, etc)

Flat field uniform illumination

dark frame dark

bright frame flat dark raw image raw calibrated image

Correlation & Convolution

Convolution:
$$f * g = \int_{-\infty}^{\infty} f(x') g(x-x') dx'$$

Convolution theorem: $\int_{-\infty}^{\infty} f * g = \int_{-\infty}^{\infty} f(x') g(x-x') dx'$

Correlation $f * g = \int_{-\infty}^{\infty} f(x') g(x+x') dx'$
 $\int_{-\infty}^{\infty} f(x') g(x+x') dx'$
 $\int_{-\infty}^{\infty} f(x') g(x') e^{2\pi i u'} (x') e^{2\pi i u'} (x') e^{2\pi i u'} (x') e^{2\pi i u'} (x') e^{2\pi i u'} e^{2\pi i u'} (x') e^{2\pi i u'} e^{2\pi i u'}$

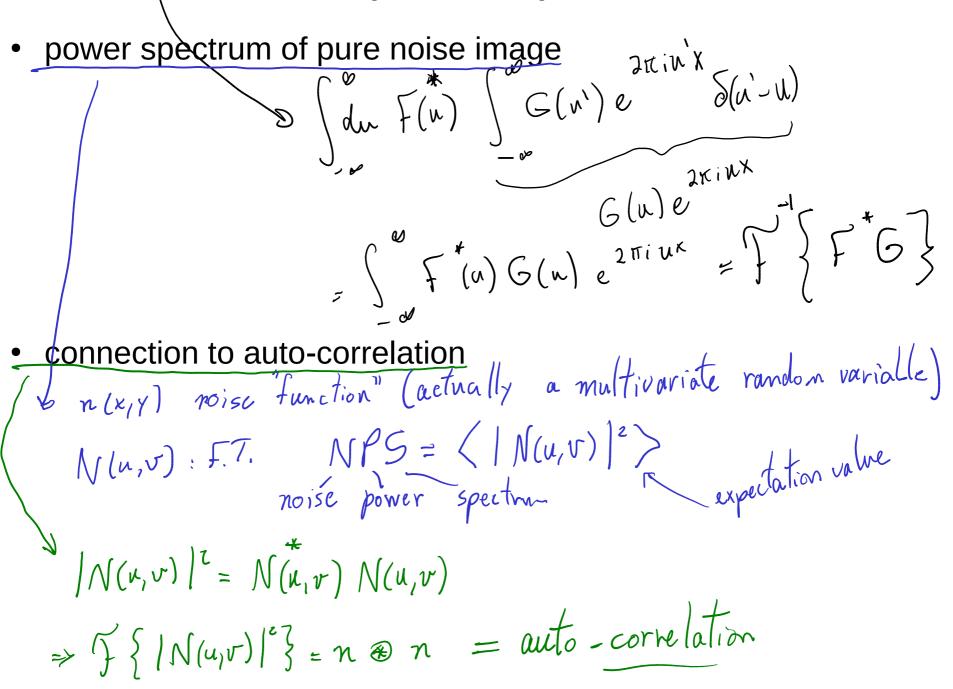
Imaging systems

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{2\pi i u x} du$$

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{-2\pi i u x} du$$

if
$$f = f' \Rightarrow F(u) = F(-u)$$

Noise power spectrum

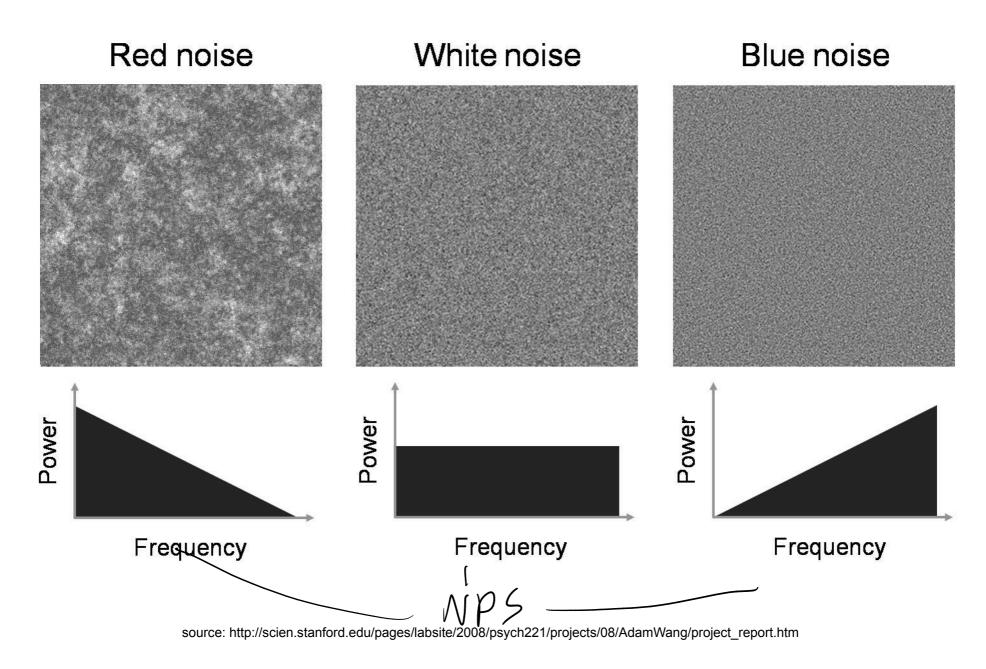


Imaging systems

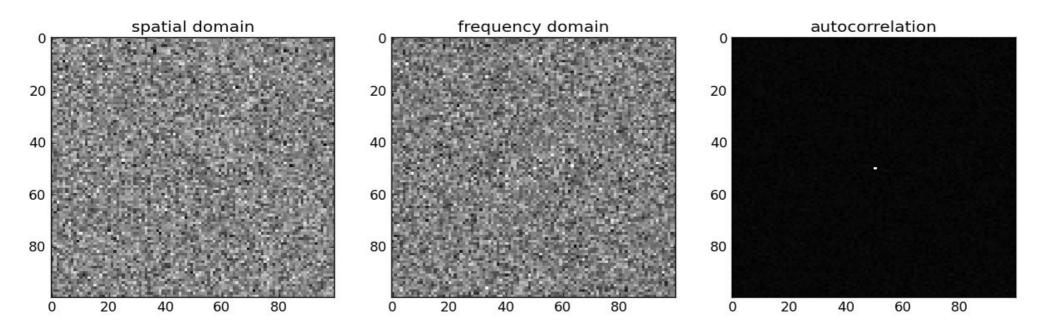
Procedure for noise charterization: 1) measure multiple realizations of the random variable n(x,y) (L) take many dark frames) $n_i(x,y)$ or i(x,y) $2) \quad \mathcal{N}_{i}(u,v) = \mathcal{F}\left\{n_{i}(x,y)\right\}$ 3) $\left(\left|N(u,v)\right|^{2}\right) \simeq \frac{1}{M} \left[\left|N_{i}(u,v)\right|^{2}\right]$ Ly estimate of NPS

4) TTENPS 3 -> estimate of noise autocorrelation

Noise power spectrum

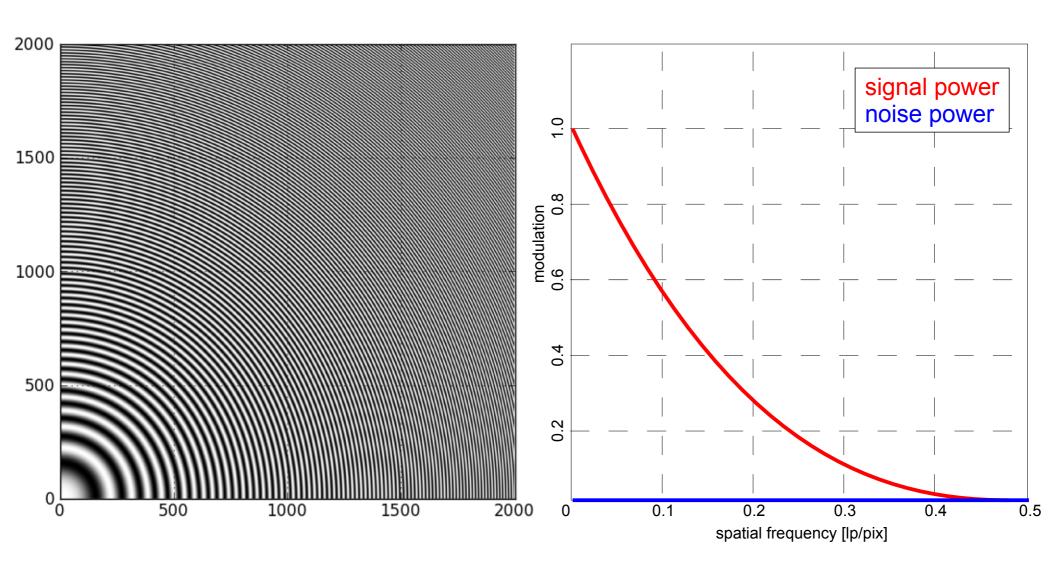


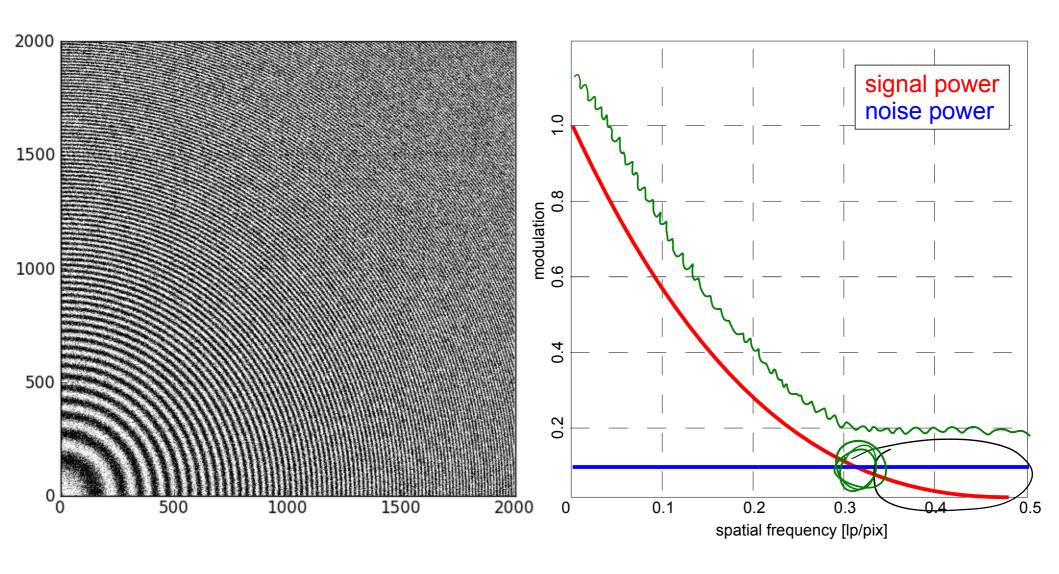
White noise

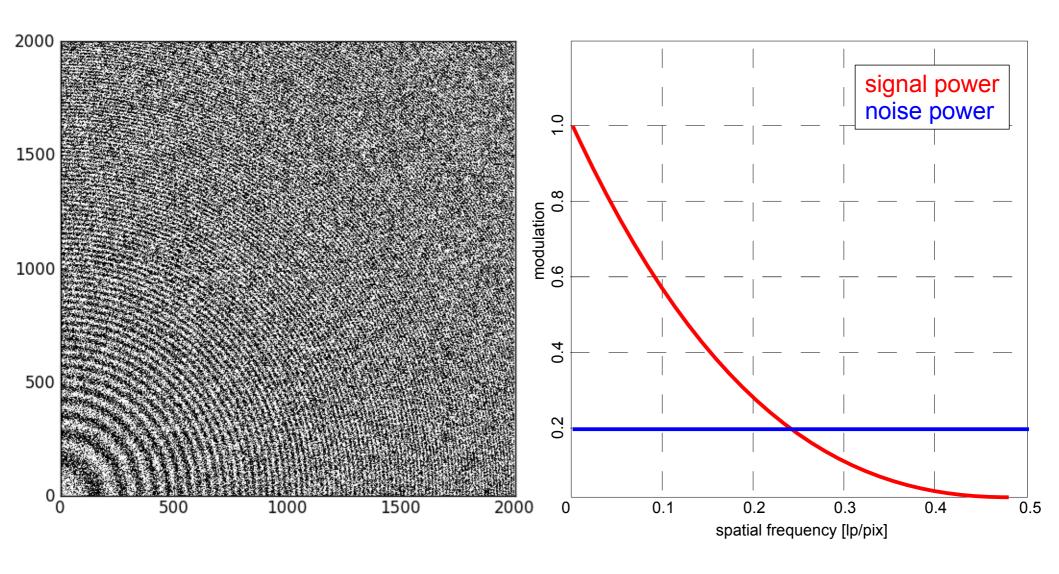


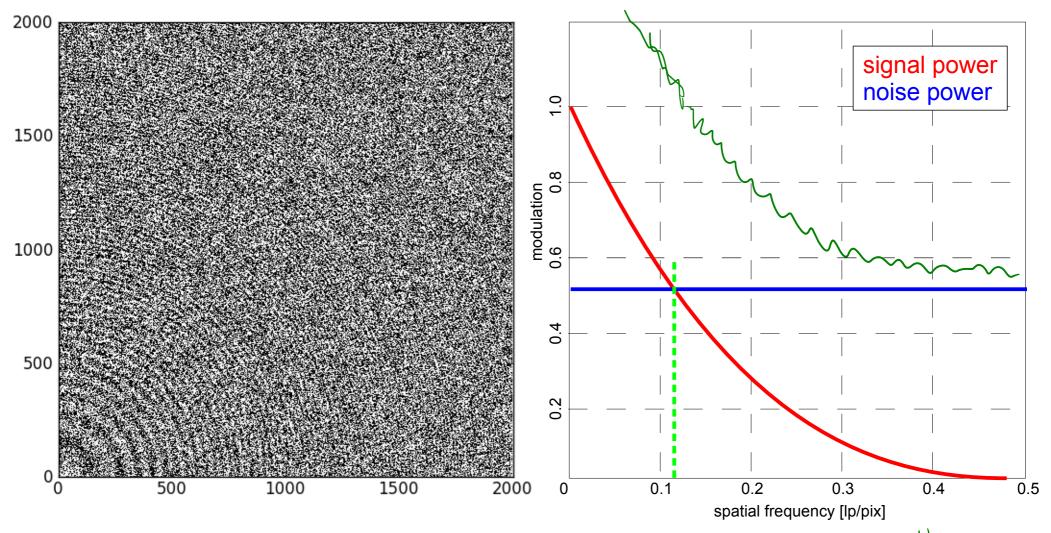
- white noise in spatial domain equals white noise in frequency domain
- white noise is perfectly uncorrelated
- all other types of noise are correlated to some degree
- white noise is an idealization

NPS is uniform
over whole
over frequency
range





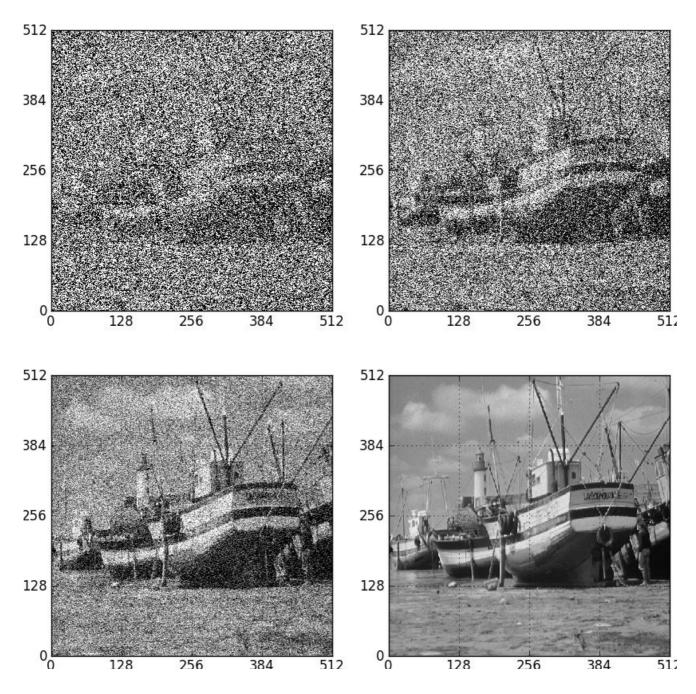




- Noise power exceeds signal power for high frequencies
- Small scale image details are lost in noise first

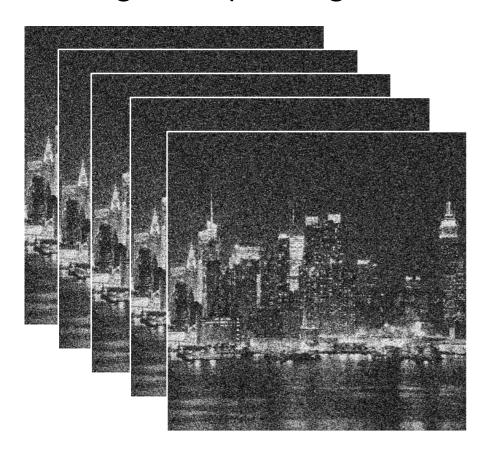
removes more noise than signal > can be used for

Imaging systems



Noise reduction by averaging

Average multiple images



signal amplified, noise concelling out

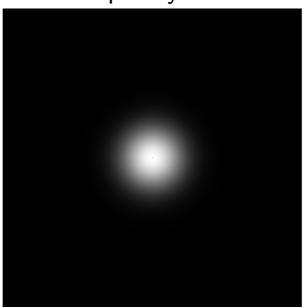
requirement: additive noise, zero mean

Denoising by linear filtering

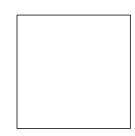
- use spatial convolution or frequency filtering to reduce noise
- noise reduction
 possible, but at cost
 of sharpness
- trade-off between noise reduction and resolution
- need fancier methods

original

frequency filter



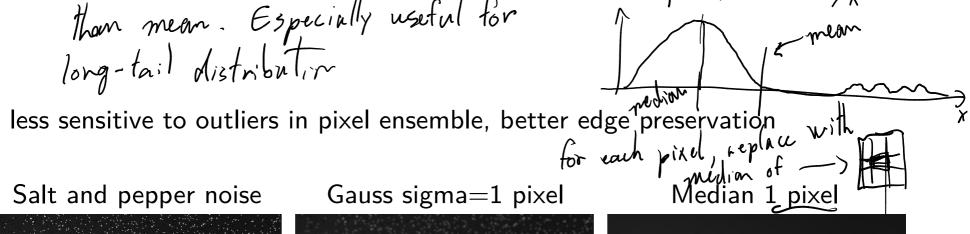
convolution kernel

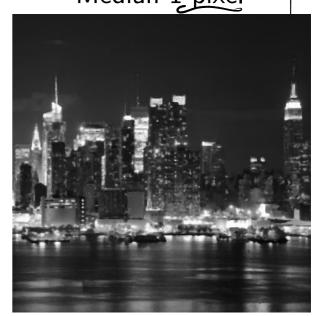


Resulting image

Median filtering

Use median as estimator for fat tail distributions median is loss affected by outliers
than mean. Especially useful for
long-tail distribution

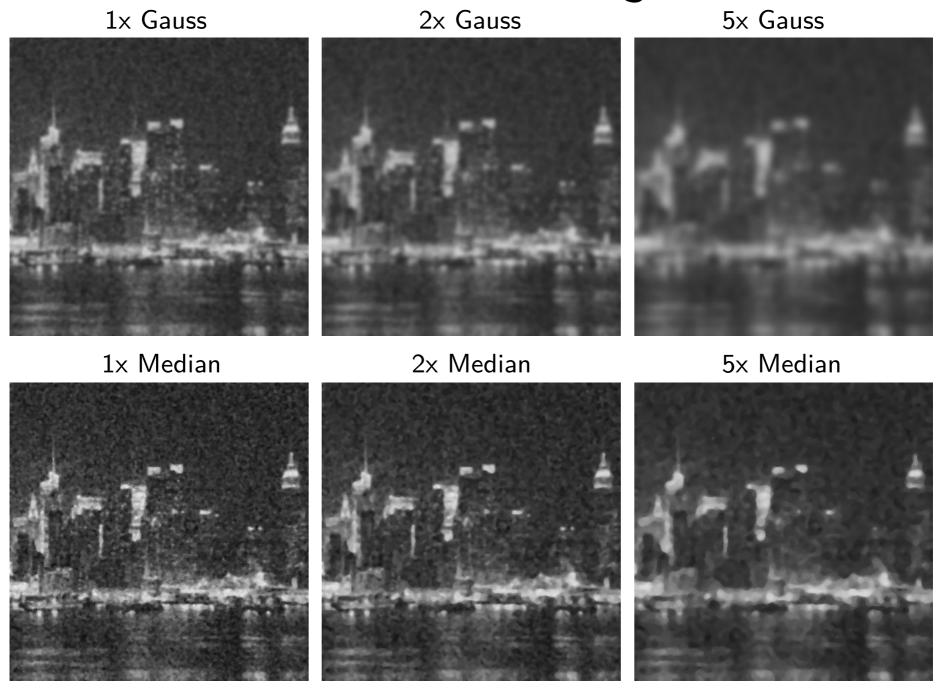




integral = 0.5

"zingers"

Median filtering



Common abbreviations

Abbreviation	Name	Definition
IRF	Impulse response function	Linear operator map of delta function
PSF	Point spread function	Image of point object (optical IRF)
OTF	Optical transfer function	Fourier transform of PSF
PTF	Phase transfer function	Phase part of OTF
MTF	Modulation transfer function	Amplitude of OTF
CTF	Contrast transfer function	MTF for non-sinusoidal objects
PDF	Probability density function	Probability distribution for a given random variable
SPS	Signal power spectrum	Amplitude squared of signal F.T.
NPS	Noise power spectrum	Amplitude squared of noise F.T.
SNR	Signal to noise ratio	Mean signal / mean noise
CNR	Contrast to noise ratio	Mean contrast / mean noise