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Kalman Estimation



Kalman Estimation

Bayes Estimation in the Gaussian Case



Recall the basic facts about Bayes estimation

• We look for an estimation method allowing to embed the
possible a-priori knowledge on the unknown quantity to be
estimated

• In the framework of Bayes estimation also the unknown vector
ϑ is interpreted as a random vector

• The probability density function p(ϑ) in absence of observed
data is the a-priori probability density function embedding the
available information on ϑ before collecting the data.
Hence, in absence of data, the a-priori estimator could be

ϑ̂ = E(ϑ) =

∫
ϑp (ϑ) dϑ

and the estimate uncertainty var(ϑ̂) would be the a-priori
uncertainty.
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Recall the basic facts about Bayes estimation (cont.)

• Clearly, as soon as new data are collected, the probability
density function p(ϑ) changes. As a consequence, E(ϑ) and
var(ϑ) change as well. In particular, we expect var(ϑ) to
decrease.

• Summing up, the basic idea is to consider a joint random
experiment with respect to ϑ and to d and this is the
conceptual peculiarity of the Bayes estimation approach.
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Recall the basic facts about Bayes estimation (cont.)

• Consider the generic estimator as function of the data

ϑ̂ = h(d)

and define the cost functional

J [h(·)] = E
[
∥ϑ− h(d)∥2

]
• The goal is to determine an estimator h◦(·) such that J [h(·)] is
minimized, that is we have to determine

h◦(·) : E
[
∥ϑ− h◦(d)∥2

]
≤ E

[
∥ϑ− h(d)∥2

]
, ∀h(·)

where the expected values are computed with reference to the
joint random experiment.
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Recall the basic facts about Bayes estimation (cont.)

Assuming for the moment that ϑ and d are scalar

h◦(x) = E (ϑ | d = x)

The optimal Bayes
estimator is the expected
value conditioned to the
actual observed data

and thus ϑ̂ = h◦(δ) , where δ is the specific value taken on by d in
the random experiment.

Remark. The generalization to the vector case is trivial.
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Bayes Estimation in the Gaussian Case

• Assume that d and ϑ are marginally and jointly Gaussian
random variables:[

d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])
and

p(d, ϑ) = C exp

−12 [d ϑ]

[
λdd λdϑ

λϑd λϑϑ

]−1 [
d

ϑ

]
• We obtain:

p(ϑ | d) is Gaussian with:
• expected value λϑd

λdd
d

• variance λ2 = λϑϑ − λ2ϑd
λdd
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Bayes Estimation in the Gaussian Case (cont.)

• Then, the optimal Bayes estimator is given by

ϑ̂ = h◦(x) = E (ϑ | d = x) =
λϑd

λdd
d

Recalling that E(d) = 0 , E(ϑ) = 0 by assumption, we obtain
that E(ϑ̂) = 0 and hence the variance of the optimal estimator
is

var (ϑ− ϑ̂) =E
[
(ϑ− ϑ̂)2

]
= E

[(
ϑ− λϑd

λdd
d

)2]

=E
(
ϑ2
)
− 2 λϑd

λdd
E(ϑd) +

λ2ϑd
λ2dd

E
(
d2
)

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

= λ2
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Optimal Linear Estimator

• Let us remove the assumption for which d and ϑ are
marginally and jointly Gaussian random variables, and let us
just assume that E(d) = 0, E(ϑ) = 0

• As before, let us use the notations E(d
2) = λdd , E(ϑ2) = λϑϑ ,

E(ϑd) = λϑd

• Impose that the estimator takes on a linear structure:

ϑ̂ = αd+ β

where α and β are suitable parameters to be determined.
• Introduce the cost function:

J = E

[(
ϑ− ϑ̂

)2]
= E

[
(ϑ− αd− β)

2
]

ϑ̂ =
λϑd

λdd
d

Optimal linear
estimator
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Optimal Linear Estimator (cont.)

• The variance of the optimal linear estimator is given by:

var (ϑ− ϑ̂) =E
[
(ϑ− ϑ̂)2

]
= λϑϑ + α2λdd + β2 − 2αλϑd

=λϑϑ +
λ2ϑd
λ2dd

λdd − 2
λϑd

λdd
λϑd = λϑϑ − λ2ϑd

λdd
= λ2

Therefore:

• the optimal linear estimator is formally equal to the Bayes one.
• If the Gaussian assumption on the random variables holds,
then the optimal linear estimator actually is the best possible
in the minimum variance sense

• If the Gaussian assumption on the random variables does not
hold, then the linear estimator is sub-optimal, but still it is the
best estimator constrained to take on a linear structure in the
case in which no further assumptions are introduced on the
probabilistic characteristics of the random variables
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Generalizations

• If E(d) = dm , E(ϑ) = ϑm

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

• If d and ϑ are vectors with E(d) = dm , E(ϑ) = ϑm and

var

([
d

ϑ

])
=

[
Λdd Λdϑ

Λϑd Λϑϑ

]
Λdϑ = Λ⊤

ϑd

ϑ̂ = ϑm + Λϑd Λdd
−1 (d− dm)

var (ϑ− ϑ̂) = Λϑϑ − Λϑd Λdd
−1Λdϑ
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Interpretations and remarks

• Consider for simplicity the Bayes estimator in the simple case:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

Then:

• ϑm = E(ϑ) is the a priori estimate: in case of no observations
availability, it is the more reasonable estimate. In this case, we
have:

ϑ̂ = ϑm var (ϑ− ϑ̂) = λϑϑ = var (ϑ)

• Instead, when observations are available, we have:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

A-priori part
of the estimate

Correction term
exploiting
observed data
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Interpretations and remarks (cont.)

Clearly:

• If λϑd = 0 then ϑ̂ = ϑm and this is correct: it means that the
data observation d is uncorrelated with ϑ and hence it does
not convey useful information for the estimate:the a-posteriori
estimate coincides with the a-priori one.

• If λϑd ̸= 0 then the estimate is corrected on the basis of the
observed data:

• If λϑd > 0 then ϑ̂− ϑm and d− dm in the average keep the
same sign and the correction is more likely to keep the same sign
as well

• If λϑd < 0 then ϑ̂− ϑm and d− dm in the average have a
different sign and the correction is more likely to change the
same sign as well
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Interpretations and remarks (cont.)

• It also very important to enhance the role played by the
variance λdd that “quantifies” the degree of uncertainty of the
observed data:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

the larger λdd , the smaller the applied correction, that is, the
update is “more cautious”

• Moreover:

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

= λϑϑ

(
1− λ2ϑd

λϑϑλdd

)
and thus var (ϑ− ϑ̂) ≤ var (ϑ) and

var (ϑ− ϑ̂) < var (ϑ) if λϑd ̸= 0

and this is correct because it expresses the fact that the
estimate cannot but improve whenever the observed data
convey useful information

DIA@UniTS – 267MI –Fall 2022 TP GF – L13–p13



Kalman Estimation

State Estimation in the Bayes
Estimation Framework



Kalman estimation

• In Kalman estimation we address the problem of estimating
variables that are not directly available and without making
any assumption on the stationarity of the stochastic processes
(unlike what has been done since now).

Example:
signal filtering
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Kalman estimation (cont.)

• We refer to system’s descriptions through state equations:

x(t+ 1) = Fx(t) + v1(t) x, v1 ∈ Rn

y(t) = Hx(t) + v2(t) y, v2 ∈ Rp

• v1 ∼ WGN(0, V1), v2 ∼ WGN(0, V2)
• v1(·), v2(·) independent, mutually and with x(1)
• F, H, V1, V2 known

filtering prediction
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State estimation and Bayes estimation

• Since v1(t) and v2(t) are random variables, also x(t) and y(t) are
r.v. =⇒ both the data y(t), y(t− 1), . . . and the unknown x(t)

are r.v. =⇒ it is natural to resort to the Bayes framework
• From the Gaussian assumption on the exogenous variables and
the linearity of the dynamic system it follows that the
probability density functions of the state, the output and the
state/output joint probability density functions are Gaussian as
well.

x̂(t+ r |t) = x(t+ r)m + Λx(t+r)d Λdd
−1 (d− dm)

where:
• x(t+ r)m := E[x(t+ r)]

• d := yt := col [y(t), y(t− 1), . . . , y(1)]
• dm := E[d]
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State estimation and Bayes estimation (cont.)

• But:
E[v1(t)] = 0, E[v2(t)] = 0 =⇒ E[x(t)] = 0, E[y(t)] = 0

x̂(t+ r |t) = Λx(t+r)d Λdd
−1 d (⋆)

Remark: formula (⋆) makes sense also if the Gaussian
assumptions do not hold. In such a case Λx(t+r)d Λdd

−1 d is the
best linear estimator

• (⋆) solves the problem but it is NOT recursive. Instead, we want
to obtain a recursive estimator of the form:

x̂(t+ r |t) = f [x̂(t+ r − 1 |t− 1)]
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Recursive form of Bayes estimation

• For now, denote by ϑ the unknown to be estimated and by d

the observed data.
• Suppose (just for simplicity and without loss of generality) that

• ϑ scalar
• d(1), d(2) two scalar data
• E(ϑ) = 0, E[d(1)] = 0, E[d(2)] = 0

• Then  ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 λϑϑ λϑ1 λϑ2
λ1ϑ λ11 λ12
λ2ϑ λ21 λ22




where λϑϑ = E(ϑ
2), λϑ1 = E[ϑd(1)], . . .
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Recursive form of Bayes estimation (cont.)

• The estimate of ϑ based on the single data point d(1) is given by

E[ϑ | d(1)] = λϑ1
λ11

d(1)

• Instead, the estimate of ϑ based on two data points d(1), d(2) is

E[ϑ | d(1), d(2)] = [λϑ1 λϑ2 ]

[
λ11 λ12
λ21 λ22

]−1 [
d(1)
d(2)

]
where λ12 = λ21 But[

λ11 λ12
λ21 λ22

]−1
=

1
λ11λ22 − λ212

[
λ22 −λ12
−λ12 λ11

]
and hence

E[ϑ | d(1), d(2)] = 1
λ11λ22 − λ212

[(λϑ1λ22 − λϑ2λ12) d(1)+

+ (−λϑ1λ12 + λϑ2λ11) d(2) ]
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Recursive form of Bayes estimation (cont.)

• letting λ2 = λ22 −
λ212
λ11

we have

E[ϑ | d(1), d(2)] = 1
λ11λ2

(−λϑ1λ12 + λϑ2λ11) d(2)

+
1

λ11λ2
(λϑ1λ22 − λϑ2λ12) d(1)

• Adding and subtracting the term E[ϑ | d(1)] = λϑ1
λ11

d(1)

E[ϑ | d(1), d(2)] = 1
λ11λ2

(−λϑ1λ12 + λϑ2λ11) d(2)

+
1

λ11λ2
(λϑ1λ22 − λϑ2λ12) d(1) +

λϑ1
λ11

d(1)− λϑ1
λ11

d(1)
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Recursive form of Bayes estimation (cont.)

recursion

E[ϑ | d(1), d(2)] = 1
λ2

(
λϑ2 − λϑ1

λ12
λ11

)
d(2)

+
1
λ2

(
λϑ1

λ22
λ11

− λϑ2
λ12
λ11

− λϑ1
λ2

λ11

)
d(1) + λϑ1

λ11
d(1)

• substituting λ2 = λ22 −
λ212
λ11

we have

E[ϑ | d(1), d(2)] =λϑ1
λ11

d(1)

+
1
λ2

(
λϑ2 − λϑ1

λ12
λ11

) [
d(2)− λ12

λ11
d(1)

]
• Definition. Given two random variables d(1) and d(2) we call
innovation of d(2) with respect to d(1) the quantity:

e = d(2)− E[d(2) | d(1)] = d(2)− λ12
λ11

d(1)
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Recursive form of Bayes estimation (cont.)

Let us analyze the random variable e :

• e is a linear combination of d(1) and of d(2) that are Gaussian
=⇒ e is Gaussian. Moreover ϑ, d(1), e are jointly Gaussian

• E(e) = 0

• λee = E

[(
d(2)− λ12

λ11
d(1)

)2]
= λ22 +

λ212
λ211

λ11 − 2
λ212
λ11

= λ2

• λϑe = E

[
ϑ

(
d(2)− λ12

λ11
d(1)

)]
= λϑ2 − λϑ1

λ12
λ11

• λ1e = E

[
d(1)

(
d(2)− λ12

λ11
d(1)

)]
= λ12 − λ11

λ12
λ11

= 0

The innovation e is uncorrelated with d(1)
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Recursive form of Bayes estimation (cont.)

• Hence

E[ϑ | d(1), d(2)] =λϑ1
λ11

d(1)

+
1
λ2

(
λϑ2 − λϑ1

λ12
λ11

) [
d(2)− λ12

λ11
d(1)

]
=

λϑ1
λ11

d(1) + λϑe

λee
e

and, since ϑ, d(1), e are jointly Gaussian, we have

E[ϑ | d(1), d(2)] = E[ϑ | d(1)] + E[ϑ | e]

Thus: the optimal estimate can be expressed also as a function
of the innovation.
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Recursive form of Bayes estimation (cont.)

• Observe that

E[ϑ | d(1), e] = E[ϑ | d(1)] + E[ϑ | e]

because e is uncorrelated with d(1) ; thus, the optimal estimate
given d(1), d(2) coincides with the optimal estimate given
d(1), e

d(2) and e have the same information content
In particular:

e = d(2)− E[d(2) | d(1)] =⇒ d(2) = E[d(2) | d(1)] + e

and hence the innovation represents the “part” of d(2) which is
not predictable on the basis of d(1).

The innovation represents the actual information
content of d(2) with respect to d(1)
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Generalization to the vector case

• Now, if ϑ, d(1), d(2) are zero-mean vectors we have: ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




where Λϑ1 = Λ⊤
1ϑ, Λϑ2 = Λ⊤

2ϑ, Λ21 = Λ⊤
12

• We obtain:

e = d(2)− E[d(2) | d(1)] = d(2)− Λ21Λ
−1
11 d(1)

and hence:

E[ϑ | d(1), d(2)] =E[ϑ | d(1)] + E[ϑ | e]
= Λϑ1Λ

−1
11 d(1) + ΛϑeΛ

−1
ee e
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Generalization to the non-zero mean case

• Now, if ϑ, d(1), d(2) are non-zero mean vectors we have: ϑ

d(1)
d(2)

 ∼ G


 ϑm

d(1)m
d(2)m

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




• We obtain:

E[ϑ | d(1), d(2)] =E[ϑ | d(1)] + E[ϑ | e]− ϑm

=ϑm + Λϑ 1Λ
−1
11 [d(1)− d(1)m] + ΛϑeΛee

−1 e

where, in analogy with the zero-mean scalar case we have:

• E(e) = 0

• Λ1e = E
{
[d(1)− d(1)m]⊤ e

}
= 0

• Λϑe = Λϑ2 − Λϑ1 Λ
−1
11 Λ12
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Geometric interpretation of Bayes recursive estimation

Recall (Bayes estimation):

• Suppose that d and ϑ are marginally and jointly Gaussian
random variables:[

d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])
Hence d and ϑ can be interpreted geometric vectors

• Define the scalar product (ϑ, d) = E(ϑ · d)
• The usual properties of vector spaces equipped with scalar
product hold true. In particular:

∥ϑ∥ =
√
(ϑ, ϑ)

∥d∥ =
√
(d, d)

(ϑ, d) = ∥ϑ∥ ∥d∥ cosα
• Uncorrelated random variables correspond to orthogonal
vectors
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Geometric interpretation of Bayes recursive estimation (cont.)

• Now:

ϑ̂ =
λϑd

λdd
d =

E(ϑ · d)
E(d · d)

d =
(ϑ, d)

∥d∥2
d =

(ϑ, d)

∥d∥2
∥ϑ∥
∥ϑ∥

d

=
(ϑ, d)

∥ϑ∥∥d∥
∥ϑ∥ d

∥d∥
= ∥ϑ∥ cosα

d

∥d∥

The optimal estimate ϑ̂ is
the projection of ϑ on the
data vector d

• Then consider the vector ϑ− ϑ̂ . It follows that:

∥ϑ− ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ∥2 (cosα)2

= λϑϑ − λϑϑ
λ2ϑd

λddλϑϑ
= λϑϑ − λ2ϑd

λdd

The error variance is the square of the length of vector ϑ− ϑ̂ .
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Geometric interpretation of Bayes recursive estimation (cont.)

• In the prediction problem, v̂(t+ r|t) is the projection of v(t+ r)

(interpreted as a geometric vector) on the subspace
(hyperplane)

Ht[ξ] ( = Ht[v])
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Geometric interpretation of Bayes recursive estimation (cont.)

• If  ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




we are able to consider ϑ, d(1), d(2) as geometric vectors, and
hence
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Geometric interpretation of Bayes recursive estimation (cont.)

• Note that:
• e lies on the plane Ht[d(1), d(2)] and is orthogonal to d(1)

• E[ϑ | d(1)] is orthogonal to E[ϑ|e]

• E[ϑ | d(1), d(2)] = E[ϑ | d(1)] + E[ϑ | e]

not true in general
• E[ϑ | d(1), d(2)] ̸= E[ϑ | d(1)] + E[ϑ | d(2)]
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Kalman Estimation

Kalman Predictor



One-step ahead Kalman predictor

• Consider the dynamic system{
x(t+ 1) = Fx(t) + v1(t)

y(t) = Hx(t) + v2(t) x, v1 ∈ Rn, y, v2 ∈ Rp

• v1 ∼ WGN(0, V1), v2 ∼ WGN(0, V2)

• v1(·), v2(·) independent, mutually and with x(1)

• F, H, V1, V2 known, V2 > 0
• We want to design a one step ahead state predictor in recursive
form:

x̂ (t+ 1|t) function of x̂ (t|t− 1)
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One-step ahead Kalman predictor (cont.)

Let us enhance the role played by the innovation:

• the prediction of x(t+ 1) is based on the data
y(t), y(t− 1), . . . , y(1)

• yt = col[y(t), y(t− 1), . . . , y(1)] generates the subspace of the
past H[yt]

• The innovation provided by the (t+ 1)-th data-point with
respect to yt is given by

e(t+ 1) = y(t+ 1)− E
[
y (t+ 1) |yt

]
and hence the situation is:
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One-step ahead Kalman predictor (cont.)

• The state prediction error is:

ν(t+ 1) = x(t+ 1)− x̂(t+ 1 | t) = x(t+ 1)− E
[
x(t+ 1) |yt

]
and thus the situation now is:

The state prediction error ν(t+ 1) is orthogonal to the past
H
[
yt
]
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Optimal one-step ahead output prediction

• We have:

ŷ(t+ 1 | t) =E
[
y(t+ 1) |yt

]
=E

[
Hx(t+ 1) + v2(t+ 1) |yt

]
=H E

[
x(t+ 1) |yt

]
+ E

[
v2(t+ 1) |yt

]
=H x̂(t+ 1 | t) + E

[
v2(t+ 1) |yt

]
• Let us analyze the term E

[
v2(t+ 1) |yt

]
:

x(t) = f
[
vt−1
1 , x(1)

]
= f [v1(t− 1), v1(t− 2), . . . , v1(1), x(1)]

y(t) = f̄
[
vt−1
1 , x(1), v2(t)

]
=⇒ yt = f̄

[
vt−1
1 , x(1), vt

2
]

• v2(·) white =⇒ v2(t+ 1) independent from vt
2

• v1(·), v2(·) independent, mutually and with x(1) [Hp.]
• v2(t+ 1) independent with yt

E
[
v2(t+ 1) |yt] = E [v2(t+ 1)] = 0

ŷ(t+ 1 | t) = H x̂(t+ 1 | t)
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Recursive one-step ahead prediction

• We have

x̂(t+ 1 | t) =E
[
x(t+ 1) |yt

]
=E

[
x(t+ 1) |yt−1, y(t)

]
• From the recursive Bayes formula:

x̂(t+ 1 | t) = E
[
x(t+ 1) |yt−1]+ E [x(t+ 1) | e(t)]

• Let us first compute the term E
[
x(t+ 1) |yt−1] :

E
[
x(t+ 1) |yt−1] =E

[
Fx(t) + v1(t) |yt−1]

=F E
[
x(t) |yt−1]+ E

[
v1(t) |yt−1]

But v1(t) independent with yt−1

E
[
v1(t) |yt−1] = E [v1(t)] = 0

E
[
x(t+ 1) |yt−1] = F x̂(t | t− 1)
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Recursive one-step ahead prediction (cont.)

• Now compute the term E [x(t+ 1) | e(t)]. From Bayes formula

E [x(t+ 1) | e(t)] = Λx(t+1)e(t) Λ
−1
e(t)e(t) e(t)

And hence the problem has been reduced to the one of
determining the matrices Λx(t+1)e(t) ,Λe(t)e(t)

• Expression of Λx(t+1)e(t) = E
[
x(t+ 1) e(t)⊤

]
e(t) =y(t)− E

[
y(t) |yt−1] = y(t)− ŷ(t | t− 1)

=H x(t) + v2(t)−H x̂(t | t− 1)
=H [x(t)− x̂(t | t− 1)] + v2(t)

Hence:

Λx(t+1)e(t) =E
{
[Fx(t) + v1(t)] · [H [x(t)− x̂(t | t− 1)] + v2(t)]

⊤
}

=F E
{
x(t) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

+ F E
[
x(t)v2(t)

⊤]
+ E

{
v1(t) [H (x(t)− x̂(t | t− 1)) + v2(t)]

⊤
}
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Recursive one-step ahead prediction (cont.)

• Now, let us analyze separately the terms F E
{
x(t)v2(t)

⊤} and
E
{
v1(t) [H (x(t)− x̂(t | t− 1)) + v2(t)]

⊤
}

• (⋆) F E
[
x(t)v2(t)

⊤]
• v1(·), v2(·) independent, mutually and with x(1) [Hp.]
• v2(t) independent with x(t)

E
[
x(t)v2(t)

⊤
]
= E [x(t)] E

[
v2(t)

⊤
]
= 0
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Recursive one-step ahead prediction (cont.)

• (⋆⋆) E
{
v1(t) [H (x(t)− x̂(t | t− 1)) + v2(t)]

⊤
}

= E
[
v1(t)x(t)

⊤]H⊤

− E
[
v1(t)x̂(t | t− 1)⊤

]
H⊤

+ E
[
v1(t)v2(t)

⊤]
• but v1(·) white =⇒ v1(t) independent with vt−1

1

• v1(·) independent with x(1) [Hp.] =⇒ v1(t) independent with
x(t)

E
[
v1(t)x(t)

⊤] = E [v1(t)] E
[
x(t)⊤

]
= 0
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Recursive one-step ahead prediction (cont.)

• Moreover x̂(t | t− 1) depends on yt−1 which, in turn, depends
on v1(t− 2), v1(t− 3), . . . , x(1) and on v2(t− 1) etc.

E
[
v1(t)x̂(t | t− 1)⊤

]
= 0

Λx(t+1)e(t) = F · E
{
x(t) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

• Now, introduce the term x̂(t|t− 1) in order to make the state
prediction error ν(t) = x(t)− x̂(t|t− 1) to show up in the overall
formula:

Λx(t+1)e(t) =F · E
{
[x(t)− x̂(t | t− 1)] [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

+ F · E
{
x̂(t | t− 1) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

Λx(t+1)e(t) =F · E
[
ν(t)ν(t)⊤

]
·H⊤ + F · E

[
x̂(t | t− 1)ν(t)⊤

]
·H⊤
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Recursive one-step ahead prediction (cont.)

• It is now worth introducing the state prediction error
covariance matrix:

P (t) = E
[
ν(t)ν(t)⊤

]
• Finally, notice that ν(t) is orthogonal to H[yt], whereas

x̂(t | t− 1) ∈ H[yt]

E
[
x̂(t | t− 1)ν(t)⊤

]
= E [x̂(t | t− 1)] E

[
ν(t)⊤

]
= 0

Λx(t+1)e(t) = F · P (t) ·H⊤
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Recursive one-step ahead prediction (cont.)

• Expression of Λe(t)e(t)

Recall that

e(t) =H [x(t)− x̂(t | t− 1)] + v2(t)

=H ν(t) + v2(t)

Hence

Λe(t)e(t) =E
[
e(t)e(t)⊤

]
=H · E

[
ν(t)ν(t)⊤

]
·H⊤ + E

[
v2(t)v2(t)

⊤]
+H · E

[
ν(t)v2(t)

⊤]+ E
[
v2(t)ν(t)

⊤] ·H⊤

and

ν(t) = f̆
[
yt−1, v2(t)

]
=⇒ H · E

[
ν(t)v2(t)

⊤] = 0

Λe(t)e(t) = H · P (t) ·H⊤ + V2
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Recursive one-step ahead prediction (cont.)

• Summing up

x̂(t+ 1 | t) = E
[
x(t+ 1) |yt−1]+ E [x(t+ 1) | e(t)]

where

E
[
x(t+ 1) |yt−1] = F x̂(t | t− 1)

E [x(t+ 1) | e(t)] = Λx(t+1)e(t) Λ
−1
e(t)e(t) e(t)

= F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2
]−1

e(t)

and hence
x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)
where the gain matrix “weighting” the innovation is
K(t) = F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2

]−1
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Riccati equation

We want to determine a recursive formula also for state prediction
error covariance matrix P (t) = E

[
ν(t)ν(t)⊤

]
• Then, we need to express in recursive way

ν(t+ 1) = x(t+ 1)− x̂(t+ 1 | t)

But:
x(t+ 1) = Fx(t) + v1(t)

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

ν(t+ 1) = F [x(t)− x̂(t | t− 1)] + v1(t)−K(t)e(t)

= F ν(t) + v1(t)−K(t)e(t)
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Riccati equation (cont.)

• On the other hand

e(t) = y(t)− ŷ(t | t− 1)
= Hx(t) + v2(t)−Hx̂(t | t− 1)
= Hν(t) + v2(t)

ν(t+ 1) = [F −K(t)H] ν(t) + v1(t)−K(t)v2(t)
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Riccati equation (cont.)

Hence

P (t+ 1) = E
[
ν(t+ 1)ν(t+ 1)⊤

]
= E

{
[F −K(t)H] ν(t)ν(t)⊤ [F −K(t)H]

⊤
}
+ E

[
v1(t)v1(t)

⊤]
+ E

[
K(t)v2(t)v2(t)

⊤K(t)⊤
]
+ E

{
[F −K(t)H] ν(t)v1(t)

⊤}
− E

{
[F −K(t)H] ν(t)v2(t)

⊤K(t)⊤
}

+ E
{
v1(t)ν(t)

⊤ [F −K(t)H]
⊤
}
− E

[
v1(t)v2(t)

⊤K(t)⊤
]

− E
{
K(t)v2(t)ν(N)⊤ [F −K(t)H]

⊤
}
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Riccati equation (cont.)

However ν(t) is independent with v1(t) and with v2(t):

E
[
v1(t)ν(t)

⊤] = E
[
ν(t)v1(t)

⊤] = 0
E
[
v2(t)ν(t)

⊤] = E
[
ν(t)v2(t)

⊤] = 0
E
[
v1(t)v2(t)

⊤] = E
[
v2(t)v1(t)

⊤] = 0

Difference Riccati Equation (DRE)

P (t+ 1) = [F −K(t)H] P (t) [F −K(t)H]
⊤
+ V1 +K(t)V2K(t)⊤
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Riccati equation (cont.)

• Therefore, the Riccati equation is a recursive matrix equation
which, once initialized, allows to compute the matrix P (t)

• There are several equivalent forms of Riccati equation. The
following one is very useful because it does not explicitly
involve the gain matrix K(t) (this form can be derived by very
simple algebraic manupulations)

P (t+ 1) = F
{
P (t)− P (t)H⊤ [V2 +HP (t)H⊤]−1 HP (t)

}
F⊤ + V1

DIA@UniTS – 267MI –Fall 2022 TP GF – L13–p48



Initialization of the Riccati recursive equation

• Notice that ν(1) = x(1)− x̂(1 | 0) but y(0) is not available and
thus we are not able to compute ν(1) ̇ and hence P (1)

• Then, let us “formally” start the recursion from P (2) :

P (2) = E
{
[x(2)− x̂(2 | 1)] [x(2)− x̂(2 | 1)]⊤

}
and since x̂(2 | 1) is the Bayes estimate of x(2) we can write:

P (2) = Λx(2)x(2) − Λx(2)y(1) Λ
−1
y(1)y(1) Λy(1)x(2)

but

Λx(2)x(2) = E
{
[Fx(1) + v1(1)] [Fx(1) + v1(1)]⊤

}
= FP1F

⊤ + V1

where we set P1 = var [x(1)] . Moreover:

Λx(2)y(1) = E
{
[Fx(1) + v1(1)] [Hx(1) + v2(1)]⊤

}
= FP1H

⊤

Λy(1)x(2) = Λ⊤
x(2)y(1)

Λy(1)y(1) = E
{
[Hx(1) + v2(1)] [Hx(1) + v2(1)]⊤

}
= HP1H

⊤ + V2
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Initialization of the Riccati recursive equation (cont.)

• Then:

P (2) = FP1F
⊤ + V1 − FP1H

⊤ (HP1H
⊤ + V2

)−1
HP1F

⊤ (⋆)

(⋆) formally coincides with the Riccati
equation with the position P1 = P (1)

Interpretation
At instant 1, in which no past observed data are available, we
assume that x̂(1 | 0) = E[x(1)] = 0 . Thus

P (1) = E
{
[x(1)− x̂(1 | 0)] [x(1)− x̂(1 | 0)]⊤

}
= P1

The Riccati is initialized with P1 = P (1) = var [x(1)]
at instant 1 and not at instant 2 .

DIA@UniTS – 267MI –Fall 2022 TP GF – L13–p50



Initialization of the estimate

• Let us address the initialization of

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

We have:

x̂(2 | 1) =E[x(2) |x(1)] = Λx(2)y(1) Λ
−1
y(1)y(1) y(1)

=E
{
[Fx(1) + v1(1)] [Hx(1) + v2(1)]⊤

}
×
(
E
{
[Hx(1) + v2(1)] [Hx(1) + v2(1)]⊤

})−1
y(1)

=FP1H
⊤ (HP1H

⊤ + V2
)−1

y(1) (⋆)
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Initialization of the estimate (cont.)

• We have

x̂(2 | 1) = FP1H
⊤ (HP1H

⊤ + V2
)−1

y(1) (⋆)

Interpretation
Letting x̂(1 | 0) = 0 =⇒ e(1) = y(1)−Hx̂(1 | 0) = y(1)

then relation (⋆) is “compatible” with the recursive one and the
interpretation is obvious: a priori, without available data, the
more reasonable estimate is the a priori expected value.

Remark
If E[x(1)] = x̄1 ̸= 0 we just initialize by x̂(1 | 0) = x̄1 .
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Kalman predictor

The Kalman predictor architecture can be drawn as follows:

Feedback
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Remarks

• The gain matrix K(t) plays a fundamental role: the term
K(t) e(t) corrects the prediction based on a known state-space
model of the system through the observed data collected on
line.

• The Riccati equation can be solved off line, that is, the matrices
P (t) can be determined a priori and hence also the gain matrix
K(t) .

• P (t) ≥ 0, ∀ t > 1 if P (1) = P1 ≥ 0
•
(
HP1H

⊤ + V2
)
> 0 as we assumed V2 > 0 .
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Kalman Estimation:
Generalizations and Steady-state
Estimator



Introduction

• In the previous section, a recursive optimal state one-step
ahead predictor has been devised in the context of Kalman
estimation

• In the present last part, the following generalizations will be
addressed:

• The Optimal r -steps ahead predictor to compute x̂ (t+ r |t )
• The Optimal Filter to compute x̂ (t |t )
• The optimal predictor with exogenous inputs

• Finally, the steady-state behaviour of the optimal predictor will
be analyzed, that is, the characteristics and properties of the
estimator when t → ∞ .
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Kalman Estimation:
Generalizations and Steady-state
Estimator

r-steps Ahead Kalman Prediction



Recall the structure of the one-step ahead Kalman predictor

• We assumed that a state-space model of the system is
available:{

x(t+ 1) = Fx(t) + v1(t)

y(t) = Hx(t) + v2(t) x, v1 ∈ Rn, y, v2 ∈ Rp

• The one-step ahead Kalman predictor equations take on the
form (see previous section) :

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

K(t) = F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2
]−1

P (t+ 1) = F
{
P (t)− P (t)H⊤ [V2 +HP (t)H⊤]−1 HP (t)

}
F⊤ + V1
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r-steps Ahead Kalman Prediction

• We want to estimate the variable x(t+ r) by observed data
collected till instant t , with r > 1

• The optimal predictor is given by

x̂ (t+ r|t) = E
[
x (t+ r) |yt

]
• Since x (t+ r) = Fx(t+ r − 1) + v1(t+ r − 1) and owing to the
fact that, for ∀r > 1 , the noise sample v1(t+ r − 1) is
uncorrelated with the observed data till instant t

x̂ (t+ r|t) = F x̂ (t+ r − 1|t)

• By iterating, we obtain

x̂ (t+ r|t) = F r−1 x̂ (t+ 1|t)

• Moreover, concerning the output, as v2(t+ r) is uncorrelated
with the observed data till instant t

ŷ (t+ r|t) = H x̂ (t+ r|t)
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Summing up:

• The r-steps ahead Kalman predictor can be easily obtained
from the one-step ahead predictor derived in the previous
section:

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

K(t) = F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2
]−1

P (t+ 1) = F
{
P (t)− P (t)H⊤ [V2 +HP (t)H⊤]−1 HP (t)

}
F⊤ + V1

x̂ (t+ r|t) = F r−1 x̂ (t+ 1|t)
ŷ (t+ r|t) = H x̂ (t+ r|t)
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Kalman Estimation:
Generalizations and Steady-state
Estimator

Kalman Filter



Kalman Filter

• The “0-steps ahead prediction” is called filtering:

x̂ (t|t) = E
[
x(t)|yt

]
= E

[
x(t)|yt−1 , y(t)

]
= E

[
x(t)|yt−1

]
+ E [x(t)|e(t)]

= x̂ (t|t− 1) + Λx(t) e(t) · Λ−1
e(t) e(t) · e(t)

Already known

Λx(t) e(t) = E
{
x(t) [H (x(t)− x̂ (t|t− 1)) + v2(t)]

T
}

= E

{
[x(t) + x̂ (t|t− 1)− x̂ (t|t− 1)] ·

[H (x(t)− x̂ (t|t− 1)) + v2(t)]
T

}
= · · ·
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Kalman Filter (cont.)

Λx(t) e(t) = E

{
[x(t)− x̂ (t|t− 1)] [x(t)− x̂ (t|t− 1)]T

}
HT

+E

{
[x(t)− x̂ (t|t− 1)] v2(t)T

}

+E

{
x̂ (t|t− 1) [x(t)− x̂ (t|t− 1)]T

}

+E

{
x̂ (t|t− 1) v2(t)T

}

0

0

0

Λx(t) e(t) = P (t)HT
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Kalman Filter (cont.)

• Summing up, we have:

x̂ (t|t) = x̂ (t|t− 1) + K0(t) · e(t) Filter gain matrix

K0(t) = P (t) ·HT
[
H · P (t) ·HT + V2

]−1
• Notice that

K(t) = FK0(t)
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Kalman Estimation:
Generalizations and Steady-state
Estimator

Kalman Predictor in the Presence of
Exogenous Inputs



Kalman Predictor in the Presence of Exogenous Inputs

• In this case, the state-space model is written asx(t+ 1) = Fx(t) + Gu(t) + v1(t)

y(t) = Hx(t) + v2(t) x, v1 ∈ Rn, y, v2 ∈ Rp, u ∈ Rm

• The equations for the one-step ahead Kalman predictor
become

x̂(t+ 1 | t) = F x̂(t | t− 1) + Gu(t) +K(t) · e(t)

K(t) = F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2
]−1

P (t+ 1) = F
{
P (t)− P (t)H⊤ [V2 +HP (t)H⊤]−1 HP (t)

}
F⊤ + V1
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Kalman Estimation:
Generalizations and Steady-state
Estimator

Steady-state Kalman Estimator



Steady-State Kalman Estimator

• The equations to update K(t) and P (t+ 1) , at each time-step,
require the inversion of a matrix.

• The inversion of a matrix of dimension n xn requires o
(
n3
)

operations (in general), and hence the computational
complexity of each iteration increases with the cubic power of
the dimension of the state vector.

• It would practically very appealing to be able to replace the
time-varying matrices K(t) and P (t+ 1) with constant
matrices K̄ and P̄ computed off-line before hand.
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Steady-State Kalman Estimator (cont.)

• Clearly, this would give rise to a sub-optimal predictor but
would allow to handle in practice high-dimensional problems.

• In practice, we replace K(t) and P (t+ 1) with their
steady-state values:

K̄ := lim
t→∞

K(t) P̄ := lim
t→∞

P (t)

• The corresponding predictor is called steady-state Kalman
predictor

x̂ (t+ 1|t) = Fx̂ (t|t− 1) + K̄e(t)
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Computation of the Steady-State Gain Matrix

• The steady-state gain matrix is simply computed as

K̄ = FP̄HT
(
HP̄HT + V2

)−1
• The matrix P̄ is a solution of the Algebraic Riccati Equation
(ARE):

P (t+ 1) = P (t) = P̄

P̄ = F
[
P̄ − P̄HT

(
V2 +HP̄HT

)−1
HP̄

]
FT + V1 ARE

• In case of multiple solutions of the ARE, it is necessary to
choose the positive-semidefinite one.
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Stability of the Steady-State Kalman Predictor

• Let us recall the equations of the steady-state Kalman
predictor: 

x̂(t+ 1|t) = Fx̂(t|t− 1) + K̄e(t)

ŷ(t+ 1|t) = Hx̂(t+ 1|t)
e(t) = y(t)− ŷ(t|t− 1)

x̂ (t+ 1|t) =
[
F − K̄H

]
x̂ (t|t− 1) + K̄y(t)

The predictor’s stability depends on
the eigenvalues of this matrix.

• If K̄ stabilizes F − K̄H the solution of the ARE is stabilizing.
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Stability of the Steady-State Kalman Predictor (cont.)

• However, this does not say anything about the existence of a
positive (definite or semi-definite) solution of the ARE.

• Then, it is worth asking under what conditions the recursive
Riccati equation converges, that is, the ARE has (at least) one
positive semi-definite solution.

• Recall that P̄ is the state prediction error covariance matrix.
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First DRE Convergence Theorem

Assume that the dynamic system generating the observed data is
asymptotically stable, that is, all eigenvalues of matrix F are
strictly inside the unit disc.

• For every P1 ≥ 0 the recursive Riccati equation
converges to the same matrix P̄ ≥ 0 .

• The steady-state predictor is asymptotically
stable
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Second DRE Convergence Theorem

• Consider{
x(t+ 1) = Fx(t) +Gvξ(t)

y(t) = Hx(t) + v2(t)

ξ(t) ∼ WGN(0, 1)

Gv : Gv G
T
v = V1

This decomposition is not unique

• Assume that the pair (F, H) is observable and (F, Gv) is
reachable

• For every positive semi-definite initial condition, the recursive
Riccati equation asymptotically converges to the same matrix P̄

• The limit matrix P̄ is positive-definite
• The steady-state Kalman predictor is asymptotically stable
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Observability

• Given the linear time-invariant dynamic system{
x(t+ 1) = Fx(t)

y(t) = Hx(t)

• The pair (F, H) is observable if two different initial states
yielding output modes of behaviour that coincide for all future
time-instants do not exist.

Theorem: Observability Necessary and Sufficient Condition
• Define the observability matrix for a system with n state
variables

On
△
=
[
HT | FTHT | FT 2HT | . . . | FT n−1

HT
]

• The pair (F, H) is observable if and only if On has rank n .
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Reachability

• Given the linear time-invariant dynamic system (zero initial
state)

x(t+ 1) = Fx(t) +Gvξ(t)

• The pair (F, Gv) is reachable if, for a given final state x̄ , there
exists a input sequence ξ(t) and a time-instant tN such that
x(tN ) = x̄

Theorem: Reachability Necessary and Sufficient Condition
• Define the reachability matrix for a system with n state
variables

Rn
△
=
[
Gv | FGv | F 2Gv | . . . | Fn−1Gv

]
• The pair (F, Gv) is reachable if and only if Rn has rank n .
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Example of Riccati Equation Convergence Analysis

Consider the dynamic system with one state variable:

{
x(t+ 1) = αx(t) + v1(t)

y(t) = γx(t) + v2(t)

v1(t) ∼ WGN
(
0, β2

)
v2(t) ∼ WGN (0, 1)

• α , β and γ are system’s parameters; we show that depending
on their specific values, the Riccati equation may converge or
not

• In all cases, we consider anyway the system to be unstable,
that is |α| > 1

• Even in this case of unstable system generating the data, the
steady-state Kalman predictor may be able to track the state
with a bounded prediction error.
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Example – Case 1

• Consider |α| > 1 , β ̸= 0 and γ ̸= 0
• The recursive Riccati equation becomes

P (t+ 1) = β2 +
α2P (t)

1+ γ2P (t)

• It is easy to see that the corresponding ARE has two solutions,
one positive and one negative

• Selecting the positive solution, we can see that |α− K̄γ| < 1 ,
hence the solution is stabilizing
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Example – Case 1 (cont.)
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Example – Case 2

• Consider |α| > 1 , β ̸= 0 and γ = 0
• The recursive Riccati equation becomes

P (t+ 1) = β2 + α2P (t)

• The solution always diverges
• As γ = 0 the gain K̄ is zero (no use of the measurements), thus
the predictor behaves in open-loop

• The predictor tries to “mimic” the dynamic system (this is the
best it can do) and actually the system is unstable, thus the
divergence:

x̂ (t+ 1|t) = αx̂ (t|t− 1)
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Example – Case 3

• Consider |α| > 1 , β = 0 and γ ̸= 0
• The recursive Riccati equation becomes

P (t+ 1) = α2P (t)

1+ γ2P (t)

• The ARE has two solutions, one zero and one positive
• In case of non-zero initial conditions, the Riccati equation
converges to the positive solution

• If the initial condition P1 is zero, the solution of the recursive
Riccati equation is constantly equal to zero.

• This is equivalent to state that there is no uncertainty on the
state x(0) at the initial time, nor at all subsequent time-instants

• The predictor is unstable (as the dynamic system), operates in
open-loop and yields an error-free prediction

x̂ (t+ 1|t) = αx̂ (t|t− 1)
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Example – Case 3 (cont.)
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Kalman Estimation: the Extended
Kalman Filter

The Estimation of State Variables of
Nonlinear Systems



State Estimation for Nonlinear Systems

So far we have seen that the optimal linear filtering theorems and
algorithms are clean and powerful.

What about nonlinear system state variables estimation?

Can we adapt/extend the Kalman filtering ideas to the nonlinear
systems?
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State Estimation for Nonlinear Systems (cont.)

We refer to system’s descriptions through state equations:{
x(t+ 1) = f

(
x(t)

)
+ v1(t) x, v1 ∈ Rn

y(t) = h
(
x(t)

)
+ v2(t) y, v2 ∈ Rp

where

• v1 ∼ WGN(0, V1), v2 ∼ WGN(0, V2)
• v1(·), v2(·) independent, mutually and with x(1) ∼ G(x̄, P1)
• f(·), h(·), V1, V2, P1 known
• even if v1(·), v2(·) are Gaussian r.v., in general the state x and
the measurements y are not Gaussian, due to the nonlinear
transformations f(·) and h(·) .

Still, we would solve the state prediction and filtering problems:

x̂(t|t− 1) = E [x(t)|y(0), . . . , y(t− 1)] x̂(t|t) = E [x(t)|y(0), . . . , y(t)]
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State Estimation for Nonlinear Systems: Linearisation

Given the nonlinear system{
x(t+ 1) = f

(
x(t)

)
+ v1(t) x, v1 ∈ Rn

y(t) = h
(
x(t)

)
+ v2(t) y, v2 ∈ Rp

Let us determine the nominal state movement as the solution of

x̃(t+ 1) = f
(
x̃(t)

)
x̃(1) = E [x(1)]

and the corresponding nominal output movement ỹ(t) = h
(
x̃(t)

)
.

Remark
The nominal state and output movements x̃(t) and ỹ(t) can be
computed a priori, by solving a deterministic difference equation,
without any observed data.

DIA@UniTS – 267MI –Fall 2022 TP GF – L13–p80



State Estimation for Nonlinear Systems: Linearisation (cont.)

Linearisation via the Taylor Series Expansion
The nonlinear state and output movements, close to the nominal
ones, may be approximated using the first order Taylor series
expansion evaluated at the nominal movements x̃(t) and ỹ(t) .

Defining the variations

∆x(t) = x(t)− x̃(t) ∆y(t) = y(t)− ỹ(t)

the linearisation leads to{
∆x(t+ 1) = F̃ (t)∆x(t) + v1(t)

∆y(t) = H̃(t)∆x(t) + v2(t)

where
F̃ (t) =

∂ f(x)

∂x

∣∣∣
x=x̃(t)

H̃(t) =
∂ h(x)

∂x

∣∣∣
x=x̃(t)
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State Estimation for Nonlinear Systems: Linearisation (cont.)

Kalman theory can be applied to the linearised system, obtaining
the predicted estimate for the state variation as follows

∆̂x (t+ 1|t) = F̃ (t)∆̂x (t|t− 1) + K̃(t)e(t)

e(t) = ∆y(t)− H̃(t) ∆̂x (t|t− 1)

where

K̃(t) = F̃ (t) · P̃ (t) · H̃⊤(t)
[
H̃(t) · P̃ (t) · H̃⊤(t) + V2

]−1
P̃ (t+ 1) =

= F̃ (t)

{
P̃ (t)− P̃ (t)H̃(t)⊤

[
V2 + H̃(t)P̃ (t)H̃(t)⊤

]−1
H̃(t)P̃ (t)

}
F̃ (t)⊤

+ V1
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State Estimation for Nonlinear Systems: Linearisation (cont.)

Taking into account that the state estimate variation is

∆̂x (t|t− 1) = x̂ (t|t− 1)− x̃(t)

and recalling the expression of the output variation ∆y(t) , we may
rewrite the state prediction estimate as

x̂ (t+ 1|t) = x̃(t+ 1) + ∆̂x (t+ 1|t)
= f (x̃(t)) + F̃ (t)∆̂x (t|t− 1) + K̃(t)e(t)

= f (x̃(t)) + F̃ (t)∆̂x (t|t− 1)

+ K̃(t)

{
y(t)−

[
ỹ(t) + H̃(t) ∆̂x (t|t− 1)

] }

≈ f (x̂ (t|t− 1))
≈ h (x̂ (t|t− 1))
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Linearised Kalman Predictor and Filter

Summarising, given the nonlinear system{
x(t+ 1) = f

(
x(t)

)
+ v1(t) x, v1 ∈ Rn

y(t) = h
(
x(t)

)
+ v2(t) y, v2 ∈ Rp

the approximate predicted state estimate can be expressed as
Linearised Kalman Predictor

x̂ (t+ 1|t) = f (x̂ (t|t− 1)) + K̃(t) [y(t)− h (x̂ (t|t− 1))]

The gain K̃(t) is evaluated using the usual expression of the
Kalman predictor gain, employing the solution of the Riccati
equation, computed with matrices

F̃ (t) =
∂ f(x)

∂x

∣∣∣
x=x̃(t)

H̃(t) =
∂ h(x)

∂x

∣∣∣
x=x̃(t)

where x̃(·) is the nominal state movement, solution of
x̃(t+ 1) = f

(
x̃(t)

)
with x̃(1) = E [x(1)]
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Linearised Kalman Predictor and Filter (cont.)

In a similar way, the approximated filtered state estimate can be
written as
Linearised Kalman Filter

x̂ (t|t) = f (x̂ (t− 1|t− 1)) + K̃0(t) [y(t)− h (x̂ (t− 1|t− 1))]

The gain K̃0(t) is computed using the usual expression of the
Kalman filter gain, employing the solution of the Riccati equation,
computed with matrices

F̃ (t) =
∂ f(x)

∂x

∣∣∣
x=x̃(t)

H̃(t) =
∂ h(x)

∂x

∣∣∣
x=x̃(t)

where x̃(·) is the nominal state movement, solution of
x̃(t+ 1) = f

(
x̃(t)

)
with x̃(1) = E [x(1)]
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Remarks

Important Considerations about the Linearisation
• The linearised Kalman predictor and the linearised Kalman filter
have been obtained by approximating the nonlinear functions
f(·) and h(·) around the nominal state movement x̃(t) .

• The nominal state movement has been computed by solving
the difference equation

x̃(t+ 1) = f
(
x̃(t)

)
x̃(1) = E [x(1)]

without taking into consideration any measured data.
• The true state movement may diverge, step by step, from the
nominal one. The performance of the predictor/filter may
deteriorate in the long run.

• How to cope with this issue?
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The Extended Kalman Filter

Instead to consider an off-line precalculated state movement as
nominal state for the linearisation, a better approximation can be
achieved by linearising at each step around the last estimate of the
state:

F̂ (t|t− 1) = ∂ f(x)

∂x

∣∣∣
x=x̂(t|t−1)

Ĥ (t|t− 1) = ∂ h(x)

∂x

∣∣∣
x=x̂(t|t−1)

This means that we can no longer solve the Riccati equation
off-line, as we could in the case of the linearized Kalman predictor:
the solution of the DRE must be performed just after the estimate
x̂ (t|t− 1) is available.
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The Extended Kalman Filter (cont.)
The Extended Kalman Filter (EKF) as State Predictor
Given the nonlinear system{

x(t+ 1) = f
(
x(t)

)
+ v1(t) x, v1 ∈ Rn , v1 ∼ WGN(0, V1)

y(t) = h
(
x(t)

)
+ v2(t) y, v2 ∈ Rp , v2 ∼ WGN(0, V2)

the approximate predicted state estimate can be expressed as

x̂ (t+ 1|t) = f (x̂ (t|t− 1)) + K̃(t) [y(t)− h (x̂ (t|t− 1))]

The gain K̃(t) is evaluated using the usual expression of the
Kalman predictor gain, employing the solution of the Riccati
equation, computed with matrices

F̂ (t|t− 1) = ∂ f(x)

∂x

∣∣∣
x=x̂(t|t−1)

Ĥ (t|t− 1) = ∂ h(x)

∂x

∣∣∣
x=x̂(t|t−1)

and with x̂ (1|0) = E [x(1)] P̂ (1) = P̂1 = var [x(1)]
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The EKF Predictor in the Presence of Exogenous Inputs

Consider the system model

x(t+ 1) = f
(
x(t), u(t)

)
+ v1(t) v1(·) ∼ WGN (0, V1)

y(t) = h (x(t)) + v2(t) v2(·) ∼ WGN (0, V2)

and linearise the state and output equations around the state
estimate x̂ (t|t− 1), as usual.

This results in the following equations for the EKF predictor

x̂ (t+ 1|t) = f
(
x̂ (t|t− 1) , u(t)

)
+K(t) [y(t)− h (x̂ (t|t− 1))]

K(t) = Ft P (t)H⊤
t

[
HtP (t)H⊤

t + V2
]−1

P (t+ 1) = Ft

{
P (t)− P (t)H⊤

t

[
V2 +HtP (t)H⊤

t

]−1
HtP (t)

}
F⊤
t + V1

where

Ft =
∂ f(x, u)

∂x

∣∣∣∣x = x̂ (t|t − 1)
u = u(t)

Ht =
∂ h(x)

∂x

∣∣∣∣
x=x̂(t|t−1)
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EKF Predictor and Filter Properties

• The Extended Kalman Filter (EKF) is nothing else than a
standard and exact Kalman filter for the linearised system.
When applied to the nonlinear system, the EKF is no more
linear or optimal.

• The notations x̂ (t|t− 1) and P (t|t− 1) are now denoting
approximate conditional mean values and covariances.
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EKF Predictor and Filter Properties (cont.)

• The equations for calculating the filter gain K(t) and the
covariance P (t) are coupled to the filter equations, since Ft

and Ht are function of the previous filter estimate x̂ (t|t− 1) .
So in general the evaluation of K(t) and P (t) cannot be carried
out off-line.

• The smaller will be ∥x(t)− x̂ (t|t− 1) ∥2 or ∥x(t)− x̂ (t|t) ∥2 the
better the linearised system will approximate the original
nonlinear system. Therefore, in high signal-to-noise ratio
situations, there would be fewer difficulties in using an
Extended Kalman Filter. However, in general, convergence is
not guaranteed.
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Kalman Estimation: the Extended
Kalman Filter

Application Example: a Two-Phase
PMSM Drive



PMSM Motor State Estimation

• Consider a two-phase permanent magnet synchronous drive:
we would like to estimate the states of the motor, for control
purposes or for some other different reasons.

• We can measure the motor winding currents, but we can’t
acquire the rotor position and angular speed, so we want to
use an EKF to estimate both the rotor position and the
rotational speed.
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PMSM Motor State Estimation (cont.)

• The system equations are

İa = −R

L
Ia +

ωλ

L
sinϑ+

ua + ηa
L

İb = −R

L
Ib −

ωλ

L
cosϑ+

ub + ηb
L

ω̇ = − 3λ2 J Ia sinϑ+
3λ
2 J Ib cosϑ− F ω

J
+ ηα

ϑ̇ = ω

y1 = Ia + ϵ1

y2 = Ib + ϵ2

The variables are defined as follows

• Ia and Ib are the current intensities in the two motor windings.
• R and L are the motor winding’s resistance and inductance.
• ϑ and ω are respectively the angular position and the
rotational speed of the rotor.
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PMSM Motor State Estimation (cont.)

The remaining variables are defined as follows

• λ is the flux constant of the motor.
• F and J are respectively the the coefficient of viscous friction
that acts on the motor shaft and the moment of inertia of the
motor shaft and its load.

• ua and ub are the voltages that are applied across the two
motor windings. The terms ηa and ηb are noise terms, taking
into account possible errors in the applied voltages.

• ηα is a noise term due to uncertainty in the load torque.
• y1 and y2 are the measurements of the winding currents,
distorted by measurement noises ϵ1 and ϵ2 .

We assume known and constant the values of R , L , F , J , λ and
the noise variances. Moreover, we assume that the noises are
uncorrelated.
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PMSM Motor State Estimation (cont.)

The state vector is x = [Ia , Ib , ω , ϑ]T . By discretising the system
equation with sampling time period ∆ , we obtain

x(t+ 1) = x(t) +



−Rx1(t)

L
+

x3(t)λ sinx4(t)

L
+

u1(t)

L

−Rx2(t)

L
+

x3(t)λ cosx4(t)

L
+

u2(t)

L

−3λx1(t) sinx4(t)2 J +
3λx2(t) cosx4(t)

2 J − Fx3(t)

J

x3(t)


∆+

+



ηa(t)

L
ηb(t)

L

ηα(t)

0


∆

= f (x(t), u(t)) + v1(t)
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PMSM Motor State Estimation (cont.)

The discretised output equation appears simply as follows

y(t) =

[
x1(t)

x2(t)

]
+

[
ϵ1(t)

ϵ2(t)

]
= h (x(t)) + v2(t)

Let’s assume

ϵ1(·) ∼ WGN
(
0, 10−2

)
ϵ2(·) ∼ WGN

(
0, 10−2

)
ηa(·) ∼ WGN

(
0, 10−6

)
ηb(·) ∼ WGN

(
0, 10−6

)
ηα(·) ∼ WGN

(
0, 25 · 10−4

)
Moreover, let’s assume that the sampled control inputs are
(sampling period ∆)

u1(t) = sin 2π∆t u2(t) = cos 2π∆t t ∈ Z
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PMSM Motor State Estimation: the Results

Figure 8: EKF performance, using the sampling time ∆ = 1.0 · 10−3 and the
ODE solver time step dt = 1.0 · 10−5 .
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