
Programming in Java –
Basics of Swing

Paolo Vercesi

Technical Program Manager

Hello, World!

The rules of the game

Working with Swing components

Agenda

The humble dialog
Decoupling the view from the application logic

Hello, World!

© 2021 ESTECO SpA

Furthermore, will see that if we decouple the GUI, the
presentation layer, from the application logic, the GUI
becomes just a front-end of our application logic and it
will be easy to switch from one front-end to another

Why are we still teaching GUI and desktop programming in 2022?

Because there are still many desktop applications
around (even if they are less and less used)

Because the same concepts and the same
knowledge can be applied in the development
of apps for smartphones and tablet

© 2021 ESTECO SpA

In an application with a GUI, the main
method is responsible to initialize and
assemble the GUI and the application
logic, and then to make the GUI visible

Graphical user interfaces (GUI) and OOP

Object-oriented programming is very
well suited for GUI programming

GUI components or controls are natural
objects: windows, buttons, labels, text
fields, etc., GUI programming is naturally
asynchronous and event oriented

© 2021 ESTECO SpA

• Swing

• Abstract Widget Toolkit (AWT)

• Part of Java SE

• JavaFX

• Standard Widget Toolkit (SWT)

• All available for Windows, Linux, and MacOS

GUI libraries for Java

© 2021 ESTECO SpA

• Official tutorial https://docs.oracle.com/javase/tutorial/uiswing/index.html
• be aware that it is based on Java 8 and some technologies such as Applets and

Web Start have been deprecated or removed in the next releases of Java

• and do a lot of experiments

• Study the Java documentation
• and do a lot of experiments

• Look at the source code
• and do a lot of experiments

• Ask a colleague
• and do a lot of experiments

• Attend this introduction to Java Swing
• and…

How to learn Java Swing

https://docs.oracle.com/javase/tutorial/uiswing/index.html

© 2021 ESTECO SpA

Hello, World!
HelloWorld.java

public class HelloWorld {

public static void main(String[] args) {
SwingUtilities.invokeLater(HelloWorld::helloWorld);

}

private static void helloWorld() {
JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);

JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

frame.setSize(400, 200);
frame.setVisible(true);

}
}

© 2021 ESTECO SpA

Analysis of HelloWorld.java 1/5

HelloWorld.java

JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

A JFrame represents a window with all
the decorations: icon, title, and buttons to
minimize, maximize, and close

The behavior of the close button can be
customized, for example to dispose the
JFrame

By disposing a JFrame, we close the
JFrame if open, and we release all the
resources associated to this JFrame

© 2021 ESTECO SpA

Analysis of HelloWorld.java 2/5

HelloWorld.java

JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);

A JLabel is a Swing component used to
represents a piece of text with an icon

To make a Swing component visible, we
must add it to a container, if there are no
intermediate containers, we can add it to
the content pane of the JFrame directly

A container uses a layout manager to
layout the components it contains.
When adding a component to a
container we can specify a constraint

The content pane of a JFrame uses the
BoderLayout manager by default

© 2021 ESTECO SpA

Analysis of HelloWorld.java 3/5

HelloWorld.java

JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

A JButton is a Swing component able to
respond to user actions. For example,
when the user clicks on the button, it
triggers an action listener

© 2021 ESTECO SpA

Analysis of HelloWorld.java 4/5

HelloWorld.java

frame.setSize(400, 200);
frame.setVisible(true);

A JFrame and its content pane are shown
in the screen when we make the frame
visible

© 2021 ESTECO SpA

Analysis of HelloWorld.java 5/5

HelloWorld.java

public static void main(String[] args) {
SwingUtilities.invokeLater(HelloWorld::helloWorld);

}

Almost all GUI code MUST run on the Event Dispatch Thread
by using either invokeLater or invokeAndWait

static void invokeAndWait(Runnable doRun) Causes doRun.run() to be executed
synchronously on the AWT event
dispatching thread.

static void invokeLater(Runnable doRun) Causes doRun.run() to be executed
asynchronously on the AWT event
dispatching thread.

More on this topic in the next section!

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/SwingUtilities.htmlinvokeAndWait(java.lang.Runnable)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/SwingUtilities.htmlinvokeLater(java.lang.Runnable)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html

© 2021 ESTECO SpA

❑ Swing is a library used to develop a graphical user interface (GUI) for Java programs

❑ Swing is part of the “The Java Platform, Standard Edition (Java SE) APIs”

Take aways

https://en.wikipedia.org/wiki/Graphical_user_interface

The rules of the game

© 2021 ESTECO SpA

To make a component visible, its
containment hierarchy must be
included into a JFrame o another
window object

Containment hierarchy

JFrame

JPanel

JPanel

JPanel

JLabel

JPanels are containers to which
usually we add components

JLabel JButtonOther containers to which we add
components are JToolBar, JMenu,
and JPopupMenu

Each component can belong to
just one container

© 2021 ESTECO SpA

Swing windows

JFrame JDialog JWindow

Title bar Yes Yes No

Window buttons Minimize, maximize,
and close

Close None

Border Yes Yes No

Modal No Yes No

Independent Yes No No

A GUI application usually visualizes just one JFrame instance

• When a frame is minimized, all the child dialogs and windows are minimized

• When a frame is disposed, all the child dialogs and windows are disposed

© 2021 ESTECO SpA

In Java Swing there are other windows classes, such
as Frame, Dialog, and Window. These are part of the
old AWT library available since Java 1. Swing was
introduced since Java 2. Graphic classes without the
‘J’ in front are usually part of AWT and you should
not use them.

More on Swing components and AWT

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel javax.swing.JButton

Some Swing classes, like for example JFrame,
JDialog and JWindow still inherits from Frame,
Dialog, and Window. All Swing components inherit
from JComponent that inherit from Container that
inherit from Component. The API of Container and
Component is still widely used.

Assignment: explore the API of Container, Component and JComponent.

© 2021 ESTECO SpA

Windows (JFrame, JDialog, and JWindow) must be disposed after usage

Disposing windows

public void dispose()

Releases all of the native screen resources used by this Window, its subcomponents,
and all of its owned children. That is, the resources for these Components will be
destroyed, any memory they consume will be returned to the OS, and they will be
marked as undisplayable.

The Window and its subcomponents can be made displayable again by rebuilding
the native resources with a subsequent call to pack or show. The states of the
recreated Window and its subcomponents will be identical to the states of these
objects at the point where the Window was disposed (not accounting for additional
modifications between those actions).

Note: When the last displayable window within the Java virtual machine (VM) is
disposed of, the VM may terminate. See AWT Threading Issues for more
information.

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/doc-files/AWTThreadIssues.html#Autoshutdown

© 2021 ESTECO SpA

DisposedFrame.java

public class DisposedFrame {
public static void main(String[] args) {

SwingUtilities.invokeLater(DisposedFrame::disposeFrame);
}

private static void hideFrame() {
JFrame frame = new JFrame("A frame that will be disposed");
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setSize(400, 200);
frame.setVisible(true);

}
}

Dispose vs hide

HiddenFrame.java

public class HiddenFrame {

public static void main(String[] args) {
SwingUtilities.invokeLater(HiddenFrame::hideFrame);

}

private static void hideFrame() {
JFrame frame = new JFrame("A frame that will be hidden");
frame.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);
frame.setSize(400, 200);
frame.setVisible(true);

}
}

This program terminates

This program
doesn’t terminate

© 2021 ESTECO SpA

Inheritance hierarchy

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

javax.swing.JButton

javax.swing.JPanel

All Swing components, inherits from JComponent
that in turn inherits from Container

Maybe this is not a very appropriate use of
inheritance, but sometimes software engineers
should accept trade-offs, in this case they traded
code reuse with a “misuse” of inheritance

So, all Swing components are containers but not
all Swing components are meant to contain other
components. E.g., is not appropriate to add a
component to a JButton

© 2021 ESTECO SpA

Digression - AWT inheritance hierarchy

Component

Container

Button Label Checkbox Choice List WindowPanel

Frame Dialog
Only the components that are supposed to contain
other components are subclasses of Container

© 2021 ESTECO SpA

Inheritance vs containment hierarchy

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

javax.swing.JButton

javax.swing.JPanel

JFrame

JPanel

JButton

JLabel

Don’t get confused!

Label and button are child
components of a panel

© 2021 ESTECO SpA

1. Modify the HelloWorld example to use a JDialog and a JWindow instead of a JFrame
1. Explore how window closing works

2. Explore how program termination works

2. Modify the Hello World example to open an “Hello, World!” popup (use both JDialog
and JWindow) when pressing the button
1. Explore how modality of JDialog works

2. Explore window closing and program termination

Exercises

© 2021 ESTECO SpA

Each component is responsible to indicate
its preferred, minimum and maximum sizes

“NO” fixed layout

JPanel

JLabel

width

h
e

ig
h

t

y

x

The position, size and location, of a
component is decided by the layout
manager of its container

WARNING
Swing is addictive!

A layout manager has two main responsibilities

1. layout the child components given their preferences and eventually a set of constraints

2. calculate the container preferred, minimum, and maximum sizes

Each container has its own layout manager

Since each container has its own layout manager, the process is “recursive”

Each Swing component knows how to
calculate its preferred, minimum and
maximum sizes

© 2021 ESTECO SpA

Common (my favorites) layout managers

Layout managers

BorderLayout GridBagLayout

© 2021 ESTECO SpA

BorderLayout demo
BorderLayoutDemo.java

public class BorderLayoutDemo {

public static void main(String[] args) {
SwingUtilities.invokeLater(BorderLayoutDemo::run);

}

private static void run() {
JFrame frame = new JFrame("BorderLayout demo");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
Container cp = frame.getContentPane();
cp.setLayout(new BorderLayout());
cp.add(new JButton("North"), BorderLayout.NORTH);
cp.add(new JButton("South"), BorderLayout.SOUTH);
cp.add(new JButton("East"), BorderLayout.EAST);
cp.add(new JButton("West"), BorderLayout.WEST);
cp.add(new JButton("Center"), BorderLayout.CENTER);
frame.setSize(500, 400);
frame.setVisible(true);

}
}

© 2021 ESTECO SpA

BorderLayout

North
Page start

West
Line start

Center
East
Line end

South
Page end

When using the BorderLayout

• The North and South components have
heights equal to their respective
preferred heights. And they are expanded
to take all the available horizontal space.

• The West and East components have
widths equal to their respective preferred
widths. And they are expanded to take all
the available vertical space.

• The Center component takes all the
available horizontal and vertical space.

The maximum number of components is 5

The position of the component in the layout defines
the constraints to which a component is subject

© 2021 ESTECO SpA

Familiar enough!

© 2021 ESTECO SpA

GridBagLayout demo

GridBagLayoutDemo.java

public class GridBagLayoutDemo {

public static void main(String[] args) {
SwingUtilities.invokeLater(GridBagLayoutDemo::run);

}

private static void run() {
JFrame frame = new JFrame("GridBagLayout demo");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
Container cp = frame.getContentPane();
cp.setLayout(new GridBagLayout());
cp.add(new JButton("1"), new GridBagConstraints(0, 0, 1, 1, 1.0, 0.0, CENTER, NONE, new Insets(0, 0, 0, 0), 0, 0));
cp.add(new JButton("2"), new GridBagConstraints(1, 0, 1, 1, 1.0, 0.0, CENTER, NONE, new Insets(0, 0, 0, 0), 0, 0));
cp.add(new JButton("3"), new GridBagConstraints(2, 0, 1, 1, 1.0, 0.0, CENTER, NONE, new Insets(0, 0, 0, 0), 0, 0));
cp.add(new JButton("4"), new GridBagConstraints(3, 0, 1, 1, 1.0, 0.0, CENTER, NONE, new Insets(0, 0, 0, 0), 0, 0));
cp.add(new JButton("Center"), new GridBagConstraints(0, 1, 4, 1, 1, 1, CENTER, BOTH, new Insets(10, 10, 10, 10), 0, 0));
cp.add(new JButton("A"), new GridBagConstraints(0, 2, 2, 1, 1.0, 0.0, CENTER, HORIZONTAL, new Insets(0, 0, 0, 0), 0, 0));
cp.add(new JButton("B"), new GridBagConstraints(2, 2, 2, 1, 1.0, 0.0, CENTER, HORIZONTAL, new Insets(0, 0, 0, 0), 0, 0));
frame.setSize(500, 300);
frame.setVisible(true);

}
}

x, y, width, height, weightx, weighty, anchor, fill, insets, padx, pady

© 2021 ESTECO SpA

GridBagLayout

The GridBagLayout creates a “virtual” grid that can be
extended indefinitely.

Each components is subject to many constraints
• x, y position in the grid
• width, height horizontal and vertical span
• weightx, weighty define the weight of the corresponding

columns (rows), Horizontal (vertical) extra space is assigned
based to the column (row) weight. Define also how much
horizontal (vertical) extra space is given to the component

• anchor how to position the component in the cell
• fill how to resize the component in the cell, depending on

its weight
• insets how much space we should put around the

component
• padx, pady internal padding of the component

© 2021 ESTECO SpA

Define the GridBagConstraints that, when used with a GridBagLayout, produce the same
effects of the five constraints of the BorderLayout, NORTH, WEST, CENTER, EAST, SOUTH.

Assignment

© 2021 ESTECO SpA

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Gallery of layout managers

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

© 2021 ESTECO SpA

Swing is not thread-safe

Most Swing object methods are not
thread-safe, invoking them from multiple
threads risks thread interference or
memory consistency errors Swing event handling code runs on a

special thread known as the event dispatch
thread (EDT) and most of the code that
invokes Swing methods also runs on this
threadSome Swing component methods are labelled

thread-safe in the API specification; these can
be safely invoked from any thread. All other
Swing component methods must be invoked
from the event dispatch thread Programs that ignore this rule may seems

to run correctly most of the times but are
subject to unpredictable errors that are
difficult to reproduce

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/package-summary.html

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/package-summary.html

© 2021 ESTECO SpA

The event queue & event dispatch thread

The event dispatch thread is a thread used to
process the events enqueued in an event queue

Key pressed

Window closing

Paint

Mouse dragged

Paint

Mouse pressed

Mouse released

Pump next event
from the queue

Run the event
dispatcher

java.awt.EventDispatchThread

java.awt.EventQueue

• Action
• Component
• Container
• Mouse
• Mouse wheel

• Key
• Window
• Focus
• Text
• etc.

Swing/AWT has several types of events

© 2021 ESTECO SpA

Using the event dispatch thread

If you need to determine whether your code is
running on the event dispatch thread, invoke
javax.swing.SwingUtilities.isEventDispatchThread

Tasks on the event dispatch thread must finish
quickly; if they don't, unhandled events back up
and the user interface becomes unresponsive

Longer tasks should run in background, i.e.,
without blocking the GUI by using a SwingWorker

The code that handles Swing events is invoked
from the event dispatch thread

https://docs.oracle.com/javase/8/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread--

© 2021 ESTECO SpA

❑ To make a component visible, its containment hierarchy must be included into a visible
JFrame o another visible window object

❑ Swing provides three types of windows

❑ In general, an application has just one JFrame and it can have more instances of JDialog or
JWindow

❑ We should not directly use AWT components, even if we still use AWT classes

❑ Windows must be properly disposed

❑ Most Swing components are subclasses of AWT components

❑ Components into a container are laid out by a layout manager

❑ Swing is not thread safe

❑ Swing documentation indicates what methods are thread-safe

❑ Thread-unsafe methods must be invoked from the event dispatch thread

Take aways

Working with Swing components

© 2021 ESTECO SpA

Swing components receive mouse and
keyboard events from the window
system and they translate these events
into component events

Interactions with the GUI

In other words, Swing components
fire events in response to user actions

Event processing happens in the event
dispatch thread, as the name suggest

While processing events, it’s always
(thread) safe to invoke Swing
methods from the same thread

© 2021 ESTECO SpA

From GUI events to component events

JButton

Mouse
pressed
event

Mouse
released
event

Action
performed

event
ActionListener

GUI events are dispatched
to components. E.g., the

Mouse pressed and Mouse
released events are

dispatched to the JButton

Components translate GUI
events into component event.
E.g., the Mouse pressed and

Mouse released events trigger
an Action performed event

Registered listeners receive
the component event. E.g., an
ActionListener registered to

the JButton receives the
Action performed event

All these events are dispatched through the event dispatch thread

© 2021 ESTECO SpA

• buttons
• push button

• check box

• toggle button

• radio button

• choosers
• color chooser

• file chooser

• combo box
• list
• menus

• menu bar

• popup menu

• menu

• menu item

• option pane
• panes

• editor pane

• text pane

• panel
• progress bar
• scroll pane
• separator
• slider

• spinner
• split pane
• tabbed pane
• table
• text components

• text field

• password field

• text area

• text pane

• tool bar
• tool tip
• tree

Swing components

© 2021 ESTECO SpA

JOptionPane can be used to inform the user about something or to ask for some input.
The class has many public constructors and many static methods to show dialogs.

showMessageDialog()
showConfirmDialog()
showInputDialog()
showOptionDialog()

Parameters

JOptionPane

• parentComponent
• message
• messageType
• optionType

• options
• icon
• title
• initialvalue

© 2021 ESTECO SpA

JOptionPaneDemo
OptionPaneDemo.java

import static javax.swing.JOptionPane.showConfirmDialog;

import static javax.swing.JOptionPane.showInputDialog;

import static javax.swing.JOptionPane.showMessageDialog;

public class OptionPaneDemo {

public static void main(String[] args) {
SwingUtilities.invokeLater(OptionPaneDemo::demo);

}

private static void demo() {
String name = showInputDialog(null, "What's your name");
int result = showConfirmDialog(null, "Your name is: " + name + "\n Is it right?");
if (result == JOptionPane.OK_OPTION) {

showMessageDialog(null, "Hi " + name + "!");
} else {

showMessageDialog(null, "Try again", "Incorrect name", JOptionPane.ERROR_MESSAGE);
}

}
}

© 2021 ESTECO SpA

SwingDemo

© 2021 ESTECO SpA

Swing demo – Setting up and showing the JFrame

JFrame frame = new JFrame("Swing Demo");

frame.setDefaultCloseOperation(DISPOSE_ON_CLOSE);

Container cp = frame.getContentPane();

cp.setLayout(new BorderLayout());

JLabel label = new JLabel(“Hello, World!");

label.setOpaque(true);

…

cp.add(new JScrollPane(label), BorderLayout.CENTER);

cp.add(northPanel, BorderLayout.NORTH);

cp.add(southPanel, BorderLayout.SOUTH);

frame.setSize(600, 200);

frame.setVisible(true);

© 2021 ESTECO SpA

The JScrollPane

The JScrollPane shows the
component through a viewport

When the viewport is not wide
enough, scrollbars are added to
the view

© 2021 ESTECO SpA

The North panel

JPanel northPanel = new JPanel(new GridBagLayout());

JLabel textLabel = new JLabel("Label text:");

northPanel.add(textLabel, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,

GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(0, 4,0, 0), 0, 0));

JTextField textField = new JTextField(30);

textField.addActionListener(e -> label.setText(textField.getText()));

northPanel.add(textField, new GridBagConstraints(1, 0, 1, 1, 1.0, 0.0,

GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL, new Insets(4, 4, 4, 4), 0, 0));

© 2021 ESTECO SpA

The South panel 1/2
JPanel southPanel = new JPanel(new FlowLayout());
JSlider sizeSlider = new JSlider(SwingConstants.HORIZONTAL, 1, 60, label.getFont().getSize());
sizeSlider.addChangeListener(e -> label.setFont(label.getFont().deriveFont((float) sizeSlider.getValue())));
southPanel.add(sizeSlider);

JButton changeColorButton = new JButton("Change background");
JCheckBox showBackground = new JCheckBox("Show background");

showBackground.addActionListener(e -> {
label.setOpaque(showBackground.isSelected());
label.repaint();
changeColorButton.setEnabled(showBackground.isSelected());

});
southPanel.add(showBackground);

changeColorButton.setEnabled(false);
changeColorButton.addActionListener(e -> {

label.setBackground(JColorChooser.showDialog(frame, "Choose background color", label.getBackground()));
});
southPanel.add(changeColorButton);

© 2021 ESTECO SpA

The South panel 2/2
JComboBox<Integer> alignmentComboBox = new JComboBox<>(

new Integer[]{SwingConstants.LEFT, SwingConstants.CENTER, SwingConstants.RIGHT});

alignmentComboBox.setRenderer(new DefaultListCellRenderer() {
@Override
public Component getListCellRendererComponent(JList<?> list, Object value, int index, boolean isSelected, boolean cellHasFocus) {
switch ((Integer) value) {
case SwingConstants.LEFT -> value = "Left";
case SwingConstants.CENTER -> value = "Center";
case SwingConstants.RIGHT -> value = "Right";

}
return super.getListCellRendererComponent(list, value, index, isSelected, cellHasFocus);

}
});
alignmentComboBox.setSelectedItem(label.getHorizontalAlignment());
alignmentComboBox.addActionListener(e -> {
label.setHorizontalAlignment((Integer) alignmentComboBox.getSelectedItem());

});

southPanel.add(alignmentComboBox);

© 2021 ESTECO SpA

Swing allows to change the look-and-feel (L&F) of GUI applications,
to adapt the appearance and the behavior of GUI components

Look-and-feel

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());

or

https://www.oracle.com/java/technologies/a-swing-architecture.html

https://www.oracle.com/java/technologies/a-swing-architecture.html

© 2021 ESTECO SpA

❑ Components fire events in response to user actions

❑ Swing has a rich and comprehensive set of components

❑ Swing supports multiple look-and-feels

Take aways

The humble dialog
Decoupling the view from the application logic

© 2021 ESTECO SpA

The test pyramid

GUI

Integration

Unit

S
p

e
e

d

C
o

m
p

re
h

e
n

si
v

e
n

e
ss

© 2021 ESTECO SpA

Automation of GUI code

Special frameworks

Complex setup

Slow running

© 2021 ESTECO SpA

• GUI code is hard to test automatically and hard to develop by using Test Driven
Development

• One strategy to make a GUI application more testable is to ensure that the GUI code
have the absolute minimum of behavior (code)

• For example, through the implementation of the Humble Object pattern
http://xunitpatterns.com/Humble%20Object.html

How to test GUI code

http://xunitpatterns.com/Humble%20Object.html

© 2021 ESTECO SpA

This pattern is applied at the boundaries of the system, where things are often difficult to test, in order
to make them more testable. We accomplish the pattern by reducing the logic close to the boundary,
making the code close to the boundary so humble that it doesn't need to be tested. The extracted logic
is moved into another class, decoupled from the boundary which makes it testable.

- Robert C. Martin

Humble Object pattern

© 2021 ESTECO SpA

1. Passive View (variation of the MVC pattern)
https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/02-
variations-on-the-view/02-passive-view.html

2. Humble dialog pattern
https://martinfowler.com/articles/humble-dialog-box.html

The Humble Object pattern in GUI programming

https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/02-variations-on-the-view/02-passive-view.html
https://martinfowler.com/articles/humble-dialog-box.html

© 2021 ESTECO SpA

Model View Controller vs Passive View

View

Logic

Model

Updates
view status

Forwards
events

Displays to Acts on

P
as

si
v

e
 V

ie
w

View Controller

Model

Observes Notifies Update

Displays to Acts on

M
o

d
e

l-
V

ie
w

-C
o

n
tr

o
lle

r

© 2021 ESTECO SpA

1. Create a class for the smart object, and an interface class for the view. Pass the view to the smart
object

2. Develop commands against the smart object, test first. Write your tests against a mock view.

3. Create your dialog class and implement the view interface on it. Gestures on the dialog should
delegate to commands on the smart object. Calls from the smart object to the dialog should resolve
to simple setter methods.

When you follow these steps, you end up with tested code and a great interface for driving acceptance
tests programmatically.

- Michael Feathers, The Humble Dialog Box

The Humble Dialog

© 2021 ESTECO SpA

Humble Dialog example
HelloWorld.java

public class HelloWorld {

public static void main(String[] args) {
SwingUtilities.invokeLater(HelloWorld::helloWorld);

}

private static void helloWorld() {
JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);

JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

frame.setSize(400, 200);
frame.setVisible(true);

}
}

What shall we test?

What is the logic in this class?

We want to test that when
we click on the Close button
the window is disposed

© 2021 ESTECO SpA

show()
close()

In practice

<<interface>>
HelloWorldView

MockView SwingView

HelloWorldLogic

start()
onCloseClicked()

© 2021 ESTECO SpA

HelloWorld Logic & View

HelloWorldLogic.java

public class HelloWorldLogic {

private final HelloWorldView view;

public HelloWorldLogic(HelloWorldView view) {
this.view = view;

}

public void start() {
view.show();

}

public void onCloseClick() {
view.close();

}

public static void main(String[] args) {
SwingHelloWorld view = new SwingHelloWorld();
HelloWorldLogic logic = new HelloWorldLogic(view);
view.installLogic(logic);
logic.start();

}
}

HelloWorldView.java

public interface HelloWorldView {

void close();

void show();
}

© 2021 ESTECO SpA

Swing
implementation

SwingHelloWorld.java

public class SwingHelloWorld implements HelloWorldView {

private JFrame frame;
private HelloWorldLogic logic;

public void installLogic(HelloWorldLogic logic) {
this.logic = logic;

}

private void buildAndShow() {
frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);
JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> logic.onCloseClicked());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);
frame.setSize(400, 200);
frame.setVisible(true);

}

@Override
public void show() {

SwingUtilities.invokeLater(this::buildAndShow);
}

@Override
public void closeWindow() {

SwingUtilities.invokeLater(frame::dispose);
}

}

© 2021 ESTECO SpA

• The view interface should contain only methods to set the state of the view
• Swing components implement the MVC pattern on their own and they update their state by

their own, we don’t need to test those implementation of MVC
• Try to avoid state duplication between the Swing components and the logic (not always

easy)

Practical tips

© 2021 ESTECO SpA

Implement the whole user interface for the Calculator (pad + display) and couple it with the
Calculator class you have already implemented.
• Implement the Calculator class (or at least a few use cases) by using TDD

Assignment

display(String)

<<interface>>
CalculatorView

CalculatorSwingView

Calculator

zeroPressed()
onePressed()
twoPressed()
…
plusPressed()
equalPressed()

© 2021 ESTECO SpA

Stefano Borini, Understanding Model-View-Controller
https://stefanoborini.com/book-modelviewcontroller/

Michael Feathers, The Humble Dialog Box
https://martinfowler.com/articles/images/humble-dialog-box/TheHumbleDialogBox.pdf

References

https://stefanoborini.com/book-modelviewcontroller/
https://martinfowler.com/articles/images/humble-dialog-box/TheHumbleDialogBox.pdf

© 2021 ESTECO SpA

❑ GUI applications are usually hard-to-test

❑ We should move as much logic as possible out of the hard-to-test element into other more
test-friendly parts of the code base, by applying the Humble Object pattern

❑ In GUI applications the Humble Object pattern takes the form of the Humble Dialog that
implements the Passive View, a Model-View-Controller architectural pattern in which the
View is completely passive and does not update its state from the Model

Take aways

esteco.com

Thank you!

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

	Introduction
	Slide 1: Programming in Java – Basics of Swing
	Slide 2

	Hello, World!
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	The rules of the game
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Working with Swing components
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

	The humble dialog
	Slide 62
	Slide 63
	Slide 64
	Slide 66
	Slide 67
	Slide 69
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 81
	Slide 82
	Slide 83

	Thank you
	Slide 88: Thank you!

