INFORMATION

RETRIEVAL



mailto:lmanzoni@units.it

GENERAL INFORMATION (1)

You can use any programming language for the implementation
(C, C++, Python, Java, Common Lisp, ...). Ask if you want to use
something unusual.

Your code should be able to compile/run on Linux/macOS or any
other system with a unix-like environment.

You should provide a way to save and load the entire index from
disk, to avoid re-indexing when the program starts.

Obviously, if you find a library with “make_ir_system()” or
something that removes the large majority of the work, ask me if
it is OK to use it.




GENERAL INFORMATION (2)

Comment the code in a reasonable way.

Keep an eye on performances: if it is faster to read a large
collection from disk than to answer a query then there is a

problem.

You will need to prepare a presentation (approx. 25-30 minutes +
time for questions) explaining your work.

Be ready to answer general questions about the topics covered in
the course (i.e., don’t burn your notes after selecting the project).

Projects should be made by a single person.




BOOLEAN MODEL

PROJECT #1

Write an IR system able to answer:
Boolean queries with AND, OR, and NOT.

Wildcard and phrase queries.

Some normalisation or stemming can be performed
(for stemming you can use a library)

You can implement spelling correction.

Evaluate the system on a set of test queries.




VECTOR SPACE MODEL

PROJECT #2

Write an IR system able to answer, using the vector space model:
Free-form text queries.

The system must allow relevance feedback.

Also the use of pseudo-relevance feedback is possible.

Evaluate the system on a set of test queries.




PROBABILISTIC IR
PROJECT #3

Write an IR system able to answer, using a probabilistic model
(BIM or BM25):

Free-form text queries.

The system must allow relevance feedback.

Also the use of pseudo-relevance feedback is possible.

Evaluate the system on a set of test queries.




LOW-LEVEL DETAILS

PROJECT #4

This project is better written using a lower-level language like C,
C++, Rust, etc. since some low level manipulations might be
necessary.

Write a standard Boolean IR system (queries with AND/OR/NOT).
Implement a compressed representations for the dictionary.

Compress the posting file. For the size of the gaps use a variable
length encoding.

Compare the size occupied (and, possibly, speed) by a non-
compressed representation vs a compressed one.




UPDATE THE DICTIONARY

PROJECT #5

Write a standard Boolean IR system (queries with AND/OR/NQOT)
plus the ability to answer phrase queries.

Allow the user to add and delete documents.

Addition and deletion should be efficient, so one or mode
additional indexes must be used. Recall that it should also be
possible to merge the indexes.

To test it, split the dataset in 3 parts, A, B, and C. Initially the
index should contain A and B, then C must be added and B
removed (not all at the same time).




WEB CRAWLING

PROJECT #6

Write a simple web crawler that has that is both fair and robust
(i.e., the essential properties that any web crawler should have).

For robustness only the minimum amount is needed and can be a
simple heuristic.

The crawler should either be multithread (or use async to avoid
blocking on requests)...

...or implement some kind of check for freshness.

This project can potentially be “split” into two distinct projects.




PAGERANK

PROJECT #7/

» On a dataset of webpages to be decided (main problem is of
finding a small and significant dataset)

* Implement the PageRank algorithm

* Also implement the ability to get a list of pages and use them to
define the jump vector, thus performing topic-specific PageRank.




LATENT SEMANTIC INDEXING

PROJECT #8

Write an IR system that uses latent semantic indexing to answer
queries.

The system must accept free-form text queries

Evaluate the system on a set of queries...

...and try to use different dimensions for the dimensionality
reduction.




RECOMMENDER SYSTEM

PROJECT #9

Given a dataset, containing items and users (what items the user

has liked)

Build a Weighted MF to find the user and item embedding.

The system must accept as input “a user” (a set of liked
documents).

Return a ranking of documents

(you can use the fact that you have a vector representation for
document to provide the ranking).




SPLITTABLE PROJECTS
SOME PROJECT CAN BE MADE DIFFERENT ENOUGH

Project #2 (vector space model) can be split into two parts if the

method used to perform the similarity computation efficiently is
different. (#2.a and #2.b)

Project #3 (probabilistic IR) can be split into two parts if the
probabilistic model employed are different. (#3.a and #3.b)

Project #4 (low level details) can be split into two parts if the data
structures employed by the dictionary are different. (#4.a and #4.b)

Project #6 (web crawler) can be split into two parts (#5.a and #5.b)
if one implementation is multithreaded and one check for
freshness.




“THEORY PROJECTS”
WITH LESS CODE

All project without code will require to write a report of reasonable
length. Some possible projects include:

* Perform a review of the different similarity measures used in different
models (the vector space model in particular), comparing the
differences among them and how to compute them efficiently.

* Perform a review of the operations of stemming and spelling

correction for languages different from English.
* Provide an introduction to fuzzy logic and fuzzy information retrieval.

* |Information retrieval for bioinformatics: what are the main differences
from classical IR? Which data structures are used?




ADDITIONAL PROJECTS

MIXED THEORY/PRACTICAL

Additional possible theory (or practical) projects are:

* A review of the different applications of neural networks in
information retrieval. This project can also be in the form of a
notebook illustrating the application to a toy collection

* A review of different multimedia IR techniques, in particular:

* Retrieval of images
* Retrieval of music

 Retrieval of video




