
Programming in Java –
Basics of Input and Output

Paolo Vercesi

Technical Program Manager



Input and Output streams

Data streams

Agenda

Reading and writing binary data

Reading and writing Java types

Readers and Writers
Reading and writing text



Input and Output stream
Reading and writing binary data



© 2021 ESTECO SpA

I/O Streams

I/O in java is bases on streams. Not to be confused with the streams in java.util.stream
The abstraction is the same, but the implementation is different

I/O streams represents a flow of binary data

Input streams are used to read from data sources. 
Output streams are used to write to data targets



© 2021 ESTECO SpA

Introducing InputStream

public class InputStream implements Closeable {
…
public abstract int read() throws IOException;

…
}

Reads the next byte of data from 
the input stream

The value byte is returned as an int
in the range 0 to 255

If no byte is available  because the 
end of the stream has been reached, 
the value -1 is returned

The method blocks until
• input data is available
• the end of the stream is detected
• an exception is thrown

try (InputStream is = …) {
int read;
while ((read = is.read()) != -1) {

System.out.println("Read: " + read);
}

}

try-with-resources



© 2021 ESTECO SpA

Examples of InputStream 1/3

String fileName = "G:\\My Drive\\ … \\Input and Output.pptx";
try (InputStream fis = new FileInputStream(fileName)) {

int count = 0;
while (fis.read() != -1) {

count++;
}
System.out.println("Read: " + count);

}



© 2021 ESTECO SpA

Examples of InputStream 2/3

URL url = new URL("https://www.google.it");
try (InputStream urlStream = url.openStream()) {

int read;
while ((read = urlStream.read()) != -1) {

System.out.print((char) read);
}

}

WARNING we are 
converting a stream of 

bytes into chars



© 2021 ESTECO SpA

Examples of InputStream 3/3

byte[] byteArray = …
try (InputStream is = new ByteArrayInputStream(byteArray)) {

int read;
while ((read = is.read()) != -1) {

System.out.print(read);
}

}



© 2021 ESTECO SpA

Other methods in InputStream

public int read(byte b[]) throws IOException

public int read(byte b[], int off, int len) throws IOException

public byte[] readNBytes(int len) throws IOException

public int readNBytes(byte[] b, int off, int len) throws IOException

public byte[] readAllBytes() throws IOException

public long skip(long n) throws IOException

public void skipNBytes(long n) throws IOException

public long transferTo(OutputStream out) throws IOException

public int available() throws IOException

public synchronized void mark(int readlimit)

public synchronized void reset() throws IOException

public boolean markSupported()

public void close() throws IOException



© 2021 ESTECO SpA

BufferedInputStream

When reading from the filesystem or from the 
network, the reading of small chunks of data can 
be very inefficient

Java offers buffered input to speedup the 
reading of small chunks of data

The BufferedInputStream reads data in advance 
in a buffer of a specified size

public class BufferedInputStream extends FilterInputStream {

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int size)
…

}

BufferedInputStream

<<abstract>>
InputStream

A BufferedInputStream is an
InputStream wrapping 
another input stream

FilterInputStream



© 2021 ESTECO SpA

Working with BufferedInputStream

URL url = new URL("https://www.google.it"):
try (InputStream urlStream = new BufferedInputStream(url.openStream())) {

int read;
while ((read = urlStream.read()) != -1) {

System.out.print((char) read);
}

}

String fileName = "G:\\My Drive\\ … \\Input and Output.pptx";
try (InputStream fis = new BufferedInputStream(new FileInputStream(fileName))) {

int count = 0;
while (fis.read() != -1) {

count++;
}
System.out.println("Read: " + count);

}



© 2021 ESTECO SpA

Introducing OutputStream

public class OutputStream implements Closeable {
…
public abstract void write(int b)

throws IOException;
…
}

Writes the specified byte to this 

output stream

The byte to be written is the 8 

low-order bits of the argument b

The 24 high-order bits of b are 

ignored

try (OutputStream os = …) {
int[] data = …;
for (int datum : data) {

os.write(datum);
}

}

try-with-resources



© 2021 ESTECO SpA

Examples of OutputStream

try (OutputStream fos = new FileOutputStream("A:\\git\\sdm\\pippo.dat")) {
for (int i = 0; i < 10; i++) {

fos.write(i);
}

}

byte[] byteBuffer = new byte[10];
try (OutputStream os = new ByteArrayOutputStream(byteBuffer)) {

for (int i = 0; i < 10; i++) {
os.write(i);

}
}



© 2021 ESTECO SpA

Other methods of OutputStream

public void write(byte b[]) throws IOException

public void write(byte b[], int off, int len) throws IOException

public void flush() throws IOException

public void close() throws IOException



© 2021 ESTECO SpA

BufferedOutputStream

When writing to the filesystem or to the 
network, the writing of small chunks of data can 
be very inefficient

Java offers buffered output to speedup the 
writing of small chunks of data

The BufferedOutputStream writes data to the 
wrapped stream only when the buffer is full or 
when flush() is invoked

public class BufferedOutputStream extends FilterOutputStream {

public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int size)
…

}

BufferedOutputStream

<<abstract>>
OutputStream

A BufferedOutputStream is 
an OutputStream wrapping 
another output stream

FilterOutputStream



© 2021 ESTECO SpA

Working with BufferedOutputStream

String fileName = "A:\\git\\sdm\\pippo.dat";
try (OutputStream fos = new BufferedOutputStream(new FileOutputStream("…")) {

for (int i = 0; i < 10; i++) {
fos.write(i);

}
}



© 2021 ESTECO SpA

Streams must be closed

Use try-with-resources if you open (create) 
and use the stream from the same method

Explicitly invoke close() if you open (create) 
and use the stream in different methods



Data streams
Reading and writing Java types



© 2021 ESTECO SpA

Primitive types I/O

DataOutputStream and DataInputStream enable you to 
write or read primitive data to or from a stream 

They implement the DataOutput and DataInput
interfaces, respectively. These interfaces define 
methods that convert primitive values to or from a 
sequence of bytes

These streams make it easy to store binary data, such 
as  integers or floating-point values, in a file

DataOutputStream

<<abstract>>
OutputStream

FilterOutputStream

DataInputStream

<<abstract>>
InputStream

FilterInputStream



© 2021 ESTECO SpA

DataInputStream

public class DataInputStream extends FilterInputStream implements DataInput {

public DataInputStream(InputStream in)

public final boolean readBoolean() throws IOException

public final byte readByte() throws IOException

public final int readUnsignedByte() throws IOException

public final short readShort() throws IOException

public final int readUnsignedShort() throws IOException

public final char readChar() throws IOException

public final int readInt() throws IOException

public final long readLong() throws IOException

public final float readFloat() throws IOException

public final double readDouble() throws IOException

public final String readUTF() throws IOException

…

}



© 2021 ESTECO SpA

DataOutputStream
public class DataOutputStream extends FilterOutputStream implements DataOutput {

public DataOutputStream(OutputStream out)

public void flush() throws IOException

public final void writeBoolean(boolean v) throws IOException

public final void writeByte(int v) throws IOException

public final void writeShort(int v) throws IOException

public final void writeChar(int v) throws IOException

public final void writeInt(int v) throws IOException

public final void writeLong(long v) throws IOException

public final void writeFloat(float v) throws IOException

public final void writeDouble(double v) throws IOException

public final void writeBytes(String s) throws IOException

public final void writeChars(String s) throws IOException

public final void writeUTF(String str) throws IOException

…

}



Readers and Writers
Reading and writing text



© 2021 ESTECO SpA

Text streams

What about reading and writing text?



© 2021 ESTECO SpA

Character sets and encoding

To know everything about character sets and encodings:

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-
developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Characters Character set
Coded 

character set
Encoding

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/


© 2021 ESTECO SpA

Unicode terminology – Coded character set

A coded character set is a character set where each character is assigned a unique number (code point).

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

126 ~

127 DEL

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

254 þ

255 ÿ

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

254 ţ

255 ˙

Windows-1252/ISO-8859-1 Windows-1250US-ASCII

Windows-1252 and ISO-8859-1 are not the same character set, but they differs for some code points assigned to control codes
For HTML5 they can be considered the same https://www.w3.org/TR/encoding/

https://www.w3.org/TR/encoding/


© 2021 ESTECO SpA

Encodings

1 byte is enough to encode the whole US-ASCII and ISO-8859-1 character sets. 

For characters sets with more than 256 characters with need to use multibyte encodings.

Generally, a character sets define its own encoding and so the term charset is used 
to refer to both the character set and the encoding. E. g. HTTP and HTML define a 
charset parameter and attribute, respectively, to define the combination character 
set/encoding.
UCS is currently the most important character sets and it has multiple 
encodings, so this character set is represented by the name of the 
encoding, UTF-8, UTF-16, or UTF-32.



© 2021 ESTECO SpA

Encodings supported by Java

Charset Description

US-ASCII Seven-bit ASCII, a.k.a. ISO646-US, a.k.a. the Basic Latin block of the 
Unicode character set

ISO-8859-1 ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1

UTF-8 Eight-bit UCS Transformation Format

UTF-16BE Sixteen-bit UCS Transformation Format, big-endian byte order

UTF-16LE Sixteen-bit UCS Transformation Format, little-endian byte order

UTF-16 Sixteen-bit UCS Transformation Format, byte order identified by an 
optional byte-order mark

Every implementation of the Java platform is required to support the following 
standard charsets. Usually, every implementation supports many more charsets.

When in doubt, use UTF-8.



© 2021 ESTECO SpA

Text streams

To write (read) text to (from) an output(input) 
stream we need to encode (decode) the text into 
(from) a binary stream

Fortunately, Java is doing this for us, given we 
provide a very tiny piece of information, the 
encoding/charset of the stream

Unfortunately, Java defines default methods that let 
us skip this step by using by default the default 
charset

Unfortunately, the default charset might vary 
depending on the internationalization settings or 
depending on the operating system 

E.g., the default charset on Linux can be UTF-8 while 
on Windows can be Windows-1252 (in Italy)

Don’t use such methods 
unless you really know 

what you are doing



© 2021 ESTECO SpA

Introducing Reader

public abstract class Reader implements Closeable {
…
public int read() throws IOException;
…

}

Reads a single character as an integer in the 
range 0 to 65535 or -1 if the end of the 
stream has been reached

This method will block until
• a character is available
• an I/O error occurs
• or the end of the stream is reached.

try (Reader reader = … )) {
int ch = -1;
while ((ch = reader.read()) != -1) {

System.out.print((char) ch);
}

}



© 2021 ESTECO SpA

try (Reader reader = new FileReader(fileName, StandardCharsets.UTF_8)) {
int ch = -1;
while ((ch = reader.read()) != -1) {

System.out.print((char) ch);
}

}

Examples of Reader 1/2

String fileName = "A:\\git\\sdm\\src\\it\\units\\sdm\\iostreams\\Examples.java";
try (Reader reader = new InputStreamReader(new FileInputStream(fileName), UTF_8)) {

int ch = -1;
while ((ch = reader.read()) != -1) {

System.out.print((char) ch);
}

}



© 2021 ESTECO SpA

Examples of Reader 2/2

URL url = new URL("https://www.google.it"):
try (InputStream urlStream = url.openStream()) {

int read;
while ((read = urlStream.read()) != -1) {

System.out.print((char) read);
}

}

URL url = new URL("https://www.google.it");
try (Reader reader = new InputStreamReader(url.openStream(), StandardCharsets.UTF_8)) {

int ch;
while ((ch = reader.read()) != -1) {

System.out.print((char) ch);
}

}

We guess the encoding to be UTF-8



© 2021 ESTECO SpA

BufferedReader

When reading from the filesystem or from the 
network, the reading of small chunks of data can 
be very inefficient

Java offers buffered input to speedup the 
reading of small chunks of data

The BufferedReader reads data in advance in a 
buffer of a specified size

public class BufferedReader extends Reader {

public BufferedReader(Reader in)
public BufferedReader(Reader in, int size)
…

}

<<abstract>>
Reader

A BufferedReader is a Reader 
wrapping another reader

BufferedReader



© 2021 ESTECO SpA

Working with BufferedReader

try (Reader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
int ch = -1;
while ((ch = reader.read()) != -1) {

System.out.print((char) ch);
}

}

try (BufferedReader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
reader.lines().forEach(System.out::println);

}

try (BufferedReader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
String line;
while ((line = reader.readLine()) != null) {

System.out.println(line);
}

}



© 2021 ESTECO SpA

Introducing Writer

public abstract class Writer implements Closeable {
…
public void write(int c) throws IOException
public void write(String str) throws IOException
…

}

Writes a single character. The 
character to be written is contained in 
the 16 low-order bits of the given 
integer value; the 16 high-order bits 
are ignored

String data = "some data";

try (Writer writer = …) {
writer.write(data);

}

try (Writer writer = …) {
for (int i = 0; i < data.length(); i++) {

writer.write(data.charAt(i));
}

}



© 2021 ESTECO SpA

Examples of Writer

String data = "some data";
try (Writer writer = new FileWriter("A:\\git\\sdm\\pippo.txt", StandardCharsets.UTF_8)) {

writer.write(data);
}

try (Writer writer = new OutputStreamWriter(new FileOutputStream(fileName1), UTF_8)) {
writer.write(data);

}



© 2021 ESTECO SpA

BufferedWriter

When writing to the filesystem or to the 
network, the writing of small chunks of data can 
be very inefficient

Java offers buffered output to speedup the 
writing of small chunks of data

The BufferedWriter writes data to the wrapped 
writer only when the buffer is full or when flush() 
is invoked

public class BufferedWriter extends Writer {

public BufferedWriter(Writer writer)
public BufferedWriter(Writer writer, int size)
…

}

<<abstract>>
Writer

A BufferedWriter is a Writer 
wrapping another writer

BufferedWriter



© 2021 ESTECO SpA

Readers and Writers must be closed

Use try-with-resources if you open 
(create) and use the stream from the 
same method

Explicitly invoke close() if you open 
(create) and use the stream from 
different methods



esteco.com

Thank you!

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

